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SENSITIVITY ANALYSIS OF SOLUTION MAPPINGS OF
PARAMETRIC GENERALIZED QUASI VECTOR

EQUILIBRIUM PROBLEMS

Kenji Kimura and Jen-Chih Yao*

Abstract. In this paper, we study the parametric generalized quasi vector equi-
librium problem (PGQVEP). We investigate existence of solution for PGQVEP
and continuities of the solution mappings of PGQVEP. In particular, resulta
concerning the lower semicontinuity of the solution mapping of PGQVEP are
presented.

1. INTRODUCTION

Let X be nonempty subset of a real topological vector space and Z a real
topological vector space. A set C ⊂ Z is said to be a cone if λx ∈ C for any
λ ≥ 0 and for any x ∈ C. The cone C is called proper if it is not whole space,
i.e., C �= Z. A cone C is said to be solid if it has nonempty interior, i.e., int C �= ∅.
Let C : X → 2Z which has proper convex cone values. For any set A ⊂ Z, we let
bd A and cl A denote the boundary and closure of A, respectively. Also, we denote
Ac the complement of the set A. For any set A of a real vector space, the convex
hull of A, denoted by co A, is the smallest convex set containing A. Furthermore,
we denote zero vector of Z by θZ.

Let F : P × X × X → 2Z \ {∅} and K : P × X → 2X \ {∅}. For fixed p ∈ P,
the parametric generalized quasi vector equilibrium problem (PGQVEP) is to find
x ∈ K(p, x) such that

(PGQVEP) F (p, x, y) �⊂ −int C(p, x), for all y ∈ K(p, x).

Let Ω : P → 2X be the set-valued mapping such that Ω(p) is the solutions set of
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PGQVEP for p ∈ P, i.e.,

Ω(p) = {x ∈ K(p, x) : F (p, x, y) �⊂ −intC(p, x), for all y ∈ K(p, x)}.

For fixed p ∈ P, the parametric extended quasi vector equilibrium problem
(PEQVEP) is to find x ∈ K(p, x) such that

(PEQVEP) F (p, x, y)∩ (−intC(p, x)) = ∅, for all y ∈ K(p, x).

Let Φ : P → 2X be the set-valued mapping such that Φ(p) is the solutions set of
PEQVEP for p ∈ P, i.e.,

Φ(p) = {x ∈ K(p, x) : F (p, x, y)∩ (−intC(p, x)) = ∅, ∀y ∈ K(p, x)}.

In the literature, existence results for a (generalized) vector quasi equilibrium
problems has been investigated. See, e.g., [3, 9]. If for each fixed p ∈ P, K and C
have constant values for every x ∈ X , respectively, PGQVEP reduce to a parametric
vector equilibrium problem (PVEP). Existence of solution and closedness of solution
mapping for PVEP has been studied in [6]. Continuity of solution mapping for
PVEP has been studied in [7].

We observe that our results in this paper can be employed to study the behavior
of solution maps of parametric vector optimization, parametric vector variational
inequalities, parametric vector equilibrium problems and those generalized problems
and so on.

2. PRELIMINARIES

Definition 2.1. (C-continuity, [8]). Let X be a topological space and Z a
topological vector space with a partial ordering defined by a proper solid convex
cone C. Suppose that f is a vector-valued function from X to Z. Then, f is said to
be C-continuous at x ∈ X , if for any neighbourhood Vf(x) ⊂ Z of f(x), there exists
a neighbourhood Ux ⊂ X of x such that f(u) ∈ Vf(x)+C for all u ∈ Ux. Moreover
a vector-valued function f is said to be C-continuous in X if f is C-continuous at
every x on X .

Definition 2.2. (Continuity for Set-valued mapping, See also [1]). Let X and
Y be two topological spaces, T : X → 2Y a set-valued mapping.

(i) T is said to be upper semicontinuous (u.s.c. for short) at x ∈ X if for each
open set V containing T (x), there is an open set U containing x such that
for each z ∈ U, T (z) ⊂ V ; T is said to be u.s.c. on X if it is u.s.c. at all
x ∈ X .
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(ii) T is said to be lower semicontinuous (l.s.c. for short) at x ∈ X if for each
open set V with T (x)∩V �= ∅, there is an open set U containing x such that
for each z ∈ U, T (z)∩V �= ∅; T is said to be l.s.c. on X if it is l.s.c. at all
x ∈ X .

(iii) T is said to be continuous at x ∈ X if T (x) is both u.s.c. and l.s.c.; T is said
to be continuous on X if it is both u.s.c. and l.s.c. at each x ∈ X .

Proposition 2.1. Let X be a topological space and Z a real topological vector
space. Suppose that C : X → 2Z has proper solid convex cone values and that
W : X → 2Z is defined by Z \ (−intC(x)). Then we have the following two
statements:

(i) if C is u.s.c. at x, then there exists a neighborhood U of x such that

clC(x) ⊃ C(u), for all u ∈ U ;

(ii) if W is u.s.c. at x, then there exists a neighborhood U of x such that

W (x) ⊃ W (u), for all u ∈ U.

Proof. First we prove (i). Let x ∈ X and C is u.s.c. at x. Suppose c ∈ intC(x).
Then −c + intC(x) is a neighborhood of C(x). Since C is u.s.c. at x, there exists
a neighborhood U of x such that

C(u) ⊂ −c + intC(x), for all u ∈ U.

Suppose cl C(x) �⊃ C(v) for some v ∈ X . Then there exist z ∈ (clC(x))c ∩ C(v)

and a positive number t > 0 such that z + tc /∈ clC(x). Hence
1
t
z /∈ −c+clC(x),

i.e.,
1
t
z /∈ −c + intC(x). Thus

1
t
z /∈ C(u) for all u ∈ U . Since C(v) is cone,

1
t
z ∈ C(v). Therefore v /∈ U . Accordingly we have statement (i).
Second we prove (ii). Let x ∈ X and W is u.s.c. at x. Suppose c ∈ intC(x).

Then −c− cl C(x) ⊂ −intC(x). Hence (−c− cl C(x))c = Z \ (−c− clC(x)
)
is

a neighborhood of W (x). Since W is u.s.c. at x, there exists a neighborhood U of
x such that

W (u) ⊂ Z \ (−c − clC(x)
)
, for all u ∈ U.

Let z ∈ W (x)c, i.e., z ∈ −intC(x). Then there exists a positive number t > 0

such that z + tc ∈ −intC(x). Hence
1
t
z ∈ −c − cl C(x). Therefore for some

v ∈ X , if W (x) �⊃ W (v) then v /∈ U . Accordingly we have statement (ii).
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Proposition 2.2. Let E be a nonempty subset of a topological space and
Z a real topological vector space. Let C : E → 2Z with proper solid convex
cone values and W : E → 2Z defined by W (x) = Z \ (−intC(x)

)
. Suppose

F : E → 2Z \ {∅}. If W is u.s.c. on E and for each x ∈ E , F is (−C(x))-u.s.c. at
x, then the set S = {x ∈ E : F (x) ⊂ −int C(x)} is open.

Proof. Let x ∈ S and c ∈ intC(x). Then for each z ∈ F (x) there exists a
positive number tz > 0 such that

z + tzc ∈ −int C(x).

Note that V =
⋃

z∈F (x) z + tzc − intC(x) is a neighborhood of F (x) and that
V ∩ W (x) = ∅. Since F is (−C(x))-u.s.c. at x, there exists a neighborhood U1 of
x such that

F (u) ⊂ V − intC(x) = V , for all u ∈ U1.

Since W is u.s.c. at x, by statement (ii) of Proposition 2.1, there exists a neighbor-
hood U2 of x such that

W (x) ⊃ W (u), for all u ∈ U2.

Hence U2 ∩ U2 ⊂ S. Since x ∈ S is arbitrary, S is open.

Proposition 2.3. Let E be a nonempty subset of a topological space and
Z a real topological vector space. Let C : E → 2Z with proper solid convex
cone values and W : E → 2Z defined by W (x) = Z \ (−intC(x)

)
. Suppose

F : E → 2Z \ {∅}. If W is u.s.c. on E and for each x ∈ E , F is (−C(x))-l.s.c. at
x, then the set T = {x ∈ E : F (x) ∩ (−intC(x)) �= ∅} is open.

Proof. Let x ∈ T. Since F is (−C(x))-l.s.c. at x, there exists a neighborhood
U1 of x such that

F (u) ∩ (−intC(x)) �= ∅, for all u ∈ U1.

Since W is u.s.c. at x, by statement (ii) of Proposition 2.1, there exists a neighbor-
hood U2 of x such that

W (x) ⊃ W (u), for all u ∈ U2.

Hence U2 ∩ U2 ⊂ T. Since x ∈ T is arbitrary, T is open.

Definition 2.3. Let X and Z be two real vector spaces. Suppose that K is a
nonempty convex set of X and that T : X → 2Z \ {∅}.
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(i) T is said to be convex on K if for each x1, x2 ∈ K and µ ∈ [0, 1]

T (µx1 + (1− µ)x2) ⊃ µT (x1) + (1− µ)T (x2);

(ii) T is said to be concave on K if for each x1, x2 ∈ K and µ ∈ [0, 1]

T (µx1 + (1− µ)x2) ⊂ µT (x1) + (1− µ)T (x2);

(iii) T is said to be affine on K if T is convex and concave on K.

