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DELTA FUNCTION FOR AN AFFINE SUBSPACE

Jeremy J. Becnel

Abstract. The Kubo–Yokoi and Donsker delta functions are well known
generalized functions in infinite dimensional distribution theory. In this paper
we develop the delta function for an affine subspace and show that it is a
generalization of the Kubo–Yokoi and Donsker delta functions. The Wiener–
Itô expansion of the delta function for an affine subspace is also given.

1. INTRODUCTION

In finite dimensions we have the delta function δ, which for a given point
a ∈ Rn satisfies ∫

Rn

f(x)δ(x− a) dx = f(a)

for every test function f . It can be realized by

(1.1) lim
σ↘0

e−|x−a|2/2σ2 1
(2πσ2)n/2

= δ(x− a).

Observe, for a test function f ,

lim
σ↘0

∫
Rn

f(x)e−|x−a|2/2σ2 1
(2πσ2)n/2

dx

= lim
σ↘0

∫
Rn

f(σx+ a)e−|x|2/2 1
(2π)n/2

dx by a change of variables

=
∫
Rn

f(a)e−|x|2/2 1
(2π)n/2

dx by the dominated convergence theorem

= f(a).
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Now let V be a subspace of Rn and let a ∈ V ⊥. We can create a delta function
for the affine subspace a+V . This delta function is denoted by δa+V and is defined
by its action on a test function f as follows

(1.2)
∫
Rn

f(x)δa+V (x) dx =
∫

a+V
f(y) dy

when V is a nontrivial subspace. For the special case V = {0}, the delta function
δa+V reduces to the ordinary delta function δ. That is,∫

Rn
f(x)δa+0(x) dx = f(a).

By adjusting equation (1.1) slightly we can realize δa+V by

(1.3) δa+V (x) = lim
σ↘0

e−|x
V ⊥−a|2/2σ2 1

(2πσ2)d/2
.

where xV ⊥ represents the orthongonal projection of x onto the subspace V ⊥ and d
is the codimension of V . Observe, for a test function f ,

lim
σ↘0

∫
Rn

f(x)e−|x
V ⊥−a|2/2σ2 1

(2πσ2)d/2
dx

= lim
σ↘0

∫
V ⊥

∫
V
f(xV +xV ⊥)e−|x

V ⊥−a|2/2σ2 1
(2πσ2)d/2

dxV dxV ⊥

= lim
σ↘0

∫
V ⊥

∫
V

f(xV + σxV ⊥ + a)e−|x
V ⊥ |2/2 1

(2π)d/2
dxV dxV ⊥

=
∫

V ⊥

∫
V
f(xV + a)e−|x

V ⊥ |2/2 1
(2π)d/2

dxV dxV ⊥

=
∫

V
f(xV + a) dxV

=
∫

a+V

f(y) dy.

It is also easy to see that

(1.4) δa+V =
∫

a+V
δ(x− y) dy

holds in the distributional sense. Observe, for a test function f ,

(1.5)

∫
Rn

∫
a+V

δ(x− y) dy f(x) dx

=
∫

a+V

∫
Rn

δ(x− y)f(x) dx dy =
∫

a+V
f(y) dy.
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Replacing the Lebesgue measure dx with the Gaussian measure onRn, dµ(x) =
(2π)−n/2e−|x|2/2dx, we see from (1.2) that∫

Rn

δa+V (x)f(x) dµ(x) =
∫
Rn

δa+V (x)f(x)e−|x|2/2 dx

(2π)n/2

=
∫

a+V
f(y)e−|y|2/2 dy

(2π)n/2

Now we use that a ∈ V ⊥ and y = a+ v for some v ∈ V to see 〈y, a〉 = |a|2 and
hence |y − a|2 = |y|2 − |a|2. This gives us that the above is

= (2π)−d/2e−|a|2/2

∫
a+V

f(y)e−|y−a|2/2 dy

(2π)(n−d)/2

= (2π)−d/2e−|a|2/2

∫
a+V

f(y) dµa+V (y)

where µa+V is the Gaussian measure on a+ V .
Thus to define a delta function δ̃a+V with respect to the Gaussian measure for

the affine subspace a+ V we need to make a small adjustment to δa+V :

(1.6) δ̃a+V
def= (2π)d/2e|a|

2/2δa+V .

With this small modification we see from the above calculations that∫
Rn

δ̃a+V (x)f(x) dµ(x) =
∫

a+V

f(x) dµa+V (x).

Also equation (1.5) becomes

δ̃a+V = (2π)d/2e|a|
2/2

∫
a+V

δ(x− y) dy.

Observe, for a test function f ,∫
Rn

(2π)d/2e|a|
2/2

∫
a+V

δ(x− y) dy f(x) dµ(x)

= (2π)d/2e|a|
2/2

∫
a+V

∫
Rn

δ(x− y) f(x)e−|x|2/2 dx

(2π)n/2
dy

= (2π)d/2e|a|
2/2

∫
a+V

f(y)e−|y|2/2 dy

(2π)n/2

=
∫

a+V

f(y)e−|y−a|2/2 dy

(2π)(n−d)/2
since |y − a|2 = |y|2 − |a|2

=
∫

a+V
f(y) dµa+V (y).
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In white noise distribution theory, one has the Kubo–Yokoi delta function, δ̃a.
This is the delta function at the point a. In this paper we extend this notion to
a delta function for subspace V or an affine subspace a + V of a real separable
Hilbert space H0.

Sections 2, 3, and 4 are devoted to an account of the machinery–such as test
functions and distributions–necessary to formulate our results. Section 5 gives an
overview of the delta functions currently used in white noise distribution theory.
Sections 6 and 7 contains the development of the delta function for an affine sub-
space along with a formulation of its Wiener–Itô decomposition.

2. TEST FUNCTIONS OVER INFINITE-DIMENSIONAL SPACES

In this section we summarize the necessary notions concerning test functions on
infinite-dimensional linear spaces. We also set up notation to be used in the rest of
the paper.

2.1. Test Functions and Distributions

A distributions over a space X is a continuous linear functional on a space E
of appropriately chosen ‘test functions’ over X . For analysis we would also have
some measure µ on X and

E ⊂ E = L2(µ).

