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ESTIMATION OF DELAY ON SYNCHRONIZATION STABILITY
IN A CLASS OF COMPLEX SYSTEMS WITH COUPLING DELAYS

Qingyun Wang, Zhisheng Duan, Zhaosheng Feng* and Guanrong Chen

Abstract. Nowadays one of the most concerned topics in the field of complex
networks is to find how the synchronizability depends on various parameters
of networks. Complex networks with coupling delays have gained increasing
attention in various fields of science and engineering in the past decade. One
interesting problem is to investigate the effect of delay on dynamical behaviors
and to determine the range of delay, in which, the synchronization stability can
be achieved. In this paper, based on the qualitative theory of linear time-delay
systems, the synchronization stability in complex dynamical networks with
coupling delays is considered and some stability criteria of synchronization
state are obtained. It is shown that by virtue of these obtained criteria, the range
of delay on synchronization stability of complex networks with coupling delays
can be analytically estimated. Finally, a couple of examples are illustrated
which agree well with our theoretical results.

1. INTRODUCTION

It is noted that an increasing interest has been focused on complex networks
with different topologies in the past decade [1-6]. A complex network is a large set
of interconnected nodes, in which a node is a fundamental unit with specific con-
tents. There are various networks, which we often meet or hear of in the real world.
Typical examples of complex networks include the Internet, the World Wide Web,
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electrical power grids, food webs, cellular and metabolic networks, etc. From the
human brain to the Internet, and to the human society, complex networks are promi-
nent candidates to describe sophisticated collaborative dynamics in many sciences
[1, 7]. Dynamics of complex networks have been extensively investigated, with
a emphasis on the interplay between complexity in the overall topology and local
dynamical properties of the coupled nodes. As a particular kind of dynamics, syn-
chronization in complex networks has been an important subject. The dependence
of emergent collective phenomena on the coupling strength and on the topology
was unveiled for homogeneous and heterogeneous complex networks in [8]. Syn-
chronization in complex networks of Kuramoto phase oscillators has been studied.
The results revealed that the route towards full synchronization strongly depends on
whether one deals with homogeneous or heterogenous topologies [9]. This study
has extended existing results on paths towards synchronization in complex networks
[8, 9]. Based on a stochastic optimization technique, it was found that the value of
degree mixing for providing optimal conditions of synchronization depends on the
weighted coupling scheme [10]. Motivated by the abundance of directed synaptic
couplings in a real biological neuronal network, the synchronization behavior of the
Hodgkin-Huxley model in a directed network tells us that directedness of complex
networks usually plays an important role in emerging dynamical behaviors. Synchro-
nization in weighted complex networks shows that the synchronizability of random
networks with a large minimum degree is determined by two leading parameters:
the mean degree and the heterogeneity of the distribution of nodes intensity [12].

It is well known that time-delayed systems are ubiquitous in nature, technol-
ogy, and society because of finite signal transmission times, switching speeds, and
memory effects [13]. Recently, synchronization of complex networks with delayed
coupling has received considerable attention. For example, Synchronization in os-
cillator networks with small-world interactions and coupling delays was investigated
and a stability criterion for the network synchronized state was derived [14]. Results
showed that the stability of the synchronized state is independent of the network
topology. Continuous complex dynamical networks with coupling delays in the
whole networks were studied in [15] and a stability theorem of synchronization
is established by constructing a Lyapunov–Krasovskii functional. In terms of the
linear matrix inequality and the stability theory of delay systems, some criteria of
synchronization stability in symmetric networks with coupling delays were obtained
for both delay-independent and delay-dependent cases [16-18]. However, by means
of existing criteria of synchronization, in many cases it is still very difficult to esti-
mate the range of delay analytically, in which synchronization of complex networks
is realized.

In the present paper, based on the theory of asymptotic stability of linear time-
delay systems, we are trying to explore some novel criteria of synchronization which
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enable us to estimate the range of delay effectively. The rest of the paper is organized
as follows. In Section 2, stability criteria of synchronization for complex dynamical
networks with coupling delays are presented. A couple of numerical examples are
illustrated in Section 3 and a brief conclusion is given in Section 4.

2. CRITERIA OF SYNCHRONIZATION STABILITY

In this section we consider a complex dynamical network consisting of N identi-
cally coupled nodes with each node being an n-dimensional dynamical system, and
introduce the coupling delays in this network. The resultant dynamical system can
be described as:

(1) ẋi = f(xi) + c

n∑
j=1

CijΓ(xj(t− τ)), i = 1, 2, . . . , n,

where f = (f1, f2, . . . , fn): R
n → R

n is a continuously differentiable vector-
valued function, which determines the dynamical behavior of nodes. xi = (xi1, xi2,
. . . , xin)T ∈ R

n denotes the state variables of node i and N is the number of net-
work nodes.. The constant c represents the coupling strength, Γ = diag{r1, r2, . . . ,
rn} ∈ R

n×n represents a constant 0–1 matrix linking the coupled variables. C =
(Cij)N×N represents the coupling configuration between nodes of the whole net-
work (it is often assumed that there is at most one connection between node i and
a different node j, and that there are no isolated clusters.), whose entries Cij are
defined as follows: if there is a connection between node i and node j (j �= i), then
Cij = Cji = 1; otherwise, Cij = Cji = 0, and the diagonal elements of matrix C
are defined by

(2) Cii = −
n∑

j=1, �=i

Cij = −
n∑

j=1, �=i

Cji, (i = 1, 2, . . . , n).