Definition 2.4. (C-compactness [8]). Let C be a nonempty convex cone in a
Hausdorff topological space Z. We say E ⊂ Z is C-compact if any cover of E of
the form

{Uα + C : α ∈ I, Uα are open}
admits a finite subcover.

Definition 2.5. (C-semicontinuity, See also (8]). LetX and Z be a topological
space and a real topological vector space, respectively. Let T : X → 2Z \ {∅} and
C : X → 2Z , which has proper convex cone values. Let x′ ∈ X .

(i) T is said to be C(x)-lower semicontinuous (C(x)-l.s.c.) at x if for each V ,
an open set of Z with T (x)∩V �= ∅, there exists a neighborhood U of x such
that

T (u) ∩ (V + intC(x)
) �= ∅, for all u ∈ U .

T is said to be C-lower semicontinuous (C-l.s.c.) on X if T is C(x)-l.s.c. at
x for every x ∈ Z.

(ii) T is said to be C(x)-upper semicontinuous (C(x)-u.s.c.) at x, if for each
neighborhood VT (x) of T (x) there exists a neighborhood Ux of x such that

T (u) ⊂ VT (x) + intC(x), for all u ∈ Ux.

T is said to be C-upper semicontinuous (C-u.s.c.) on X if T is C(x)-u.s.c. at
x for every x ∈ Z.

Definition 2.6. (Generalized C-quasiconvexity). Let X be a vector space, and
Z also a vector space with a proper solid convex cone C. Suppose that K is a
convex subset of X and that T : K → 2Z \ {∅}. Then T is said to be generalized
C-quasiconvex on K if for each z ∈ Z,

A(z) := {x ∈ K : T (x) ⊂ z − C}

is convex or empty.
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Definition 2.7. (Extended C-quasiconvexity). Let X be a vector space, and
Z also a vector space with a proper solid convex cone C. Suppose that K is a
convex subset of X and that T : K → 2Z \ {∅}. Then T is said to be extended
C-quasiconvex on K if for each z ∈ Z,

A(z) := {x ∈ K : T (x) ∩ (z − C) �= ∅}
is convex or empty.

Definition 2.8. (C-quasiconcavity, [13]). Let X be a nonempty convex subset
of a real topological vector space and Z a real topological vector space. Let T :
X → 2Z \ {∅}. Suppose that C : X → 2Z has proper solid convex cone values.
We say that T is C-quasiconcave on X if for each x1, x2 ∈ X and z ∈ Z,
T (x1) �⊂ z − intC(x1) and T (x2) �⊂ z − intC(x2) imply

T (xµ) �⊂ z − intC(xµ), for all xµ ∈ (x1, x2).

We also say that T is strictly C-quasiconcave on X if for each x1, x2 ∈ X and
z ∈ Z, T (x1) �⊂ z − intC(x1) and T (x2) �⊂ z − intC(x2) imply

T (xµ) �⊂ z − clC(xµ), for all xµ ∈ (x1, x2).

Definition 2.9. (C-proper quasiconcavity, [13]). Let X be a nonempty convex
subset of a real topological vector space and Z a real topological vector space. Let
T : X → 2Z \{∅}. Suppose that C : X → 2Z has proper solid convex cone values.
We say that T is C-proper quasiconcave on X if for each x1, x2 ∈ X and z ∈ Z,
T (x1) ∩

(
z − intC(x1)

)
= ∅ and T (x2) ∩

(
z − intC(x2)

)
= ∅ imply

T (xµ) ∩ (z − intC(xµ)
)
= ∅, for all xµ ∈ (x1, x2).

We also say that T is strictly C-properly quasiconcave on X if for each x1, x2 ∈ X

and z ∈ Z, T (x1) ∩
(
z − intC(x1)

)
= ∅ and T (x2) ∩

(
z − intC(x2)

)
= ∅ imply

T (xµ) ∩ (z − clC(xµ)
)
= ∅, for all xµ ∈ (x1, x2).

Remark 1. If T is single-valued and C has constant values, Definitions 2.8
and 2.9 reduce to the definition of (−C)-proper quasiconvexity.

Definition 2.10. (C-weak quasiconcavity). Let X be a nonempty convex
subset of a real topological vector space, Z a real topological vector space and
C : X → 2Z with a proper solid convex cone values. Suppose T : X → 2Z \ {∅}.
We say that T is C-weakly quasiconcave on X if for each x1, x2 ∈ X , T (x1) �⊂
−intC(x1) and T (x2) �⊂ −intC(x2) imply

T (xµ) �⊂ −int C(xµ), for all xµ ∈ (x1, x2)
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and also T (x1) �⊂ −int C(x1) and T (x2) �⊂ −cl C(x2) imply

T (xµ) �⊂ −cl C(xµ), for all xµ ∈ (x1, x2).

We say that T is strictly C-weakly quasiconcave on X if for each x1, x2 ∈ X ,
T (x1) �⊂ −intC(x1) and T (x2) �⊂ −int C(x2) imply

T (xµ) �⊂ −cl C(xµ), for all xµ ∈ (x1, x2).

Example 1. Let X = [0,
π

2
] × [0,

π

2
] and Z = R

2. Let

C(x, y) = {(u, v) ∈ Z : u cosx + v sin x ≥ 0}.
Suppose

T (x, y) = (x − π

4
)(sinx,− cosx) + {(y − x − t)(cosx, sinx) : t ∈ [0, 1]}.

Then T is C-weakly quasiconcave on X .

Definition 2.11. (C-weak proper quasiconcavity). LetX be a nonempty convex
subset of a real topological vector space, Z a real topological vector space and
C : X → 2Z with a proper solid convex cone values. Suppose T : X → 2Z \ {∅}.
We say that T is C-weakly properly quasiconcave on X if for each x1, x2 ∈ X ,
T (x1) ∩ (z − intC(x1)) �= ∅ and T (x2) ∩ (z − intC(x2)) �= ∅ imply

T (xµ) ∩ (z − intC(xµ)) �= ∅, for all xµ ∈ (x1, x2)

and also T (x1) ∩ (z − intC(x1)) �= ∅ and T (x2) ∩ (z − clC(x2)) �= ∅ imply
T (xµ) ∩ (z − cl C(xµ)) �= ∅, for all xµ ∈ (x1, x2).

We say that T is strictly C-weakly properly quasiconcave on X if for each x1, x2 ∈
X , T (x1) ∩ (z − intC(x1)) �= ∅ and T (x2) ∩ (z − intC(x2)) �= ∅ imply

T (xµ) ∩ (z − cl C(xµ)) �= ∅, for all xµ ∈ (x1, x2).

Example 1. Let X = [0,
π

2
] × [0,

π

2
] and Z = R

2. Let

C(x, y) = {(u, v) ∈ Z : u cosx + v sin x ≥ 0}.
Suppose

T (x, y) = (x − π

4
)(sinx,− cosx) + co {(y − x)(cosx, sinx), (0, 0)}.

Then T is C-weakly properly quasiconcave on X .

Definition 2.12. (C-diagonally quasiconcavity; see also, [5]). Let X be a
nonempty convex subset of a real vector space, Z a real vector space and C :
X → 2Z with proper solid convex cone values. Suppose T : X × X → 2Z \ {∅}.
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(i) T is said to be Type I C-diagonally quasiconcave in its second argument, if
for any finite subset A of X and any x ∈ coA, there exists y ∈ A such that
T (x, y) �⊂ −intC(x).

(ii) T is said to be Type II C-diagonally quasiconcave in its second argument, if
for any finite subset A of X and any x ∈ coA, there exists y ∈ A such that
T (x, y)∩ (−intC(x)) = ∅.

Proposition 2.4. Let X be a nonempty convex subset of a real vector space,
Z a real vector space and C : X → 2Z with proper solid convex cone values.
Suppose that T :X×X→2Z \ {∅}. We also assume the following two conditions:

(i) for each x ∈ X T (x, x) �⊂ −intC(x);
(ii) for each x ∈ X T (x, ·) is generalized C(x)-quasiconvex on X .

Then T is Type I C-diagonally quasiconcave in its second argument.

Proof. Suppose to the contrary that T is not C-diagonally quasiconcave in its
second argument. Then there exist x, x1, . . . , xn ∈ X such that x ∈ co {x1, . . . , xn}
and T (x, xi) ⊂ −int C(x), for each i = 1, . . . , n. Therefore by condition (ii), we
have T (x, x) ⊂ −intC(x). However this contradicts to condition (i). Accordingly
T is Type I C-diagonally quasiconcave in its second argument.

Proposition 2.5. Let X be a nonempty convex subset of a real vector space,
Z a real vector space and C : X → 2Z with proper solid convex cone values.
Suppose that T : X×X→2Z \ {∅}. We also assume the following two conditions:

(i) for each x ∈ X T (x, x)∩ (−intC(x)) = ∅;
(ii) for each x ∈ X T (x, ·) is extended C(x)-quasiconvex on X .

Then T is Type II C-diagonally quasiconcave in its second argument.