The classical example uses the Schwartz space S(R) ⊂ L2(R). The topology on E
is given by some family of norms. Thus, in abstract, the basic framework is a pair

(2.1) H ⊂ H0.

where H0 is a real separable Hilbert space with norm | · |0 and inner-product 〈·, ·〉0
and H a nuclear space. To form H we take an operator A on H0 such that there
exists an orthonormal basis {ek ; k = 1, 2, 3, . . .} for H0 satisfying

(1) Aek = λkek, for k = 1, 2, 3, . . .

(2) 1 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·
(3)

∑∞
k=1 λ

−2
k <∞.

Remark 2.1. The condition that 1 < λ1 is needed when proving continuity of
test functions.
Note that A−1 is a bounded operator with norm given by

(2.2) ρ = ‖A−1‖ =
1
λ1
.
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Now for each p ≥ 0 we define the norm |x|p = |Apx|0 and let

Hp = {x ∈ H0 ; |x|p <∞}, p ≥ 0.

Then we have that Hp ⊂ Hq for any p ≥ q and the inclusion map Ip,p−1 : Hp ↪→
Hp−1 is a Hilbert–Schmidt operator. We then define H to the the projective limit
of {Hp ; p = 0, 1, 2, . . .} and this gives us

H =
⋂
p≥0

Hp ⊂ · · ·H2 ⊂ H1 ⊂ H0.

Below we describe in brief how a space of test functions is constructed over the
dual space H′ using this framework.

The symmetric Fock space Fs(V ) over a Hilbert space V is the subspace of
symmetric tensors in the completion of the tensor algebra T (V ) under the inner–
product given by

(2.3) 〈a, b〉T (V ) =
∞∑

n=0

n!〈an, bn〉V ⊗n ,

where a = {an}n≥0, b = {bn}n≥0 are elements of T (V ) with an, bn in the tensor
power V ⊗n. Then we have

(2.4) Fs(H) def=
⋂
p≥0

Fs(Hp) ⊂ · · · ⊂ Fs(H2) ⊂ Fs(H1) ⊂ Fs(H0).

Thus, the pair (2.1) gives rise to a corresponding pair by taking symmetric Fock
spaces:

(2.5) Fs(H) ⊂ Fs(H0)

The dual space H′ of continuous real linear functionals on H is the union

H′ =
⋃
p≥0

H−p

where H−p is the set of real linear functionals on H which are continuous in the
| · |p norm. Note that H−p is naturally isomorphic to H ′

p 
 Hp and is thus a Hilbert
space. We denote the norm on H−p by | · |−p. Thus, the inner product on H0

extends to a bilinear pairing between Hp and H−p with

|〈f, x〉| ≤ |x|p|f |−p

for all p ≥ 0, x ∈ Hp and f ∈ H−p. We have then a chain of inclusions

H0 
 H−0 ⊂ H−1 ⊂ · · · ⊂
⋃
p≥0

H−p = H′
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where the inner product on H0 extends to a bilinear pairing between H and H′.
The dual space H′ may be equipped with the weak or the strong or the inductive
limit topologies.

Fact 2.2. The Borel sigma algebras generated by the weak, strong, and inductive
topologies on H′ are equivalent.

Although this result is known and has been used implicitly or explicitly in the
literature, a complete readily accessible proof can be found in [1].

2.2. The Gaussian measure µ

In infinite dimensions the role of Lebesgue measure is played by Gaussian
measure. The standard Gaussian measure µ for the pair (2.1) is a Borel measure on
H′ , specified uniquely by

(2.6)
∫
H′
eix̂ dµ = e−|x|20/2 for all x ∈ H,

where
x̂ : H′ → R : f �→ f(x)

There is a standard unitary isomorphism, the Wiener-Itô isomorphism or wave-
particle duality map, which identifies the complexified Fock space Fs(H0)c with
L2(H′, µ). This is uniquely specified by

(2.7) I : Fs(H0)c → L2(H′, µ) : Exp(x) �→ ex̂−
1
2
x2

where x2 = |x|20 and
Exp(x) =

∑
n≥0

1
n!
x⊗n.

Indeed, it is readily checked that I preserves inner–products (the inner–product is
as described in (2.3)). Using I , for each Fs(Hp)c, we have the corresponding
space [H ]p ⊂ L2(H′, µ) with with norm ‖ · ‖p induced by the norm on the space
Fs(Hp)c. From this the chain of spaces (2.4) can be transferred into a chain of
function spaces:

(2.8) [H] =
⋂
p≥0

[H ]p ⊂ · · · ⊂ [H ]2 ⊂ [H ]1 ⊂ [H ]0 = L2(H′, µ).

Observe [H] is a nuclear space with topology induced by the norms {‖ · ‖p ; p =
0, 1, 2, . . .}.
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Thus, starting with the pair
H ⊂ H0

one obtains a corresponding pair

[H] ⊂ L2(H′, µ).

Note that the measure µ uses H0 as a real separable Hilbert space. In the following
section we describe a number of properties about the space [H], which demonstrate
that it is sensible to take [H] as a test function space over H ′.

3. PROPERTIES OF [H]

The following theorem summarizes the properties of [H] we need. The results
here are standard (see, for instance, Kuo’s monograph [5]), and we compile them
here for ease of reference.

Theorem 3.1. Every function in [H] is µ-almost-everywhere equal to a unique
continuous function on H ′. Moreover, working with these continuous versions,

(1) [H] is an algebra under pointwise operations;
(2) pointwise addition and multiplication are continuous operations [H]× [H] →

[H];
(3) for any f ∈ H′, the evaluation map

δf : [H] → R : φ �→ φ(f)

is continuous;
(4) the exponentials ex̂−1

2 |x|20 , with x running over H, span a dense subspace of
[H].

A complete characterization of the space [H] was obtained by Y. J. Lee (see [6]
or the account in [5]).

Remark 3.2. Note that (4) gives us immediately that the span of ex̂ with x
running over H is dense in [H]. It also follows from (4) that the span of eẑ with z
running over Hc is dense in [H].

Now we would like to formulate a more explicit relationship between [H ]p and
Fs(Hp)c. To do this we use the notion of Wick Tensor.