Thus, we have the following technical lemmas immediately

Lemma 1. ([17]). If the matrix C satisfies the above condition (2), then we
have

(1) 0 is an eigenvalue of C with multiplicity 1, associated with the eigenvector
(1 1, . . ., 1);

(2) all the other eigenvalues µi of C are less than 0 and µ i (i = 1, 2, . . . , n)
can be ordered as: 0 = µ1 > µ2 ≥ µ3 ≥ · · · ≥ µn.

(3) there exists a unitary matrix, Φ = (φ1, φ2, . . . , φN) such thatCTφk = µkφk,
where µk (k = 1, 2, . . . , n) are the eigenvalues of C.
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The synchronization state of the complex network (1) is defined as:

(3) x1(t) −→ x2(t) −→ . . . −→ xn(t) = s(t), as t→ +∞,

where synchronization state s(t) of the network (1) satisfies the differential system:

ṡ(t) = f(s(t)).

This paper mainly aims to this case when the synchronous state is a stable equi-
librium point. Hence, synchronization manifold can be set as s(t) = e, where e is
the stable equilibrium state. Clearly, the stability of synchronized states (3) of the
network (1) is determined by the coupling strength c, the inner-coupling matrix C,
the outer-coupling matrix Γ, and the time-delay constant τ .

Lemma 2. Consider the delayed dynamical network (1), whose synchronization
manifold is a stable equilibrium state s(t) = e. If the other N − 1 pieces of n-
dimensional linear delayed differential equations are asymptotically stable about
the zero solutions:

(4) ẇ(t) = J(e)w(t) + cµiΓw(t− τ), i = 2, . . . , n,

where J(e) = Df(e) and Df(e) is the Jacobian of f(x(t)) at e, then the synchro-
nized states (3) are asymptotically stable.

Proof of Lemma 2. Set

xi = e+ ηi(t), i = 2, . . . , n,

then we have

(5)

η̇i(t) =


f(e+ ηi(t)) + c

n∑
j=1

CijΓ(e + ηj(t− τ))




−

f(e) + c

n∑
j=1

CijΓe


 .

Since f is continuously differentiable, it is easy to see that the origin of nonlinear
system (5) is an asymptotically stable equilibrium point if it is an asymptotically
stable equilibrium point of the linear system:

η̇i(t) = J(e)ηi(t) + c

n∑
j=1

CijΓηj(t− τ),

= J(e)ηi(t) + cΓη(t− τ)(Ci1, Ci2, . . . , Cin)T ,
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where J(e) = Df(e) and Df(e) is the Jacobian of f(x(t)) at e.
Letting η(t) = (η1(t), η2(t), . . . , ηn(t)) ∈ R

n×n, we have

η̇(t) = J(e)η(t) + cΓη(t− τ)CT .

According to Lemma 1, there exists a nonsingular matrix, Φ = (φ1, φ2, . . . , φn)
such thatCT Φ = ΛΦwithΛ = diag(µ1, µ2, . . . , µn), where µk (k = 1, 2, . . . , n)
are the eigenvalues of C. Using the nonsingular transform η(t)Φ = w(t) =
(v1(t), . . . , vn(t)) ∈ R

n×n, we have

ẇ(t) = J(e)w(t) + cΓw(t− τ)Λ,

that is,

(6) v̇i(t) = J(e)vi(t) + cµiΓvi(t− τ), i = 1, 2, . . . , n.

Hence, through this way we convert the stability problem of the synchronized states
(3) into the stability problem of the N pieces of n-dimensional linear delayed dif-
ferential equations (6). Since µ1 = 0 corresponds to the synchronizing state e,
the synchronized states (3) are asymptotically stable when the N − 1 pieces of the
n-dimensional linear delayed differential system (4) are asymptotically stable about
the zero solution. Therefore, the proof is completed.

In what follows, some stability criteria of system (4) are formulated. To do
these, we firstly consider a linear time–delay dynamical system:

(7) ẋ = Ax+ Bx(t− τ)

where x ∈ R
n, A, B ∈ R

n×n and τ > 0 is the time delay. In order to present our
results in a straightforward manner, here we introduce several notations

b1 = max
θ∈[0,2π]

1
2
λmax{As +Bs cos(θ) + jBα sin(θ)},

l1 = max{1
2
λmax(As), b1},

b2 = max
θ∈[0,2π]

1
2
λmax{j(Aα +Bα cos(θ)) −Bs sin(θ)},

l2 = max{1
2
λmax(jAα), b2},

where

Aα = AT − A, As = AT + A,

Bα = BT − B, Bs = BT + B.
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The following two fundamental results which give the conditions for the asymp-
totic stability of system (7) are presented in [19]:

Lemma 3. If l1 < 0 holds, then the zero solution of system (7) is asymptotically
stable.