Proof. Suppose to the contrary that T is not Type II C-diagonally quasi-
concave in its second argument. Then there exist x, x1, . . . , xn ∈ X such that
x ∈ co {x1, . . . , xn} and T (x, xi) ∩ (−intC(x)) �= ∅, for each i = 1, . . . , n.
Therefore by condition (ii), we have T (x, x) ∩ (−intC(x)) = ∅. However this
contradicts to condition (i). Accordingly T is Type II C-diagonally quasiconcave
in its second argument.

Definition 2.13. (Intersectional mapping, [13]. Let X be a topological space
and Z a nonempty set. Let T, G : X → 2Z \ {∅}, respectively. We say G is an
intersectional mapping of T , if for each x ∈ X there exist a neighborhood Ux of x
such that

G(x) ⊂
⋂

u∈Ux

T (u).
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Proposition 2.6. [13, Proposition 2.2] Let X be a nonempty subset of a
topological space and Z a real topological vector spaces, respectively. Let C :
X → 2Z, which has proper solid convex cone values. Supose that W : X → 2 Z

defined by
W(x) = Z \ intC(x)

has closed graph. Then C has at least one intersectional mapping, which has solid
convex cone values.

Proposition 2.7. Let E be a nonempty subset of a topological space and Z a
real topological vector space. Let C : E → 2Z with proper solid convex cone values
and D : E → 2Z an intersectional mapping of C with solid convex cone values.
Suppose F : E → 2Z \{∅} andW : E → 2Z, defined by W (x) = Z\(−int C(x)

)
.

We also assume the following conditions:
(i) W has closed graph;
(ii) F is (−D)-u.s.c on X

(iii) F (x) is (−D(x))-compact for each x ∈ X .

Then the set S = {x ∈ E : F (x) ⊂ −intC(x)} is open.
Proof. Let x ∈ S and d ∈ intD(x). Then for each z ∈ F (x) there exists a

positive number tz > 0 such that

z + tzd ∈ −intC(x).

Note that V =
⋃

z∈F (x) z + tzd − intC(x) is a neighborhood of F (x). Hence by
condition (iii), there exist z1, . . . , zn ∈ F (x) such that

n⋃
i=1

(
zi + tzid− intD(x)

)⊃ F (x).

By condition (ii), there exists a neighborhood U1 of x such that
n⋃

i=1

(
zi + tzid ∈ −int D(x)

)⊃ F (u), for all u ∈ U1.

Futhermore by condition (i), there exists a neighborhood U2 of x such that

{z1 + tz1d, . . . , zn + tznd} ⊂ −int C(u), for all u ∈ U2.

Since D is an intersectional mapping of C, there exists a neighborhood U3 of x
such that D(x) ⊂ C(u) for all u ∈ U3. Hence for each u ∈ U2 ∩ U3 we have

n⋃
i=1

(
zi + tzid− intD(x)

)⊂ intC(u).
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Therefore we have

F (u) ⊂ intC(u), for all u ∈
3⋂

i=1

Ui.

Hence
⋂3

i=1 Ui ⊂ S. Since x ∈ S is arbitrary, S is open.

Proposition 2.8. Let E be a nonempty subset of a topological space and Z a
real topological vector space. Let C : E → 2Z with proper solid convex cone values
and D : E → 2Z an intersectional mapping of C with solid convex cone values.
Suppose F : E → 2Z \{∅} andW : E → 2Z, defined by W (x) = Z\(−intC(x)

)
.

We also assume the following conditions:
(i) W has closed graph;
(ii) F is (−D)-l.s.c on X .

Then the set T = {x ∈ E : F (x) ∩ (−intC(x)) �= ∅} is open.
Proof. Let x ∈ T. Then there exists z ∈ −intC(x) such that

T (x) ∩ (z − intD(x)) �= ∅.
By condition (ii), there exists a neighborhood U1 of x such that

T (u) ∩ (z − intD(x)) �= ∅, for all u ∈ U1.

Futhermore by condition (i), there exists a neighborhood U2 of x such that

z ⊂ −int C(u), for all u ∈ U2.

Since D is an intersectional mapping of C, there exists a neighborhood U3 of x

such that D(x) ⊂ C(u) for all u ∈ U3. Hence for each u ∈ U2 ∩ U3 we have

z − intD(u) ⊂ intC(u).

Therefore we have

F (u) ∪ (−intC(u)) �= ∅, for all u ∈
3⋂

i=1

Ui.

Hence
⋂3

i=1 Ui ⊂ T. Since x ∈ T is arbitrary, T is open.

Definition 2.14. Let X be a topological space and Y an nonemptyset. A set-
valued map F : X → 2Y is said to have open lower sections, if the set F −1(y) =
{x ∈ X : y ∈ F (x)} is open in X for every y ∈ Y .

Lemma 2.1. ([11]). Let X be a topological space and Y a convex set of a
real topological vector space. Let F, G : X → 2Y be two set-valued maps with
open lower sections. Then:
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(i) the set-valued map H : X → 2Y , defined by H(x) = co
(
F (x)

)
for all

x ∈ X , has open lower sections;
(ii) the set-valued map J : X → 2Y , defined by J(x) = F (x) ∩ G(x) for all

x ∈ X , has open lower sections.

Lemma 2.2. [10, Fan-Browder fixed-point theorem]. Let X be a nonempty
compact convex subset of a real Hausdorff topological vector space. Suppose that
F : X → 2X is a set-valued map with nonempty convex values and open lower
sections. Then F has a fixed point.

3. EXISTENCE OF SOLUTION FOR PGQVEP

In this section we drive some existence results for PGQVEP.

Theorem 3.1. Let X be a nonempty subset of a real topological vector space
and Z a real topological vector space, P an index set and C : P × X → 2 Z with
proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) for each p ∈ P F (p, ·, ·) is Type I C-diagonally quasiconcave in the third
argument;

(ii) X is compact and convex;
(iii) K has convex values and has open lower sections;
(iv) for each fixed p ∈ P and x ∈ X , the set

{y ∈ X : F (p, x, y) ⊂ −intC(p, x)}

is open.
(v) for each fixed p ∈ P the set {x ∈ X : K(p, x) ∩ {y ∈ X : F (p, x, y) ⊂

−intC(p, x)} �= ∅}
Then Ω is nonempty for each p ∈ P. Moreover, Φ is nonempty for each p ∈ P if
conditions (i), (iv), and (v) are replaced by the following (vi), (vii), and (viii):

(vi) for each p ∈ P F (p, ·, ·) is Type II C-diagonally quasiconcave in the third
argument;

(vii) the set {y ∈ X : F (p, x, y) ∩ (−intC(p, x)) �= ∅} is open, for each p ∈ P

and x ∈ X .
(viii) for each fixed p ∈ P the set {x ∈ X : K(p, x) ∩ {y ∈ X : F (p, x, y) ∩

−intC(p, x)) �= ∅} �= ∅ is cloded.
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Proof. Let p ∈ P and for x ∈ X ,

T (p, x) := {y ∈ X : F (p, x, y) ⊂ −intC(p, x)}.
Then by condition (i), we have

(1) x /∈ co
(
T (p, x)

)
, for each x ∈ X.

Let G(p, x) = K(p, x)∩ co
(
T (p, x)

)
. By condition (iii), K has convex values and

K has open lower sections. Hence there exists x′ ∈ X such that x′ ∈ K(p, x′)
by Lemma 2.2. If for every x ∈ X, G(p, x) = ∅, then x′ ∈ Ω(p). Thus we may
supposeG(p, x) �= ∅ for some x ∈ X . By condition (iv), T has open lower sections.
Therefore by Lemma 2.1, G has open lower sections. Clearly G has convex values.
Let H : X → 2X be defined by

H(p, x) =

{
G(p, x), if G(p, x) �= ∅,
K(p, x), otherwise.

HenceH has convex values and, by condition (v), open lower sections. Accordingly
by Lemma 2.2, there exists x̂ ∈ X such that x̂ ∈ H(x̂). Because of (1), x̂ ∈ K(p, x̂)
and G(p, x̂) = ∅. Hence x̂ ∈ S(p). Therefore S(p) �= ∅. Since p ∈ P is arbitrary,
we have S(p) �= ∅ for each p ∈ P.

In above proof, let Ω, (i) and (iv) be replaced by Φ, (v) and (vi), respectively
and let

T (p, x) = {y ∈ X : F (p, x, y)∩ (−intC(p, x)) �= ∅}
Then we obtain upper semicontinuity of Φ on P × X .

Next we concider sufficient condition for assumptions (iv) and (vi) of Theo-
rem 3.1.

Proposition 3.1. Let E be a nonempty subset of a real topological vector space
and Z a real topological vector space with a proper solid convex cone C Suppose
F : E → 2Z\{∅}. If F is (−C)-u.s.c. on E , then the set {x ∈ E : F (x) ⊂ −intC}
is open. If F is (−C)-l.s.c. on E , then the set {x ∈ E : F (x) ∩ (−intC) �= ∅} is
open.

Proof. In Propositions 2.2 and 2.3 assuming C has constant value, respectively,
we obtain the results.

The following result is a consequence of Theorem 3.1 and Propositions 2.4, 2.5
and 3.1.