3.1. Wick Tensors

We begin by introducing the trace operator. The trace operator is in (H′)⊗̂2 and
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is defined by
〈τ, x⊗ y〉 = 〈x, y〉 x, y ∈ H

It can be represented by
∞∑

k=1

ek ⊗ ek

where {ek}∞k=1 forms a complete orthonormal basis of H0.

3.1.1. Hermite Polynomials
We now review some concepts and properties concerning Hermite polynomials.

The function defined by

:xn:σ2 ≡ Hσ
n (x) = (−σ2)ne

x2

2σ2Dn
xe

− x2

2σ2

is the Hermite polynomial of degree n with parameter σ2. They can also be defined
by the generating function:

(3.1) etx−
1
2σ2t2 =

∞∑
n=0

tn

n!
:xn:σ2

Using this one can derive that

(3.2)
1√

2πσ2

∫
R

Hσ
n (x)Hσ

m(x) e−x2/2σ2
dx = n!δmn

where δmn is 1 if m = n and 0 otherwise.
We have the following formulas for Hermite polynomials

(3.3) :xn:σ2 =
[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!(−σ2)kxn−2k

(3.4) xn =
[n/2]∑
k=0

(
n

2k

)
(2k − 1)!! σ2k :xn−2k:σ2

3.1.2. Definition of Wick Tensor
The formula given in (3.3) provides the motivation for the following definition:

Definition 3.3.
Given an element f ∈ H′ , we define the Wick tensor for f of order n to be

:f⊗n: =
[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!(−1)kf⊗(n−2k)⊗̂τ⊗k.
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Remark 3.4. For an element f ∈ H′, we can also define :f⊗n: inductively as
follows:

:f⊗0: = 1
:f⊗1: = f

:f⊗n: = f⊗̂ :f⊗(n−1): −(n− 1)τ⊗̂ :f⊗(n−2): for n ≥ 2.

Similar to the formula in (3.4) for the Hermite polynomials, we have the fol-
lowing formula for Wick tensors:

f⊗n =
[n/2]∑
k=0

(
n

2k

)
(2k − 1)!! :f⊗(n−2k): ⊗̂τ⊗k.

Proposition 3.5. For any f ∈ H′ and x ∈ H we have

〈:f⊗n:, x⊗n〉 =: 〈f, x〉n:|x|20 and ‖〈:f⊗n:, x⊗n〉‖0 =
√
n!|x|n0 .

For a proof see page 33, Lemma 5.2 in [5].

Corollary 3.6. Let x1, x2, · · · ∈ H be orthogonal vectors in H0. Then for any
f ∈ H′ we have

〈:f⊗n:, x⊗n1
1 ⊗̂x⊗n2

2 ⊗̂ · · · 〉 =: 〈f, x1〉n1:|x1|20: 〈f, x2〉n2:|x2|20 · · ·

where n1 + n2 + · · · = n. Moreover, the following holds

‖〈: ·⊗n:, x⊗n1
1 ⊗̂x⊗n1

2 ⊗̂ · · · 〉‖0 =
√
n1!n2! · · ·|x1|n1

0 |x2|n2
0 · · ·

By Corollary 3.6. one can see that if x ∈ H⊗̂n, then

‖〈: ·⊗n:, x〉‖0 =
√
n!|x|0

Using this, we take an element y ∈ H0
⊗̂n and a sequence {yk} in H0

⊗̂n with
yk → y inH0

⊗̂n. Then, by the equality above, {〈: ·⊗n:, yk〉} is Cauchy in L2(H′, µ).
Therefore we can define the function 〈: ·⊗n:, y〉 µ–almost everywhere as the limit
in L2(H′, µ) of the functions {〈: ·⊗n:, yk〉}. Defined in this way we have

(3.5) ‖〈: ·⊗n:, y〉‖0 =
√
n!|y|0

Of course, for z = x+ iy ∈ H⊗̂n
0,c we can define for almost every f ∈ H′ ,

〈: ·⊗n:, z〉 = 〈: ·⊗n:, x〉+ i〈: ·⊗n:, y〉
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and equation (3.5) still holds.

Corollary 3.7. Let x1, x2, · · · ∈ H0 be orthogonal vectors in H0. Then for
almost every f ∈ H′ we have

〈:f⊗n:, x⊗n1
1 ⊗̂x⊗n2

2 ⊗̂ · · · 〉 =: 〈f, x1〉n1:|x1|20: 〈f, x2〉n2:|x2|20 · · ·

where n1 + n2 + · · · = n.

For a proof refer to page 34, Corollary 5.3 in [5].
The importance of the Wick tensor lies in the fact that it allows us to make

the Wiener–Itô isomorphism more explicit. Take x ∈ H0 with x �= 0 and form the
function

φx =
∞∑

n=0

1
n!
〈: ·⊗n:, x⊗n〉

Observe that

φx(f) =
∞∑

n=0

1
n!
〈:f⊗n:, x⊗n〉 =

∞∑
n=0

1
n!

(
|x|0√

2

)n

:
(

〈f, x〉√
2|x|0

)n

:

Now the last series is the generating function of the Hermite polynomials. So we
obtain

φx(f) = exp

[
2
〈f, x〉√
2|x|0

|x|0√
2
−

(
|x|0√

2

)2
]

= exp(〈f, x〉 − 1
2〈x, x〉0) = ex̂(f)−1

2 |x|20

Therefore for every function φ ∈ L2(H′, µ) the Wiener–Itô ismorphism gives a
unique (an)∞n=0 ∈ Fs(H0)c such that

(3.6) φ(f) =
∞∑

n=0

〈:f⊗n:, an〉

in L2(H′, µ). This is called the Wiener–Itô expansion for φ.
Moreover, for any positive integer p we have

(3.7) ‖φ‖2
p =

∞∑
n=0

n!|an|2p

where | · |p is the canonical extension of the Hp norm to H⊗̂n
p,c . This implies that

if φ ∈ [H ]p, then an ∈ H ⊗̂n
p,c for all n. Conversely, it is easy to see that given

any (an)∞n=0 ∈ Fs(Hp)c, we have that φ(f) =
∑∞

n=0〈: f⊗n:, an〉 defines a unique
function φ in [H ]p.



Delta Function for an Affine Subspace 2279

With the notion of Wiener–Itô expansion the following theorem gives us property
(4) of 3.1. Let 〈〈·, ·〉〉 be the inner–product on L2(H′, µ).