Corollary 3.1. In Theorem 3.1,
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(i) condition (i) can be replaced by the following conditions:
(a) for each p ∈ P and x ∈ X , F (p, x, x) �⊂ −intC(p, x);
(b) for each p ∈ P and x ∈ X , F (p, x, ·) is generalizedC(p, x)-quasiconvex

on X;

(ii) condition (vi) can be replaced by the following conditions:

(a) for each p ∈ P and x ∈ X , F (p, x, x)∩ (−intC(p, x)) = ∅;
(b) for each p ∈ P and x ∈ X , F (p, x, ·) is extended C(p, x)-quasiconvex

on X;

(iii) condition (iv) can be replaced by the following condition:

(a) for each p ∈ P and x ∈ X , F (p, x, ·) is −C(p, x)-u.s.c. on X;

(iv) condition (vii) can be replaced by the following condition:

(a) for each p ∈ P and x ∈ X , F (p, x, ·) is −C(p, x)-l.s.c. on X .

To investigate upper and lower semicontinuities of Ω and Φ, we need to require
closedness of K(p, x) for each p ∈ P and x ∈ X . The following theorem is useful.

Theorem 3.2. Let X be a nonempty subset of a real topological vector space
and Z a real topological vector space, P an index set and C : P × X → 2 Z with
proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) Ω(p) is nonempty for each p ∈ P;
(ii) the set {y ∈ X : F (p, x, y) ⊂ −intC(p, x)} is open for each fixed p ∈ P

and x ∈ X .

Then

Ω(p) = {x ∈ clK(p, x) : F (p, x, y) �⊂ −intC(p, x), for all y ∈ clK(p, x)}

is nonempty for each p ∈ P.

Proof. Let p ∈ P and x ∈ Ω(p). Suppose to the contrary that there exists
y ∈ cl K(p, x) such that F (p, x, y) ⊂ −int C(p, x). Then by condition (ii), there
exists a neighborhood U of y such that

F (p, x, y′) ⊂ −intC(p, x), for all v′ ∈ U .

Clearly U ∩ K(p, x) �= ∅. This contradicts to the fact that x ∈ Ω(p). Hence Ω(p)
is nonempty. Since p ∈ P is arbitrary, Ω(p) is nonempty for each p ∈ P.
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Theorem 3.3. Let X be a nonempty subset of a real topological vector space
and Z a real topological vector space, P an index set and C : P × X → 2 Z with
proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) Ψ(p) is nonempty for each p ∈ P;
(ii) the set {y ∈ X : F (p, x, y) ∩ (−intC(p, x)) �= ∅} is open for each fixed

p ∈ P and x ∈ X .

Then

Ψ(p) = {x ∈ clK(p, x) : F (p, x, y)∩ (−intC(p, x)) = ∅, ∀y ∈ clK(p, x)}

is nonempty for each p ∈ P.

Proof. Let p ∈ P and x ∈ Ψ(p). Suppose to the contrary that there exists
y ∈ cl K(p, x) such that F (p, x, y) ∩ (−intC(p, x)) �= ∅. Hence by condition (ii),
there exists a neighborhood U of y such that

F (p, x, y′) ∩ (−intC(p, x)) �= ∅, for all v′ ∈ U .

Clearly U ∩ K(p, x) �= ∅. This contradicts to the fact that x ∈ Ψ(p). Hence Ψ(p)
is nonempty. Since p ∈ P is arbitrary, Ψ(p) is nonempty for each p ∈ P.

The following result is a consequence of Theorems 3.1, 3.2 and 3.3.

Theorem 3.4. Let X be a nonempty subset of a real topological vector space
and Z a real topological vector space, P an index set and C : P × X → 2 Z with
proper solid convex cone values. Let K, K ′ : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) for each p ∈ P F (p, ·, ·) is Type I C-diagonally quasiconcave in the third
argument;

(ii) X is compact and convex;
(iii) K ′ has convex values and open lower sections;
(iv) K(p, x) = clK ′(p, x) for each p ∈ P and x ∈ X;
(v) the set {y ∈ X : F (p, x, y) ⊂ −intC(p, x)} is open, for each fixed p ∈ P

and x ∈ X .
(vi) for each fixed p ∈ P the set {x ∈ X : K(p, x) ∩ {y ∈ X : F (p, x, y) ⊂

−intC(p, x)} �= ∅} is closed.
Then Ω is nonempty for each p ∈ P. Moreover, Φ is nonempty for each p ∈ P if
conditions (i), (v), and (vi) are replaced by the following (vii), (viii), and (ix):
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(vii) for each p ∈ P F (p, ·, ·) is Type II C-diagonally quasiconcave in the third
argument;

(viii) the set {(p, x, y) ∈ P × X : F (p, x, y)∩ (−intC(p, x)) �= ∅} is open.
(ix) for each fixed p ∈ P the set {x ∈ X : K(p, x) ∩ {y ∈ X : F (p, x, y) ∩

−intC(p, x)) �= ∅} �= ∅ is cloded.
Remark 2. Conditions (iii) and (iv) and the condition thatK has closed convex

values and open lower sections are quite different. For example let P = {1}, X =
[0, 1], A = (0, 1

2 ) and B = ( 1
2 , 1). Suppese that K : P × X → 2X is defined by

K(p, x) = cl
(
xA + (1 − x)B

)
.

Then K satisfies conditions (iii) and (iv) but K does not have open lower sections.
The following result is a consequence of Theorem 3.4 and Propositions 2.4, 2.5

and 3.1.

Corollary 3.2. In Theorem 3.4,
(i) condition (i) can be replaced by the following conditions:

(a) for each p ∈ P and x ∈ X , F (p, x, x) �⊂ −intC(p, x);
(b) for each p ∈ P and x ∈ X , F (p, x, ·) is generalizedC(p, x)-quasiconvex

on X;
(ii) condition (vii) can be replaced by the following conditions:

(a) for each p ∈ P and x ∈ X , F (p, x, x)∩ (−intC(p, x)) = ∅;
(b) for each p ∈ P and x ∈ X , F (p, x, ·) is extended C(p, x)-quasiconvex

on X;
(iii) condition (viii) can be replaced by the following condition:

(a) for each p ∈ P and x ∈ X , F (p, x, ·) is −C(p, x)-u.s.c. on X;
(iv) condition (iv) can be replaced by the following condition:

(a) for each p ∈ P and x ∈ X , F (p, x, ·) is −C(p, x)-l.s.c. on X .

Let

Ω′(p) := {x ∈ K(p, x) : F (p, x, y) �⊂ −cl C(p, x), ∀y ∈ K(p, x)}
and

Φ′(p) := {x ∈ K(p, x) : F (p, x, y)∩ (−cl C(p, x)) = ∅, ∀y ∈ K(p, x)}.
Theorem 3.5. Let X be a nonempty subset of a real topological vector space

and Z a real topological vector space, P an index set and C : P × X → 2 Z with
proper solid convex cone values. LetK : P×X → 2X\{∅} and c : P×X → Z with
c(p, x) ∈ intC(p, x) for each p ∈ P and x ∈ X . Suppose that F : P × X × X →
2Z \ {∅}. Also we assume that the following conditions:
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(i) for each p ∈ P, F (p, ·, ·) − c(p, ·) is Type I C-diagonally quasiconcave in
the third argument;

(ii) X is compact and convex;
(iii) K has convex values and open lower sections;
(iv) {y ∈ X : F (p, x, y)− c(p, x) ⊂ −int C(p, x)} is open, for each fixed p ∈ P

and x ∈ X .
(v) for each fixed p ∈ P the following set is closed, {x ∈ X : K(p, x) ∩ {y ∈

X : F (p, x, y)− c(p, x) ⊂ −intC(p, x)} �= ∅}.
Then Ω′(p) is nonempty for each p ∈ P. Moreover, Φ ′(p) is nonempty for each
p ∈ P if conditions (i) and (iv) are replaced by the following (vi) and (vii):

(vi) for each p ∈ P F (p, ·, ·) − c(p, x) is Type II C-diagonally quasiconcave in
the third argument;

(vii) the set {y ∈ X : (F (p, x, y) − c(p, x)) ∩ (−intC(p, x)) �= ∅} is open, for
each p ∈ P and x ∈ X .

(viii) for each fixed p ∈ P the following set is closed, {x ∈ X : K(p, x) ∩ {y ∈
X : F (p, x, y)− c(p, x) ∩ (−intC(p, x))} �= ∅}.

Proof. First, we show nonemptyness of Ω′(p) for each p ∈ Γ. Let F ′(p, x, y) =
F (p, x, y)− c(p, x). Then by Theorem 3.1, for each p ∈ P there exists x ∈ X such
that x ∈ K(p, x) and

F ′(p, x, y) �⊂ −int C(p, x), for all y ∈ K(p, x),

i.e.,

(2) F (p, x, y)− c(p, x) �⊂ −int C(p, x), for all y ∈ K(p, x).

Since c(p, x) ∈ intC(p, x) for each p ∈ P and x ∈ X , (2) implies

F (p, x, y) �⊂ −cl C(p, x), for all y ∈ K(p, x).