Proposition 3.8. Let φ, ψ ∈ [H]. Recall that for x ∈ H the function e x̂−|x|20/2

is a test function in [H]. If 〈〈φ, e x̂−|x|20/2〉〉 = 〈〈ψ, ex̂−|x|20/2〉〉 for all x ∈ H, then
φ = ψ.

This is a well known result in white noise distribution theory. For instance, see
page 39, Proposition 5.10 in [5].

It follows immediately from the above propostion that the exponentials ex̂−|x|20/2,
with x running over H, span a dense subspace of [H].

4. FUNCTION SPACES AND DUALS OVER INFINITE-DIMENSIONAL SPACES

The identification of H ′
0 with H0 leads to a complete chain

(4.1) H =
⋂
p≥0

Hp ⊂ · · · ⊂ H1 ⊂ H0 
 H−0 ⊂ H−1 ⊂ · · · ⊂
⋃
p≥0

H−p = H′.

In the same way we have a chain for the ‘second quantized’ spaces Fs(Hq)c 
 [H ]q.
The unitary isomorphism I extends to unitary isomorphisms

(4.2) I : Fs(H−p)c → [H ]−p
def= [H ]′p ⊂ [H]′,

for all p ≥ 0. In more detail, for a ∈ Fs(H−p)c the distribution I(a) is specified
by

(4.3) 〈I(a), f〉 = 〈a, I−1(f)〉,

for all f ∈ [H]. On the right side here we have the pairing of Fs(H−p)c and
Fs(Hp)c induced by the duality pairing of H−p and Hp; in particular, the pairings
above are complex bilinear (not sesquilinear).

The Wiener–Itô expansion from 3.6 can be extended to functions Φ in [H]′.

Theorem 4.1. Given a Φ ∈ [H ]−p, there exists a unique element A =
(An)∞n=0 ∈ Fs(H−p)c such that

(4.4) 〈〈Φ, φ〉〉 =
∞∑

n=0

n!〈An, an〉 for all φ ∈ [H ]p

where φ(f) =
∑∞

n=0〈: f⊗n :, an〉 µ–a.e. Conversely, given a sequence A =
(An)∞n=0 ∈ Fs(H−p)c we can define a Φ ∈ [H ]−p by (4.4). Moreover, we have
that

(4.5) ‖Φ‖2
−p =

∞∑
n=0

n!|An|2−p = ‖A‖2
Fs(H−p)c

.
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See the account in [10] for a proof (page 36, Theorem 3.1.6).
Using the previous theorem we can adopt a formal expression for Φ ∈ [H]′ as

follows:

(4.6) Φ(f) =
∞∑

n=0

〈:f⊗n:, An〉.

Here 〈: f⊗n:, An〉 is not a function of f ∈ H′, but a generalized function. It can
only be understood through the pairing with a test function in [H]. The expression
given by (4.6) is called the Wiener–Itô expansion of Φ.

4.1. The Segal-Bargmann Transform

Next we look at the Segal–Bargmann transform. In its simplest form this is
defined for any function ψ ∈ L2(H′, µ) to be the function Sψ on the complexified
space Hc given by

(4.7) Sψ(z) =
∫
H′
ez̃−z2/2ψ dµ

with notation as follows: if z = a + ib, with a, b ∈ H then

(4.8) z̃(x) def= zx
def= 〈x, a〉+ i〈x, b〉,

and z2 = zz, where the product zu is specified through

(4.9) zu
def= 〈a, s〉0 − 〈b, t〉0 + i (〈a, t〉0 + 〈b, s〉0)

if z = a+ ib and u = s+ it, where a, b, s, t ∈ H.
Let µc be the Gaussian measure H′

c specified by the requirement that

(4.10)
∫
H′

c

eax+by dµc(x+ iy) = e(a
2+b2)/4

for every a, b ∈ H. For convenience, let us introduce the renormalized exponential
function

(4.11) cw = ew̃−w2/2

for all w ∈ Hc. Thankfully, cw lies in L2(H′, µ), which means the integrand in
(4.7) exists for all z ∈ Hc. It is readily checked that

(4.12) [Scw](z) = ewz
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for all w, z ∈ Hc. Thus we may take Scw as a function on H′
c given by

(4.13) Scw = ew̃,

where now w̃ is a function on H′
c in the natural way. Then Scw ∈ L2(H′

c, µc) and
one has

〈Scw, Scu〉L2(µc)
= 〈cw, cu〉L2(µc) = ewu.

This shows that S provides an isometry from the linear span of the exponentials cw
in L2(H′, µ) onto the linear span of the complex exponentials ew̃ in L2(H′

c, µc).
Passing to the closure one obtains the Segal-Bargmann unitary isomorphism

S : L2(H′, µ) → Hol2(H′
c, µc)

where Hol2(H′
c, µc) is the closed linear span of the complex exponential functions

ew̃ in L2(H′
c, µc).

An explicit expression for SF (z) is suggested by (4.7). For any F ∈ [H] and
z ∈ H′

c, we have

(4.14) (SF )(z) = 〈〈I(Exp(z)) , F 〉〉

where the right side is the evaluation of the distribution I(Exp(z)) on the test
function F . Indeed it may be readily checked that if SF (z) is defined in this way
then [Scw](z) = ewz .

In view of (4.14), it natural to extend the Segal-Bargmann transform to distri-
butions: for Φ ∈ [H]′, define SΦ to be the function on Hc given by

(4.15) SΦ(z) def= 〈〈Φ, I(Exp(z))〉〉 z ∈ Hc.

One of the many applications of the the S–transform includes its usefulness in
characterizing generalized functions in [H]′.

Theorem 4.2. (Potthoff-Streit) Suppose a function F on Hc satisfies:
(1) For any z, w ∈ Hc, the function F (αz +w) is an entire function of α ∈ C.
(2) There exists nonnegative constants A, p, and C such that

|F (z)| ≤ CeA|z|2p for all z ∈ Hc.

Then there is a unique generalized function Φ ∈ [H] ′ such that F = SΦ. Con-
versely, given such a Φ ∈ [H]′, then SΦ satisfies (1) and (2) above.

The proof of this theorem can be found in Theorem 8.2 on page 79 in [5].

5. WHITE NOISE DELTA FUNCTIONS

We now review some of the popular delta function type distributions commonly
used in white noise distribution theory.
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5.1. Kubo–Yokoi Delta Function

The White Noise analogue of the finite dimensional Dirac’s delta function is
the Kubo–Yokoi delta function, δ̃f . The distribution δ̃f has the following effect on
a test function φ ∈ [H]:

〈〈δ̃f , φ〉〉 = φ(f).

Note that continuous versions of test functions are assumed as per Theorem 3.1.
Also, Theorem 3.1 gives us that the Kubo–Yokoi delta function is continuous.

It is easy enough to compute the S–transform of the Kubo–Yokoi delta function

(5.1) S(δ̃f)(z) = 〈〈δ̃f , ez̃−z2/2〉〉 = ez̃(f)−z2/2 = e〈f,z〉−〈z,z〉/2.

Lastly, the next theorem gives us the Wiener–Itô expansion for the Kubo–Yokoi
delta function.

Theorem 5.1. The Wiener–Itô expansion of the Kubo–Yokoi delta function at
f ∈ H′ is given by

δ̃f =
∞∑

n=0

1
n!
〈: ·⊗n:, :f⊗n:〉.

Proof. By Theorem 4.1., δ̃f has Wiener–Itô expansion given by

(5.2) δ̃f =
∞∑

n=0

〈: ·⊗n:, An〉

where An ∈ (H′)⊗̂n. For each n consider the function given by φa = 〈: ·⊗n:, a〉
where a ∈ H ⊗̂n

0,c . By the definition of δ̃f we have that

(5.3) 〈〈δ̃f , φa〉〉 = φa(f) = 〈:f⊗n:, a〉.

But, by using 5.2, we have

(5.4) 〈〈δ̃f , φa〉〉 = n!〈An, a〉.

Combining equations (5.3) and (5.4) we see that n!〈An, a〉 = 〈:f⊗n :, a〉 for all
a ∈ H ⊗̂n

0,c . Therefore An = 1
n! :f

⊗n: and we have the Wiener–Itô expansion for δ̃f
promised by the theorem.

5.2. Donsker’s Delta Function

Another delta function often used in White Noise Analysis is Donsker’s delta
function. It is defined using the classic Gel’fand triple S(R) ⊂ L2(R) ⊂ S ′(R).
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Let δs be the Dirac delta function at s and note that 〈·, 1 [0,t]〉 = B(t), t ≥ 0, is a
Brownian motion. The generalized function δs(B(t)) is Donsker’s delta function.
To see that it is in fact a generalized function we need the following theorem:

Theorem 5.2. Let F ∈ S′
c(R) and f ∈ L2(R) with f �= 0. Then F (〈·, f〉) is

a generalized function and has S–transform given by

SF (〈·, f〉)(z) =
1√

2π|f |0

∫
R
F (y) exp

[
− 1

2|f |20
(y − 〈f, z〉)2

]
dy, z ∈ Sc(R)

where the integral is understood to be the bilinear pairing of S ′
c(R) and Sc(R).

For a proof refer to [4] or page 63 in [5].
Using this theorem, we can see that δs(B(t)) is in fact a generalized function.

Moreover, we have the S–transform of δs(B(t)) is given by

S[δs(B(t))](z) =
1√
2πt

∫
R
δs(y)e−

1
2t

(y−〈1[0,t],z〉)2 dy

=
1√
2πt

exp
[
− 1

2t

(
s−

∫ t

0
z(u) du

)2]
.

6. THE DELTA FUNCTION FOR AN AFFINE SUBSPACE

Let H0 be a real separable Hilbert space with V a subspace of H0. In the paper
[8], Lomonaco and Kauffman present the formal integral

(6.1)
∫

V
δ(x− v)Dv

where Dv is the (nonexistent) Lebesgue measure on V . This integral is meant to
represent a delta function of sorts on the subspace V . In this section we make this
idea rigorous through the framework of White Noise Distribution Theory. We also
extend this idea slightly to include not only subspaces, but affine subspaces a+ V ,
where a ∈ V ⊥. Here,

(6.2) δa+V =
∫

a+V
δ(x− y)Dy.

6.1. Formal Calculations

Let f be a function on H0. We will show that when the terms in (6.2) are
integrated against a function f , we arrive at the expected result,

∫
a+V δ(x− y)Dy.

Thus we say the equalities in (6.2) hold in the distributional sense. Observe:
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(1) Essentially by the “definition” of δa+V we have∫
H0

δa+V (x)f(x)Dx =
∫

a+V
f(y)Dy.

(2) Now for
∫
a+V δ(x− y)Dy we calculate

∫
H0

∫
a+V δ(x− y)Dy f(x)Dx =

∫
a+V

∫
H0

δ(x− y)f(x)DxDy

=
∫

a+V
f(v)Dv.

This formally verifies the equation in (6.2).

Of course, in infinite dimensions there is no notion of Lebesgue measure, how-
ever there is the notion of Gaussian measure. So just as was done in equation (1.6)
we will “tweek” the delta function δa+V in order to form a delta function with
respect to µ:

δ̃a+V = (2π)dimV ⊥/2e|a|
2
0/2δa+V ..

This is just a formal definition as dim V ⊥ could very well be infinite. However,
this gives us at a very formal level∫

H0

δ̃a+V (x)f(x) dµ(x) =
∫

a+V
f(y) dµa+V (y)

where µ and µa+V are Gaussian type measures on H0 and a+ V .
Now the Gaussian measure cannot live on H0 or a + V . However, just as we

used the Minlos theorem to form the Gaussian measure µ on H′ (which we think
of as the Gaussian measure on H0), we can again use the Minlos theorem to form
the Gaussian measure for the affine subspace a+V . For a subspaceW of Rn and
a ∈W⊥ we have the Gaussian measure on a +W given by:∫

a+W

ei〈x,y〉 dµa+W (x) =
∫

a+W

ei〈x,y〉e−
1
2
|x−a|2 dx

(2π)dimW/2
= ei〈a,y〉− 1

2
〈yW ,yW 〉

where y ∈ Rn and yW is the projection of y onto W .