Hence Ω′(p) �= ∅ for each p ∈ P.
Next, we show nonemptyness of Φ′(p) for each p ∈ Γ. Let F ′(p, x, y) =

F (p, x, y)− c(p, x). Then by Theorem 3.1, for each p ∈ P there exists x ∈ X such
that x ∈ K(p, x) and

F ′(p, x, y)∩ (−intC(p, x)) = ∅, for all y ∈ K(p, x),

i.e.,

(3) F (p, x, y)− c(p, x) ∩ (−intC(p, x)) = ∅, for all y ∈ K(p, x).
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Since c(p, x) ∈ intC(p, x) for each p ∈ P and x ∈ X , (3) implies

F (p, x, y)∩ (−intC(p, x)) = ∅, for all y ∈ K(p, x).

Hence Φ′(p) �= ∅ for each p ∈ P.

Next corollary follows from Theorem 3.5, Propositions 2.4, 2.5 and 3.1.

Corollary 3.3. In Theorem 3.5,

(i) condition (i) can be replaced by the following conditions:
(a) F (p, x, x)− c(p, x) �⊂ −int C(p, x) for each p ∈ P and x ∈ X;
(b) F (p, x, ·) − c(p, ·) is generalized C(p, x)-quasiconvex on X for each

p ∈ P and x ∈ X;

(ii) condition (vi) can be replaced by the following conditions:
(a) (F (p, x, x)− c(p, x))∩ (−intC(p, x)) = ∅ for each p ∈ P and x ∈ X;
(b) (F (p, x, ·) − c(p, ·)) is extended C(p, x)-quasiconvex on X for each

p ∈ P and x ∈ X;

(iii) condition (iv) can be replaced by the following condition:
(a) F (p, x, ·)− c(p, ·) is −C(p, x)-u.s.c. on X for each p ∈ P and x ∈ X;

(iv) condition (vii) can be replaced by the following condition:
(a) F (p, x, ·) − c(p, ·) is −C(p, x)-l.s.c. on X for each p ∈ P and x ∈ X .

Theorem 3.6. Let X be a nonempty subset of a real topological vector space
and Z a real topological vector space, P an index set and C : P × X → 2 Z

with proper solid convex cone values. Let K, K ′ : P × X → 2X \ {∅} and
c : P×X → Z with c(p, x) ∈ intC(p, x) for each p ∈ P and x ∈ X . Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) for each p ∈ P F (p, ·, ·)− c(p, ·) is Type I C-diagonally quasiconcave in the
third argument;

(ii) X is compact and convex;
(iii) K ′ has convex values and open lower sections;
(iv) K(p, x) = clK ′(p, x) for each p ∈ P and x ∈ X;
(v) the set {y ∈ X : F (p, x, y)− c(p, x) ⊂ −intC(p, x)} is open for each fixed

p ∈ P and x ∈ X .
(vi) for each fixed p ∈ P the following set is closed, {x ∈ X : K(p, x) ∩ {y ∈

X : F (p, x, y)− c(p, x) ⊂ −int C(p, x)} �= ∅}.
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Then Ω′ is nonempty for each p ∈ P. Moreover, Φ ′ is nonempty for each p ∈ P if
conditions (i) and (iv) are replaced by the following (v) and (vi):
(vii) for each p ∈ P F (p, ·, ·) − c(p, x) is Type II C-diagonally quasiconcave in

the third argument;
(viii) the set {y ∈ X : (F (p, x, y) − c(p, x)) ∩ (−intC(p, x)) �= ∅} is open, for

each p ∈ P and x ∈ X .
(ix) for each fixed p ∈ P the following set is closed, {x ∈ X : K(p, x) ∩ {y ∈

X : F (p, x, y)− c(p, x) ∩ (−intC(p, x))} �= ∅}.
Proof. First, we show nonemptyness of Ω′(p) for each p ∈ Γ. Let F ′(p, x, y) =

F (p, x, y)− c(p, x). Then by Theorem 3.1, for each p ∈ P there exists x ∈ X such
that x ∈ K ′(p, x) and

F ′(p, x, y) �⊂ −intC(p, x), for all y ∈ K ′(p, x),

i.e.,
F (p, x, y)− c(p, x) �⊂ −intC(p, x), for all y ∈ K ′(p, x).

By condition (vii), we have

(4) F (p, x, y)− c(p, x) �⊂ −int C(p, x), for all y ∈ K(p, x).

Since c(p, x) ∈ intC(p, x), (4) implies

F (p, x, y) �⊂ −cl C(p, x), for all y ∈ K(p, x).

Hence Ω′(p) is nonempty for each p ∈ P.
Next, we show nonemptyness of Φ′(p) for each p ∈ Γ. Let F ′(p, x, y) =

F (p, x, y)− c(p, x). Then by Theorem 3.1, for each p ∈ P there exists x ∈ X such
that x ∈ K ′(p, x) and

F ′(p, x, y)∩ (−intC(p, x)) = ∅, for all y ∈ K ′(p, x),

i.e.,
F (p, x, y)− c(p, x)∩ (−intC(p, x)) = ∅, for all y ∈ K ′(p, x).

By condition (vii), we have

(5) F (p, x, y)− c(p, x) ∩ (−intC(p, x)) = ∅, for all y ∈ K(p, x).

Since c(p, x) ∈ intC(p, x), (5) implies

F (p, x, y)∩ (−intC(p, x)) = ∅, for all y ∈ K(p, x).

Hence Φ′(p) is nonempty for each p ∈ P.

The following result follows Theorem 3.6, Propositions 2.4, 2.5 and 3.1.

Corollary 3.4. In Theorem 3.6,
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(i) condition (i) can be replaced by the following conditions:
(a) F (p, x, x)− c(p, x) �⊂ −int C(p, x) for each p ∈ P and x ∈ X;
(b) F (p, x, ·) − c(p, ·) is generalized C(p, x)-quasiconvex on X for each

p ∈ P and x ∈ X;

(ii) condition (vii) can be replaced by the following conditions:
(a) (F (p, x, x)− c(p, x))∩ (−intC(p, x)) = ∅ for each p ∈ P and x ∈ X;
(b) (F (p, x, ·) − c(p, ·)) is extended C(p, x)-quasiconvex on X for each

p ∈ P and x ∈ X;

(iii) condition (v) can be replaced by the following condition:
(a) F (p, x, ·)− c(p, ·) is −C(p, x)-u.s.c. on X for each p ∈ P and x ∈ X;

(iv) condition (viii) can be replaced by the following condition:
(a) F (p, x, ·) − c(p, ·) is −C(p, x)-l.s.c. on X for each p ∈ P and x ∈ X .

4. UPPER SEMICONTINUITY OF THE SOLUTION MAPPING

In this section we show that the solution mappings Ω of PGQVEP and Φ of
PEQVEP are upper semicontinuous on P, respectively, under suitable assumptions.

Theorem 4.1. Let X be a nonempty subset of a real topological vector space
and Z a real topological vector space, C : P × X → 2Z with proper solid convex
cone values and P a topological space. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) Ω(p) is nonempty for each p ∈ P;
(ii) X is compact;
(iii) K(p, x) is compact for each p ∈ P and x ∈ X;
(iv) K is u.s.c. on P × X;
(v) the set {(p, x, y) ∈ P × X : F (p, x, y) ⊂ −intC(p, x)} is open.

Then Ω is u.s.c. on P. Moreover, Φ is u.s.c. on P if condition (v) is replaced by the
following one:

(vi) the set {(p, x, y) ∈ P × X : F (p, x, y)∩ (−intC(p, x)) �= ∅} is open.

Proof. Since X is compact, it suffices to show that Ω has closed graph. Let
p ∈ P. Suppose {pµ} ⊂ P is a net with pµ → p and {xµ} ⊂ X is a net with
xµ ∈ Ω(pµ) for all µ ∈ M. Then xµ ∈ K(pµ, xµ). By condition (ii), there exists a
subnet {xν} ⊂ {xµ} such that xν → x ∈ X . Hence we may assume, without loss
of generality, pµ → p and xµ → x with xµ ∈ Ω(pµ). Because of conditions (ii),
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(iii) and (iv), K has closed graph. Note that xµ ∈ Ω(pµ) implies xµ ∈ K(pµ, xµ).
Therefore we have x ∈ K(p, x). Suppose to the contrary that x /∈ Ω(p). Then there
exists y ∈ K(p, x) such that

(6) F (p, x, y) ⊂ −intC(p, x).

Then by condition (v), there exists a neighborhood U of (p, x, y) such that

(7) f(p′, x′, y′) ∈ −intC(p′, x′), for all (p′, x′, y′) ∈ U .

This contradicts to the fact that pµ → p, xµ → x and xµ ∈ Ω(pµ) for all µ ∈ M.
Hence x ∈ Ω(p). Therefore Ω is u.s.c. on P.

Let Ω and (v) be replaced by Φ and (vi), respectively. Let (6) and (7) be replaced
by the following (8) and (9), respectively in above proof:

(8) F (p, x, y)∩ (−intC(p, x)) �= ∅

and

(9) f(p′, x′, y′) ∩ (−intC(p′, x′)) �= ∅, for all (p′, x′, y′) ∈ U .

Consequently, Φ is u.s.c. on P.

Theorem 4.2. Let X be a nonempty subset of a real topological vector space
and Z a real topological vector space, C : P × X → 2Z with proper solid convex
cone values and P a topological space. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) Ω(p) is nonempty for each p ∈ P;

(ii) X is compact;

(iii) K(p, x) is compact for each p ∈ P and x ∈ X;

(iv) K is u.s.c. on P × X;

(v) W : P × X → 2Z defined by W (p, x) = Z \ (−intC(p, x)
)
is u.s.c. on

P × X;

(vi) F is
(−C

)
-u.s.c. on P × X × X .