6.2. Gaussian Measure on a+ V

Using the Minlos theorem one can find that there is a measure µa+V on H′ with∫
H′
ei〈x,y〉 dµa+V (x) = ei〈a,y〉− 1

2
〈yV ,yV 〉
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for any y ∈ H. This measure µa+V is the Gaussian measure for the affine subspace
a + V . For an alternate (and more explicit) construction of this measure see [9].

6.3. Hida Measure

The Gaussian measure µa+V is a special type of measure known as a Hida
measure. In this section we define the notion of Hida measure and give an overview
of some its properties.

Definition 6.1. A measure ν on H′ is called a Hida measure if φ ∈ L1(ν) for
all φ ∈ [H] and the linear functional

φ �→
∫
H′
φ(x) dν(x)

is continuous on [H].
We say that a generalized function Φ ∈ [H]′ is induced by a Hida measure ν if

for any φ ∈ [H] we have

〈〈Φ, φ〉〉 =
∫
H′
φ(x) dν(x).

The following theorem characterizes those generalized functions which are induced
by a Hida measure.

Theorem 6.2. Let Φ ∈ [H]′. Then the following are equivalent:

(1) For any nonnegative φ ∈ [H], 〈〈Φ, φ〉〉 ≥ 0
(2) T (Φ)(x) = 〈〈Φ, ei〈·,x〉〉〉 is positive definite on H
(3) Φ is induced by a Hida measure

A proof of this theorem can be found in [5] (page 320, Theorem 15.3).

Corollary 6.3. Let ν be a finite measure on H ′ such that for any x ∈ H

〈〈Φ, ei〈·,x〉〉〉 =
∫
H′
ei〈y,x〉 dν(y)

for some Φ ∈ [H]′. Then Φ is induced by ν.

Proof. Since 〈〈Φ, ei〈·,x〉〉〉 =
∫
H′ e

i〈y,x〉 dν(y) it is clear that 〈〈Φ, ei〈·,x〉〉〉 is
positive definite. So we can apply Theorem 6.2. to get a finite measure m which
is induced by Φ. Hence for all φ ∈ [H],

〈〈Φ, φ〉〉 =
∫
H′
φ dm.
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Letting φ = ei〈·,x〉 in the above equation, we see that the characteristic functions for
m and ν are identical. Therefore m = ν and we have that Φ is induced by ν.

6.4. Definition of δ̃a+V

Observe the effect of µa+V on the renormalized exponential e〈·,z〉−
1
2 〈z,z〉,∫

H′
e〈x,z〉− 1

2
〈z,z〉 dµa+V (x) = e−〈z,z〉

∫
H′
e〈x,z〉 dµa+V (x)

= e−〈z,z〉e〈a,z〉+1
2
〈zV ,zV 〉

= e〈a,z〉− 1
2
〈z

V ⊥ ,z
V ⊥〉.

Let the function F (z) denote the result from the calculations above. That is,

(6.3) F (z) = e〈a,z〉− 1
2
〈z

V ⊥ ,z
V ⊥〉

We will show that F (z) satisfies properties (1) and (2) of Theorem 4.2.
For property (1) consider F (αz+w) where z, w ∈ Hc and α ∈ C. Then notice

that

F (αz +w) = e〈a,αz+w〉−1
2 〈αz

V ⊥+w
V ⊥ ,αz

V ⊥+w
V ⊥〉

= exp[α〈a, z〉+ 〈a, w〉 − 1
2 (α2〈zV ⊥ , zV ⊥〉

+2α〈zV ⊥ , wV ⊥〉 + 〈wV ⊥ , wV ⊥〉)]

= e−
α2

2 〈z
V ⊥ ,z

V ⊥〉eα(〈a,z〉−〈z
V ⊥ ,w

V ⊥〉)e〈a,w〉−1
2 〈wV ⊥ ,w

V ⊥〉

which is an entire function of α ∈ C.
Now for property (2) of Theorem 4.2 we write z as z = x + iy with x, y ∈ H

and observe that

|F (z)| = |e〈a,z〉− 1
2
〈z

V ⊥ ,z
V ⊥〉|

= |e〈a,x+iy〉− 1
2
〈x

V ⊥+iy
V ⊥ ,x

V ⊥+iy
V ⊥〉|

= e〈a,x〉e−
1
2
|x

V ⊥ |20+ 1
2
|y

V ⊥ |20

≤ e〈a,x〉e
1
2
|z

V ⊥ |20

≤ e
1
2
|a|20+ 1

2
|z|20e

1
2
|z|20

≤ e
1
2
|a|20e

3
2
|z|20 .

So property (2) of Theorem 4.2 is satisfied.
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Therefore by Theorem 4.2 there exist some Φ ∈ [H]′ such that S(Φ)(z) = F (z).
Then by Corollary 6.3 we have that Φ is induced by µa+V . We simply denote this
Φ by δ̃a+V . This leads us to the following definition:

Definition 6.4. The delta function for the affine subspace a+ V is the distri-
bution in [H]′ induced by the measure µa+V . We denote this generalized function
by δ̃a+V .

Thus for any test function φ ∈ [H] we have

〈〈δ̃a+V , φ〉〉 =
∫
H′
φ dµa+V .

Note that this is analogous to the effect of the corresponding distribution in Rn.

6.5. S–transform

Using the definition of the distribution δ̃a+V we can directly compute its S–
transform. By the calculations directly preceding 6.3 we have

(6.4) S(δ̃a+V )(z) = e〈a,z〉− 1
2
〈z

V ⊥ ,z
V ⊥〉 for z ∈ Hc.

6.5.1. Relationship with the Kubo–Yokoi Delta Function
As the notation indicates, the delta function for the affine subspace a + V ,

δ̃a+V , is related to the Kubo–Yokoi delta function from Section 5. If we interpret
the Kubo–Yokoi delta function at a, δ̃a, as the delta function for the affine subspace
a + 0, then observing that V ⊥ = 0⊥ = H0, we see from the definition above that
the S–transform of δ̃a+0 is given by e〈a,z〉− 1

2
〈z,z〉, which is the S–transform of the

Kubo–Yokoi delta function δ̃a (see equation 5.1).

6.5.2. Relationship with Donsker’s delta function
What is not so apparent is that the delta function for an affine subspace, δ̃a+V ,

is related to Donsker’s delta function. We saw in Section 5.2 that Donsker’s delta
function is defined for the Gel’fand triple S(R) ⊂ L2(R) ⊂ S ′(R) and is usually
given by δs(B(t)) where B(t) = 〈·, 1[0,t]〉, t ≥ 0, and δs is the Dirac delta function
at s. However, this definition can be extended slightly. In fact, by Theorem 5.2, we
have for any f ∈ L2(R), δs(〈·, f〉) is in S ′(R).

Now given a unit vector f ∈ L2(R) consider the generalized function δs(〈·, f〉).
Intuitively, this is a function that gives enormous weight to vectors g ∈ L2(R) with
〈f, g〉 = s. (Considering the case where s = 0 we can see that this distribution
should have density at V = {f}⊥.) So taking V = {f}⊥ and a = sf , the
distribution δs(〈·, f〉) should be related to δ̃a+V .
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Using Theorem 5.2. to find the S–transform of δs(〈·, f〉) we see that

S[δs(〈·, f〉)](z) =
1√
2π

∫
R
δ(y − s)e−

1
2
(y−〈f,z〉)2dy

=
1√
2π

e−
1
2
(s−〈f,z〉)2

=
1√
2π
e−s2/2+s〈f,z〉−〈f,z〉2/2.

Now since V = {f}⊥, we have V ⊥ = {Rf}. Thus the V ⊥ component of z, zV ⊥ ,
is given by 〈f, z〉f . Observe

〈f, z〉2 = 〈〈f, z〉f, 〈f, z〉f〉 = 〈zV ⊥ , zV ⊥〉

and
s〈f, z〉 = 〈sf, z〉 = 〈a, z〉.

Therefore, we have

S(δs(〈·, f〉))(z) =
1√
2π

e−
1
2
|a|20e〈a,z〉− 1

2
〈z

V ⊥ ,z
V ⊥〉.

Thus, Proposition 3.8 tells us that
√

2π e
1
2
|a|20 δs(〈·, f〉) = δ̃a+V .

6.5.3. Realizing δ̃a+V through the limit
In finite dimension for V a subspace of Rn with a ∈ V ⊥ and d the codimension

of V we have that

(6.5) δ̃a+V = lim
σ↘0

e−|xV |2/2 1
(2π)(n−d)/2

e−|x
V ⊥−a|2/2σ2 1

(2πσ2)d/2
.

Observe

lim
σ↘0

∫
Rn

f(x)e−|xV |2/2 1
(2π)(n−d)/2

e−|x
V ⊥−a|2/2σ2 1

(2πσ2)d/2
dx

= lim
σ↘0

∫
V

∫
V ⊥

f(xV + xV ⊥)e−|xV |2/2 1
(2π)(n−d)/2

×e−|x
V ⊥−a|2/2σ2 1

(2πσ2)d/2
dxV ⊥dxV

= lim
σ↘0

∫
V

∫
V ⊥

f(xV + σxV ⊥ + a)e−|xV |2/2 1
(2π)(n−d)/2

×e−|x
V ⊥ |2/2 1

(2π)d/2
dxV ⊥ dxV

=
∫

V

∫
V ⊥

f(xV + a)e−|xV |2/2 1
(2π)(n−d)/2

e−|x
V ⊥ |2/2 1

(2π)d/2
dxV ⊥dxV
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=
∫

V
f(xV + a)e−|xV |2/2 1

(2π)(n−d)/2
dxV

=
∫

a+V
f(y)e−|y−a|2/2 1

(2π)(n−d)/2
dy

=
∫

a+V
f(y) dµa+V (y).

Using the Minlos theorem one can find that there is a measure ρσ with∫
H′
ei〈x,z〉 dρσ(x) = ei〈a,z〉− 1

2
〈zV ,zV 〉−σ2

2
〈z

V ⊥ ,z
V ⊥ 〉

for any z ∈ H, which is analogous to the characteristic function for the measure
found inside the limit of (6.5). Thus

S(ρ̃σ)(z) = e〈a,z〉− 1
2
〈z

V ⊥ ,z
V ⊥〉+σ2

2
〈z

V ⊥ ,z
V ⊥〉.

Moreover,

(6.6) lim
σ↘0

S(ρ̃σ)(z) = S(δ̃a+V )(z)

for all z ∈ Hc.
Now we use the following theorem about convergence in [H]′:

Theorem 6.5. Let {Φn}∞n=1 be a sequence in [H]′ and let Fn = SΦn. Then
Φn converges strongly to Φ in [H] ′ if and only if

(1) For each z ∈ Hc, limn→∞ Fn(z) = F (z), where F (z) = S(Φ)(z).
(2) There exists nonnegative constants K, a, and p (independent of n) such that

|Fn(z)| ≤ Kea|z|
2
p , for all z ∈ Hc and n ∈ {1, 2, 3, . . .}.

For a proof refer to [11] or page 86, Theorem 8.6 in [5].
We would like to use this theorem to see that limσ↘0 ρ̃σ = δ̃a+V in [H]′. We

have already seen that condition (1) of Theorem 6.5 is satisfied. We now show that
condition (2) is satisfied. Observe that writing z = x+ iy with x, y ∈ H we have

|S(ρ̃σ)(z)| = |e〈a,z〉− 1
2
〈z

V ⊥ ,z
V ⊥〉+σ2

2
〈z

V ⊥ ,z
V ⊥〉|

= |e〈a,x+iy〉− 1
2
〈x

V ⊥+iy
V ⊥ ,x

V ⊥+iy
V ⊥〉+σ2

2
〈x

V ⊥+iy
V ⊥ ,x

V ⊥+iy
V ⊥〉|

= e〈a,x〉e−
1
2
|x

V ⊥ |20+ 1
2
|y

V ⊥ |20e
σ2

2
|x

V ⊥ |20−σ2

2
|y

V ⊥ |20

≤ e〈a,x〉e
1
2
|z

V ⊥ |20e
σ2

2
|x

V ⊥ |20+σ2

2
|y

V ⊥ |20

≤ e
1
2
|a|20+ 1

2
|z|20e

1
2
|z|20e

σ2

2
|z|20 .
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Since we are letting σ ↘ 0 there is no harm in assuming σ ≤ 1 to get

≤ e
1
2
|a|20e

3
2
|z|20 .