Then Ω is u.s.c. on P. Moreover, Φ is u.s.c. on P if condition (vi) is replaced by
the following one:

(vii) F is
(−C

)
-l.s.c. on P × X × X .
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Proof. Upper semicontinuity ofΩfollows from Theorem 4.1 and Proposition 2.2.
Upper semicontinuity ofΦ follows from Theorem 4.1 and Proposition 2.3.

Example 3. Let P = [0, 1], X = R, X = [0,
π

2
], Z = R

2, A = (0,
π

4
) and

B = (
π

4
,
π

2
). Let

K(p, x) = cl
(

p
2x

π
A +

2(1− x)
π

B

)
,

C(p, x) =




{(u, v) ∈ Z : u ≥ 0}, x ∈ [0,
π

6
) and p ∈ [0,

1
2
),

{(u, v) ∈ Z : u ≥ 0 and v ≥ 0}, x ∈ [
π

6
,
π

3
] or p ∈ [

1
2
, 1],

{(u, v) ∈ Z : v ≥ 0}, x ∈ (
π

3
, 1]) and p ∈ [0,

1
2
).

Suppose that

F (p, x, y) =




co
{(−p

−p

)
,

(
0
−1

)}
, if x ≤ y, x ∈ [0,

π

6
) and p ∈ [0,

1
2
),

co
{(−p

−p

)
,

(
0
0

)}
, if x ≤ y, x ∈ [

π

6
,
π

3
] or p ∈ [

1
2
, 1],

co
{(−p

−p

)
,

(−1
0

)}
, if x ≤ y, x ∈ (

π

3
, 1] and p ∈ [0,

1
2
),{(−p

−p

)}
, otherwise.

Then by Theorem 3.4 and Corollary 3.2, for each p ∈ P, Ω(p) �= ∅. We also
observe that every condition of Theorem 4.2 is satisfied. Accordingly Ω is u.s.c. on
P. Indeed,

Ω(p) =




co
{π

6
,
π

4

}
, p = 0,{π

6

}
, p ∈ (0, 1),

co
{π

6
,
π

3

}
, p = 1.

The following result is a consequence of Theorem 4.1 and Proposition 2.7.

Theorem 4.3. Let X be a nonempty subset of a real topological vector space
X and Z a real topological vector space, C : P×X → 2Z with proper solid convex
cone values and P a topological space. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅} is a vector-valued function and that D : P × X → 2 Z

is an intersectional mapping of C with solid convex cone values. Also we assume
that the following conditions:
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(i) Ω(p) is nonempty for each p ∈ P;
(ii) X is compact;
(iii) K(p, x) is compact for each p ∈ P and x ∈ X;
(iv) K is u.s.c. on P × X;
(v) W : P × X → 2Z defined by W (p, x) = Z \ (−intC(p, x)

)
has closed

graph;
(vi) F is

(−D
)
-u.s.c on P × X × X;

(vii) F (p, x, y) is
(−D(p, x)

)
-compact for each p ∈ P, x ∈ X and y ∈ X .

Then Ω is u.s.c. on P.

The following result is a consequence of Theorem 4.1 and Proposition 2.8.

Theorem 4.4. Let X be a nonempty subset of a real topological vector space
X and Z a real topological vector space, C : P×X → 2Z with proper solid convex
cone values and P a topological space. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅} is a vector-valued function and that D : P × X → 2 Z

is an intersectional mapping of C with solid convex cone values. Also we assume
that the following conditions:

(i) Φ(p) is nonempty for each p ∈ P;
(ii) X is compact;
(iii) K(p, x) is compact for each p ∈ P and x ∈ X;
(iv) K is u.s.c. on P × X;
(v) W : P × X → 2Z defined by W (p, x) = Z \ (−intC(p, x)

)
has closed

graph;
(vi) F is

(−D
)
-l.s.c on P × X × X .

Then Φ is u.s.c. on P.

Example 4. Let P, X, X, Z and K be the same as those in Exmaple 3. Let

C(p, x) =




{
(u, v) ∈ Z :

〈(cos(x+p)
sin(x+p)

)
,
(
u
v

)〉 ≥ 0
}

,

D(p, x) =
{

(u, v) ∈ Z :
(
cosx′ sinx′
cos x′′ sinx′′

)(
u
v

) ∈ R
2
+

}
,

where x′ = x + p − π

32
, x′′ = x + p +

π

32
. Suppose

F (p, x, y) =




co
{(

0
0

)
, (1 + (y − x))

(
cos(x + p)
sin(x + p)

)}
, if x ≤ y,{

p

(− cos(x + p)
− sin(x + p)

)}
, otherwise.
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Then by Theorem 3.4 and Corollary 3.2, for each p ∈ P, Φ(p) �= ∅. We also
observe that every condition of Theorem 4.4 is satisfied. Accordingly S is u.s.c. on
P. Indeed

Φ(p) =



{π

6

}
p ∈ (0, 1],[π

6
,
π

4

]
p = 0.

5. LOWER SEMICONTINUITY OF THE SOLUTION MAPPING

We next establish that the solution mappings Ω of PGQVEP and Φ of PEQVEP
are lower semicontinuous on P under suitable assumptions.

Theorem 5.1. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) Ω′(p) is nonempty for each p ∈ P;
(ii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;
(iii) for each p ∈ P K(p, ·) is affine on X;
(iv) K is u.s.c. on P × X;
(v) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;
(vi) the set {(p, x, y) ∈ P × X × X : F (p, x, y) �⊂ −cl C(p, x) = ∅} is open;
(vii) F is C-weakly quasiconcave on P × X × X .

Then Ω is l.s.c. on P. Moreover, Φ is l.s.c. on P if conditions (vi) and (vii) are
replaced by the following (viii) and (ix)

(viii) the set {(p, x, y) ∈ P × X : F (p, x, y)∩ (−cl C(p, x)) �= ∅} is open;
(ix) F is C-weakly properly quasiconcave on P × X × X .

Proof. Suppose p ∈ P. Let V be an open set of X with V ∩ Ω(p) �= ∅ and
x1 ∈ V∩Ω(p). If x1 /∈ Ω′(p), we can choose x2 ∈ Ω′(p). Let xµ = µx1+(1−µ)x2,
µ ∈ (0, 1). Then by condition (vii) for each µ ∈ (0, 1), we have

F (p, xµ, y) �⊂ −cl C(p, xµ), for all y ∈ µK(p, x1) + (1− µ)K(p, x2).

Since K(p, ·) is convex for each p ∈ P, xµ ∈ K(p, xµ). Also since K(p, ·) is
concave for each p ∈ P,

K(p, xµ) ⊂ µK(p, x1) + (1− µ)K(p, x2).
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Hence we have xµ ∈ Ω′(p) for all µ ∈ (0, 1). Thus there exists x ∈ V ∩ Ω′(p) ∩
co {x1, x2}. If x1 ∈ Ω′(p), then let x = x1.

By condition (vi) for each y ∈ K(p, x) there exist corredponding neighborhoods
Py of p, Uy of u, and Vy of y such that

(10) F (q, u, v) �⊂ −cl C(q, u), for all q ∈ Py, u ∈ Uy and v ∈ Vy.

Since K(p, x) is compact, there exist {y1, . . . , yn} ⊂ K(p, x) such that
⋃n

i=1 Vyi ⊃
K(p, x). Therefore we have

F (q, u, v) �⊂ −cl C(q, u), for all q ∈
n⋂

i=1

Pyi , u ∈
n⋂

i=1

Uyi and v ∈
n⋃

i=1

Vyi .

By condition (iv) there exist neighborhoods P of p and U of x such that

K(q, u) ⊂
n⋃

i=1

Vyi , for all q ∈ P and u ∈ U.

Because of condition (v) there exists a neighborhood P′ of p such that for each
q ∈ P ′ we have

u′ ∈ K(q, u′), for some u′ ∈
n⋂

i=1

Uyi ∩ V .

Let P =
⋂n

i=1 Pyi ∩ P ∩ P ′. For each p′ ∈ P , there exists corresponding x′ ∈⋂n
i=1 Uyi ∩ V such that x′ ∈ K(p′, x′) and

(11) F (p′, x′, y′) /∈ −cl C(p′, x′), for all y′ ∈ K(p′, x′).

Therefore for each p′ ∈ P , Ω(p′) ∩ V �= ∅. Thus Ω is l.s.c. at p. Since p ∈ P is
arbitrary, Ω is l.s.c. on P.

Let Ω, (vi) and (vii) be replaced by Φ, (viii) and (ix), respectively. Let (10) and
(11) be replaced by the following (12) and (13), respectively in the above proof:

(12) F (p, x, y)∩ (−clC(p, x)) �= ∅
and

(13) F (p′, x′, y′) ∩ (−clC(p′, x′)) �= ∅, for all (p′, x′, y′) ∈ U .

Then we can obtain lower semicontinuity of Φ on P.

Next we investigate condition (vi) and (viii).

Proposition 5.1. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:
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(i) F is C(p, x)-l.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;
(ii) C is u.s.c. on P × X .