Therefore condition (2) is satisfied and we get

lim
σ↘0

ρ̃σ = δ̃a+V

in [H]′. This is the infinite dimensional analog of (6.5).

7. THE WIENER-ITÔ DECOMPOSITION OF δ̃a+V

In this section we find the Wiener–Itô decomposition of δ̃a+V . We begin by
generalizing the definition of the trace operator and Wick tensor found in Section
3.1.

7.1. Subspace Trace Operator

As usual, let V be a closed subspace of our Hilbert space H0.

Definition 7.1. The V –trace operator, which we denote by τV is the element
in (H′)⊗̂2 given by

〈τV , z ⊗w〉 = 〈zV , wV 〉 z, w ∈ Hc.

The V –trace operator can be represented as

τV =
∞∑

k=1

ek ⊗ PV ek

where PV is the orthogonal projection onto the subspace V . Observe

〈τV , z ⊗w〉 =
〈 ∞∑

k=1

ek ⊗ PV ek, z ⊗ w
〉

=
∞∑

k=1

〈ek, z〉〈PV ek, w〉

=
∞∑

k=1

〈ek, z〉〈ek, wV 〉 where wV = PVw

=
〈 ∞∑

k=1

〈ek, z〉ek,
∞∑

k=1

〈ek, wV 〉ek
〉

= 〈z, wV 〉 = 〈zV , wV 〉.
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Remark 7.2. We can also represent τV as
∑∞

k=1 PV ek ⊗PV ek or
∑dimV

k=1 vk⊗
vk where {vk}dimV

1 is an orthonormal basis for V . However, we find that the
representation of τV given above is more suitable for our computations.

7.2. Subspace Wick Tensor
With the notion of a subspace trace operator securely behind us, we can now

define the subspaceWick tensor. Again we let V be a closed subspace of our Hilbert
space H0.

Definition 7.3. For f ∈H′ the V -Wick tensor for f of order n is defined to be

:f⊗n:V =
[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!(−1)kf⊗(n−2k)⊗̂τ⊗k

V .

Proposition 7.4. For any f ∈ H′ and x ∈ H we have

〈:f⊗n:V , x⊗n〉 =: 〈f, x〉n:|xV |20 .

Proof. From the definition we have

〈:f⊗n:V , x⊗n〉 =
[n/2]∑
k=0

(
n

2k

)
(2k− 1)!!(−|xV |20)k〈f, x〉n−2k.

Comparing this with (3.3) we see that 〈:f⊗n:V , x⊗n〉 =: 〈f, x〉n:|xV |20 .

7.3. Wiener–Itô Expansion Consider the following function

ΦV
f =

∞∑
n=0

1
n!
〈: ·⊗n:, :f⊗n:V 〉.

We would like to see that ΦV
f is in [H]′.

Lemma 7.5. For any n ≥ 1 and f ∈ H−p we have

| :f⊗n:V |−p ≤
√
n!(|f |−p + |τV |1/2

−p )n.

Proof. From the definition of :f⊗n:V we see that

| :f⊗n:V |−p ≤
[n/2]∑
k=0

(
n

2k

)
(2k − 1)!! |f |n−2k

−p |τV |k−p.
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Now for k ≤ [n/2] we use that (2k − 1)!! ≤ (n− 1)!! ≤
√
n! to get

| :f⊗n:V |−p ≤
√
n!

[n/2]∑
k=0

(
n

2k

)
|f |n−2k

−p (|τV |1/2
−p )2k

≤
√
n!

n∑
k=0

(
n

k

)
|f |n−k

−p (|τV |1/2
−p )k

≤
√
n!(|f |−p + |τV |1/2

−p )n.

Proposition 7.6. For f ∈ H′ , ΦV
f =

∑∞
n=0

1
n!〈: ·⊗n:, :f⊗n:V 〉 is a generalized

function (i.e. ΦV
f is in [H]′).

Proof. Since f ∈ H′ , f is in H−q for q ≥ 0. Thus for any p ≥ q we have

‖ΦV
f ‖2−p =

∞∑
n=0

n!
1

(n!)2
| :f⊗n:V |2−p

≤
∞∑

n=0

1
n!

(√
n!

)2(|x|−p + |τV |1/2
−p

)2n by Lemma 7.5

=
∞∑

n=0

(
|f |−p + |τV |1/2

−p

)2n
.

Since τV ∈ (H′)⊗̂2, we know |τV |−p → 0 as p → ∞. Also for f ∈ H′, we
have |f |−p → 0 as p → ∞. Therefore we can take p so that |f |−p + |τV |1/2

−p < 1.
From (7.1) above this gives us

‖ΦV
f ‖2

−p ≤ 1

1 −
(
|f |−p + |τV |1/2

−p

)2 .

Thus ΦV
f ∈ [H]′.

Theorem 7.7. The Wiener–Itô decomposition of δ̃a+V is given by
∞∑

n=0

1
n!
〈: ·⊗n:, :a⊗n:V ⊥〉.

Proof. From Proposition 7.6 we know that ΦV ⊥
a =

∑∞
n=0

1
n!〈: ·⊗n:, : a⊗n:V ⊥〉

is in [H]′. Taking the S–transform of ΦV ⊥
a with z ∈ Hc we get

S(ΦV ⊥
a )(z) =

∞∑
n=0

n!
1

(n!)2
〈:a⊗n:V ⊥ , z⊗n〉

=
∞∑

n=0

1
n!

: 〈a, z〉 :〈z
V⊥ ,z

V ⊥〉 by Proposition 7.4.
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Noting that the above is the generating function for the Hermite polynomials gives
us

S(ΦV ⊥
a )(z) = e〈a,z〉− 1

2
〈z

V ⊥ ,z
V ⊥〉.

Comparing this with the S–transform of δ̃a+V in Definition 6.4 we see that

〈〈ΦV ⊥
a , :e〈·,z〉:〉〉 = S(ΦV ⊥

a )(z) = S(δ̃a+V )(z) = 〈〈δ̃a+V , :e〈·,z〉:〉〉

for all z ∈ Hc. Thus by Corollary 3.1 we have δ̃a+V = ΦV ⊥
a µ–almost everywhere.

Therefore δ̃a+V =
∑∞

n=0
1
n! 〈: ·⊗n:, :a⊗n:V ⊥〉.
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