Then the set U = {(p, x, y) ∈ P × X × X : F (p, x, y) �⊂ −cl C(p, x)} is open.

Proof. Let (p, x, y) ∈ U, i.e., F (p, x, y) �⊂ −clC(p, x). Then there exists
z ∈ F (p, x, y) such that z /∈ −clC(p, x) and F (p, x, y) ∩ (z + intC(p, x)) �= ∅.
Therefore by condition (i), there exists a neighborhood U of (p, x, y) such that

F (q, u, v)∩ (z + intC(p, x)) �= ∅, for all (q, u, v) ∈ U .

By condition (ii) and Proposition 2.1, there exists a neighborhood V of (p, x) such
that (

z + clC(p, x)
)∩( − clC(q, u)

)
= ∅, for all (q, u) ∈ V .

Accordingly for each (q, u, v) ∈ U ∩ (V × X
)
we have

F (q, u, v) �⊂ −cl C(q, u).

Hence U ∩ (V × X
)⊂ U. Since (p, x, y) ∈ U is arbitrary, U is open.

Proposition 5.2. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) F is C(p, x)-u.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;
(ii) C is u.s.c. on P × X .

Then the set U′ = {(p, x, y) ∈ P × X × X : F (p, x, y) ∩ (−cl C(p, x)) = ∅} is
open.

Proof. Let (p, x, y) ∈ U′, i.e., F (p, x, y) ∩ (−clC(p, x)) = ∅. Therefore by
condition (i), there exists a neighborhood U of (p, x, y) such that

F (q, u, v)∩ (−clC(p, x)) = ∅, for all (q, u, v) ∈ U .

By condition (ii) and Proposition 2.1, there exists a neighborhood V of (p, x) such
that (

z + clC(p, x)
)∩( − clC(q, u)

)
= ∅, for all (q, u) ∈ V .

Accordingly for each (q, u, v) ∈ U ∩ (V × X
)
we have

F (q, u, v)∩ (−clC(q, u)) = ∅.
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Hence U ∩ (V × X
)⊂ U′. Since (p, x, y) ∈ U′ is arbitrary, U′ is open.

Proposition 5.3. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P×X×X→2Z \ {∅} and that D : P×X → 2Z is a intersectional mapping of
C with solid convex cone values. Also we assume that the following conditions:

(i) F is D(p, x)-l.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;

(ii) C has closed graph.

Then the set U = {(p, x, y) ∈ P × X × X : F (p, x, y) �⊂ −cl C(p, x)} is open.

Proof. Let (p, x, y) ∈ U. Then there exists z ∈ F (p, x, y) such that

z /∈ −cl C(p, x).

Let d ∈ (−cl C(p, x)
)c∩(z − intD(p, x)

)
. By condition (i), there exists a neigh-

borhood U of (p, x, y) such that

F (q, u, v)∩ (d + intD(p, x)) �= ∅, for all (q, u, v) ∈ U .

Since C has closed graph and D is an intersectional mapping of C, there exists a
neighborhood V of (p, x) such that

(
d + cl D(p, x)

)∩(−cl C(q, u)
)
= ∅, for all (q, u) ∈ V .

Accordingly for each (q, u, v) ∈ U ∩ (V × X
)
we have

F (q, u, v) /∈ −cl C(q, u), for all (q, u, v) ∈ U ∩ (V × X
)
.

Hence U ∩ (V × X
)⊂ U. Since (p, x, y) ∈ U is arbitrary, U is open.

Proposition 5.4. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P×X ×X → 2Z \ {∅} and that D : P×X→2Z is a intersectional mapping of
C with solid convex cone values. Also we assume that the following conditions:

(i) F is D(p, x)-u.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;

(ii) F (p, x, y) is D(p, x)-comapct for each p ∈ P, x ∈ X and y ∈ X;

(iii) C has closed graph.
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Then the set U′ = {(p, x, y) ∈ P × X × X : F (p, x, y) ∩ (−cl C(p, x)) = ∅} is
open.

Proof. Let (p, x, y) ∈ U, i.e., F (p, x, y) ∩ (−clC(p, x)) = ∅ and let d ∈
intD(p, x). Then for each z ∈ F (p, x, y) there exists corresponding positive num-
ber tz > 0 such that

z − tzd /∈ −cl C(p, x).

Note that
⋃

z∈F (p,x,y) z − tzd + intD(p, x) ⊃ F (p, x, y). By condition (ii), there
exists z1, . . . , zn ∈ F (p, x, y) such that

n⋃
i=1

zi − tzid + intD(p, x) ⊃ F (p, x, y).

By condition (i), there exists a neighborhood U of (p, x, y) such that

F (q, u, v) ⊂
n⋃

i=1

zi − tzid + intD(p, x), for all (q, u, v) ∈ U .

Since D is an intersectional mapping of C and C has closed graph, there exists a
neighborhood V of (p, x) such that(

n⋃
i=1

zi − tzid + intD(p, x)

)
∩ (−cl C(q, u)) = ∅, for all (q, u) ∈ V .

Accordingly for each (q, u, v) ∈ U ∩ (V × X
)
we have

F (q, u, v)∩ (−clC(q, u)) = ∅, for all (q, u, v) ∈ U ∩ (V × X
)
.

Hence U ∩ (V × X
)⊂ U′. Since (p, x, y) ∈ U′ is arbitrary, U′ is open.

Theorem 5.2. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) Ω′(p) is nonempty for each p ∈ P;
(ii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;
(iii) for each p ∈ P K(p, ·) is affine on X;
(iv) K is u.s.c. on P × X;
(v) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;
(vi) F is C(p, x)-l.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;
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(vii) C is u.s.c. on P × X;
(viii) F is C-weakly quasiconcave on P × X × X .

Then Ω is l.s.c. on P.

Proof. The result follows from Theorem 5.1 and Proposition 5.1.

Theorem 5.3. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) Ω′(p) is nonempty for each p ∈ P;
(ii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;
(iii) for each p ∈ P K(p, ·) is affine on X;
(iv) K is u.s.c. on P × X;
(v) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;
(vi) F is C(p, x)-u.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;
(vii) C is u.s.c. on P × X;
(viii) F is C-weakly properly quasiconcave on P × X × X .

Then Φ is l.s.c. on P.

Proof. The result follows from Theorem 5.1 and Proposition 5.2.

Theorem 5.4. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P×X ×X → 2Z \ {∅} and that D : P×X→2Z is a intersectional mapping of
C with solid convex cone values. Also we assume that the following conditions:

(i) Ω′(p) is nonempty for each p ∈ P;
(ii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;
(iii) for each p ∈ P K(p, ·) is affine on X;
(iv) K is u.s.c. on P × X;
(v) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;
(vi) F is D(p, x)-l.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;
(vii) C has closed graph;
(viii) F is C-weakly quasiconcave on P × X × X .
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Then Ω is l.s.c. on P.

Proof. The result follows from Theorem 5.1 and Proposition 5.3.

Example 5. Let P, X, X, K, Z, C and D be the same as those in Exmaple 4.
Suppose

F ′(p, x, y) = (x − π

4
)
(

sin(x + p)
− cos(x + p)

)
+ (y − x)

(
cos(x + p)
sin(x + p)

)

and

F (p, x, y) =




co
{

M(p), F ′(p, x, y)− p(p− 2)
(

cos(x + p)
sin(x + p)

)}
if p < 1,

{F ′(p, x, y)} otherwise,

where
M(p) =

{
p

(
cosα

sin α

)
−
(

1
1

)
: α ∈ [0, 2π)

}
.

Then by Corollary 3.3, we have

Ω′(p) = {x ∈ K(p, x) : F (p, x, y) �⊂ −clC(p, x), for all y ∈ K(p, x)} �= ∅
for each p ∈ P. Hence by Theorem , Ω is l.s.c. on P. Indeed,

Ω(p) =



{
x ∈ X :

π

6
≤ x ≤ π

6
+

2
3
p(2 − p)

}
, if p ∈ [0, 1),{

x ∈ X : x =
π

6
}
, otherwise.

Theorem 5.5. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P×X ×X → 2Z \ {∅} and that D : P×X→2Z is a intersectional mapping of
C with solid convex cone values. Also we assume that the following conditions:

(i) Φ′(p) is nonempty for each p ∈ P;
(ii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;
(iii) for each p ∈ P K(p, ·) is affine on X;
(iv) K is u.s.c. on P × X;
(v) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;
(vi) F is D(p, x)-u.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;
(vii) F (p, x, y) is D(p, x)-compact for each p ∈ P, x ∈ X and y ∈ X;
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(viii) C has closed graph;
(ix) F is C-weakly properly quasiconcave on P × X × X .

Then Φ is l.s.c. on P.

Proof. The result follows from Theorem 5.1 and Proposition 5.4.

Example 6. Let P, X, X, K, Z, C, D and F ′ be the same as those in
Exmaple 5. Suppose

M(p) =
{(

p

p

)}
.

Then by Corollary 3.3 and Theorem 5.4, Φ is l.s.c. on P. Indeed,

Φ(p) =



{
x ∈ X :

π

6
≤ x ≤ π

6
+

2
3
p(2 − p)

}
, if p ∈ [0, 1),{

x ∈ X : x =
π

6
}
, otherwise.

Theorem 5.6. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) Ω(p) has at least two elements for each p ∈ P;
(ii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;
(iii) for each p ∈ P, K(p, ·) is affine on X;
(iv) K is u.s.c. on P × X;
(v) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;
(vi) the set {(p, x, y) ∈ P × X × X : F (p, x, y) �⊂ −cl C(p, x)} is open;
(vii) F is strictly C-weakly quasiconcave on P × X × X .

Then Ω is l.s.c. on P.

Proof. Suppose p ∈ P. Let V be an open set of X with V ∩ Ω(p) �= ∅
and x1 ∈ V ∩ Ω(p). Let x2 ∈ Ω(p) \ {x1}. By condition (vii), we can choose
x ∈ V ∩ Ω′(p). Therefore by Theorem 5.1, Then Ω is l.s.c. on P.

Theorem 5.7. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:
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(i) Φ(p) has at least two elements for each p ∈ P;
(ii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;
(iii) for each p ∈ P, K(p, ·) is affine on X;
(iv) K is u.s.c. on P × X;
(v) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;
(vi) the set {(p, x, y) ∈ P × X × X : F (p, x, y) ∩ (−clC(p, x)) = ∅} is open;
(vii) F is strictly C-weakly properly quasiconcave on P × X × X .

Then Φ is l.s.c. on P.

Proof. Suppose p ∈ P. Let V be an open set of X with V ∩ Φ(p) �= ∅
and x1 ∈ V ∩ Φ(p). Let x2 ∈ Φ(p) \ {x1}. By condition (vii), we can choose
x ∈ V ∩ Φ′(p). Therefore by Theorem 5.1, Then Φ is l.s.c. on P.

Theorem 5.8. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) Ω(p) has at least two elements for each p ∈ P;
(ii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;
(iii) for each p ∈ P, K(p, ·) is affine on X;
(iv) K is u.s.c. on P × X;
(v) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;
(vi) F is C(p, x)-l.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;
(vii) C is u.s.c. on P × X .
(viii) F is strictly C-weakly quasiconcave on P × X × X .

Then Ω is l.s.c. on P.

Proof. The result follows from Theorem 5.6 and Proposition 5.1.

Theorem 5.9. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) Φ(p) has at least two elements for each p ∈ P;
(ii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;
(iii) for each p ∈ P, K(p, ·) is affine on X;
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(iv) K is u.s.c. on P × X;
(v) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;
(vi) F is C(p, x)-u.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;
(vii) F (p, x, y) is D(p, x)-compact for each p ∈ P, x ∈ X and y ∈ X;
(viii) C is u.s.c. on P × X .
(ix) F is strictly C-weakly properly quasiconcave on P × X × X .

Then Φ is l.s.c. on P.

Proof. The result follows from Theorem 5.7 and Proposition 5.2.

Theorem 5.10. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P×X ×X → 2Z \ {∅} and that D : P×X→2Z is a intersectional mapping of
C with solid convex cone values. Also we assume that the following conditions:

(i) Ω(p) has at least two elements for each p ∈ P;
(ii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;
(iii) for each p ∈ P K(p, ·) is affine on X;
(iv) K is u.s.c. on P × X;
(v) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;
(vi) F is D(p, x)-l.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;
(vii) C has closed graph.
(viii) F is C-weakly quasiconcave on P × X × X .

Then Ω is l.s.c. on P.

Proof. The result follows from Theorem 5.6 and Proposition 5.3.

Theorem 5.11. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P×X ×X → 2Z \ {∅} and that D : P×X→2Z is a intersectional mapping of
C with solid convex cone values. Also we assume that the following conditions:

(i) Φ(p) has at least two elements for each p ∈ P;
(ii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;
(iii) for each p ∈ P K(p, ·) is affine on X;
(iv) K is u.s.c. on P × X;
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(v) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;

(vi) F is D(p, x)-u.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;

(vii) F (p, x, y) is D(p, x)-compact for each p ∈ P, x ∈ X and y ∈ X;

(viii) C has closed graph.

(ix) F is C-weakly properly quasiconcave on P × X × X .

Then Ω is l.s.c. on P.

Proof. The result follows from Theorem 5.7 and Proposition 5.4.

6. CONTINUITY OF THE SOLUTION MAPPING

By combining results established in Sections 4 and 5, we have the following
results concering continuity of the solution mappings Ω and Φ, respectively.

Theorem 6.1. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) Ω′(p) is nonempty for each p ∈ P;

(ii) X is compact;

(iii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;

(iv) for each p ∈ P K(p, ·) is affine on X;

(v) K is u.s.c. on P × X;

(vi) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;

(vii) F is C-weakly quasiconcave on P × X × X;

(viii) the set {(p, x, y) ∈ P × X × X : F (p, x, y) �⊂ −cl C(p, x) = ∅} is open;
(ix) the set {(p, x, y) ∈ P × X : F (p, x, y) ⊂ −intC(p, x)} is open.

Then Ω is continuous on P. Moreover, Φ is continuous on P if conditions (vii),
(viii) and (ix) are replaced by the following (x), (xi) and (xii)

(x) F is C-weakly properly quasiconcave on P × X × X;

(xi) the set {(p, x, y) ∈ P × X : F (p, x, y)∩ (−cl C(p, x)) �= ∅} is open;
(xii) the set {(p, x, y) ∈ P × X : F (p, x, y)∩ (−intC(p, x)) �= ∅} is open.
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Proof. The result follows from Theorems 4.1 and 5.1.

Theorem 6.2. Let X and P be two nonempty subsets of two real topological
vector spaces, respectively, Z a real topological vector space and C : P×X → 2 Z

with proper solid convex cone values. Let K : P × X → 2X \ {∅}. Suppose that
F : P × X × X → 2Z \ {∅}. Also we assume that the following conditions:

(i) Ω(p) is nonempty for each p ∈ P;
(ii) X is compact;
(iii) K(p, x) is convex and compact for each p ∈ P and x ∈ X;
(iv) for each p ∈ P K(p, ·) is affine on X;
(v) K is u.s.c. on P × X;
(vi) F : P → 2X , defined by F (p) = {x ∈ X : x ∈ K(p, x)}, is l.s.c. on P;
(vii) F is strictly C-weakly quasiconcave on P × X × X;
(viii) the set {(p, x, y) ∈ P × X × X : F (p, x, y) �⊂ −cl C(p, x) = ∅} is open;
(ix) the set {(p, x, y) ∈ P × X : F (p, x, y) ⊂ −intC(p, x)} is open.
Then Ω is continuous on P. Moreover, Φ is continuous on P if conditions (vii),
(viii) and (ix) are replaced by the following (x), (xi) and (xii)

(x) F is strictly C-weakly properly quasiconcave on P × X × X;
(xi) the set {(p, x, y) ∈ P × X : F (p, x, y)∩ (−clC(p, x)) �= ∅} is open;
(xii) the set {(p, x, y) ∈ P × X : F (p, x, y)∩ (−intC(p, x)) �= ∅} is open.

Proof. The result follows from Theorems 4.1, 5.6 and 5.7.

The following result is a consequence of Theorems 6.1, 6.2 and Propositions
3.1, 5.3 and 5.4.

Corollary 6.1. In Theorems 6.1 and 6.2,

(i) condition (viii) can be replaced by the following conditions:
(a) F is D(p, x)-l.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;
(b) C has closed graph;

(ii) condition (xi) can be replaced by the following conditions:

(a) F is D(p, x)-u.s.c. at (p, x, y) for every p ∈ P, x ∈ X and y ∈ X;
(b) F (p, x, y) is D(p, x)-comapct for each p ∈ P, x ∈ X and y ∈ X;
(c) C has closed graph;

(iii) condition(ix) can be replaced by the following conditions:
(a) W : P×X → 2Z defined by W (p, x) = Z \ (−int C(p, x)

)
has closed

graph;



Sensitivity Analysis of PGQVEP 2267

(b) F is
(−D

)
-u.s.c on P × X × X;

(c) F (p, x, y) is
(−D(p, x)

)
-compact for each p ∈ P, x ∈ X and y ∈ X;

(iv) condition (xii) can be replaced by the following conditions:
(a) W : P ×X → 2Z defined by W (p, x) = Z \ (−intC(p, x)

)
has closed

graph;
(b) F is

(−D
)
-l.s.c on P × X × X .

Example 7. Let P, X, X, K, Z, C, D and F ′ be the same as those in
Exmaple 5. Suppose

G(p, x, y) =
{(

(x + p) cos(x + p)
(y + p) sin(y + p)

)}
.

and
F (p, x, y) = co {F ′(p, x, y), G(p, x, y)}.

Then by Corollaries 3.2 and 6.1, Ω is continuous on P. Indeed,

Ω(p) =
{
x ∈ X :

π

6
≤ x ≤ π

6
+

2
3
p(2 − p)

}
.

Example 8. Let P, X, X, K, Z, C, D and G be the same as those in
Exmaple 7. Suppose

F (p, x, y) = co
{

F ′(p, x, y),−(p2− 4)
(

cos(x + p)
sin(x + p)

)}
.

Then by Corollaries 3.2 and 6.1, Ω is continuous on P. Indeed,

Φ(p) =
{
x ∈ X :

π

6
≤ x ≤ π

6
+

2
3
p(2 − p)

}
.
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