Assume that system (7) is asymptotically stable when τ = 0. The following
lemma provides us a way to estimate how large the time delay τ can be such that
system (7) keeps its asymptotic stability.

Lemma 4. Let ψ(θ) = det[(A+Be−jθ)
⊗
In+In

⊗
(A+Bejθ)]. If there is no

positive real number θ in [0, π] such that ψ(θ) = 0, then system (7) is asymptotically
stable independent of delay. Otherwise, system (7) keeps its asymptotic stability if

τ <




θ

l2
, if l2 �= 0

∞, if l2 = 0

where θ is the least positive real number in [0, π] such that ψ(θ) = 0.

The above lemmas sufficiently enable us to formulate stability criteria of syn-
chronization for complex networks with coupling delays.

Theorem 1. (Delay-Independent Criterion). If the matrix Js(e) is stable, then
when max

θ∈[0,2π]
λmax(Js(e) + 2cµiΓ cos(θ)) < 0 holds for all µi, the synchronization

state (3) is asymptotically stable for any delay τ , where J s(e) = JT (e) + J(e).

Proof of Theorem 1. For the linear time-delay system (4), sinceBα = (cµiΓ)T−
cµiΓ = 0, we have

b1 = max
θ∈[0,2π]

1
2
λmax{As +Bs cos(θ) + jBα sin(θ)},

= max
θ∈[0,2π]

λmax(Js(e) + 2cµiΓ cos(θ)).

Moreover, since Js(e) is stable, it is inferred that λmax(Js(e)) < 0. Hence,
l1 = max{1

2λmax(Js(e)), b1} = max
θ∈[0,2π]

λmax(Js(e) + 2cµiΓ cos(θ)). By virtue

of lemma 3, when l1 = max
θ∈[0,2π]

λmax(Js(e) + 2cµiΓ cos(θ)) < 0 for all µi, the

synchronization state (3) is asymptotically stable for any delay.

In particular, when Γ = In, the following remark can be easily seen:
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Remark 1. If the matrix Js(e) is stable and −2cµN +λmax(Js(e)) < 0 holds,
then the synchronization state (3) is asymptotically stale for any delay.

Theorem 1. (Criterion of Estimating Delay). Let ψ(θ) = det[(J(e)+cµiΓe−jθ)⊗
In+In

⊗
(J(e)+cµiΓejθ)]. If there is no positive real number θ in [0, π] for any

µi such that ψ(θ) = 0, then the synchronization state (3) is asymptotically stable
independent of delay. Otherwise, the synchronization state (3) keeps its asymptotic
stability if

τ <




θ

l2
, if l2 �= 0,

∞, if l2 = 0,

where θ is the least positive real number in [0, π] such that ψ(θ) = 0, and

b2 = max
θ∈[0,2π]

1
2
λmax{j(JT (e) − J(e)) − 2cµiΓ sin(θ)},

l2 = max{1
2
λmax(j(JT (e)− J(e))), b2}.

Theorem 2 can be proved immediately by means of Lemmas 2 and 4. Apparently,
the obtained stability criterion presents a way by which the delay can be estimated
for the synchronization stability of complex networks. It is certainly important for
testing synchronization of complex networks with the coupling delays since the
range of delay on the synchronization stability can be analytically derived.

3. EXAMPLES

Example 1. The synchronization criteria presented in the preceding section
can be applied to networks with different topologies and different sizes. To better
understand the criteria, we consider a network model of five nodes with numerical
simulations, in which each node is a simple three-dimensional stable linear system
as described in [15]:

ẋ1 = −x1

ẋ2 = −2x2

ẋ3 = −3x3

whose zero solution is asymptotically stable since its Jacobian matrix is

J(e) =


 −1 0 0

0 −2 0
0 0 −3


 .
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Assume that the inner-coupling matrix is Γ = diag{1, 1, 1}, and the outer-
coupling matrix is

C =




−2 1 0 0 1
1 −3 1 1 0
0 1 −2 1 0
0 1 1 −3 1
1 0 0 1 −2


 ,

with five eigenvalues 0, -1.382, -2.382, -3.168 and -4.168.

Fig. 1. (a) Time series of the first variable x1i of node i for the time delay τ = 2. (b)
Time series of the first variable x1i of node i for the time delay τ = 20. Here,
the coupling strength is c = 0.2.

Since Js(e) is stable, by Remark 1, if −2cµN + λmax(Js(e)) < 0, then it is
inferred that for any delay, synchronization of the complex network can be achieved.
After a simple calculation, we can derive that when c < 1/4.168 ≈ 0.2399, syn-
chronization of the complex network can be achieved for any delay. For clearer
visions, we take the coupling strength c = 0.2 < 0.2399 and the time delay τ = 2,
20, respectively. Numerical simulations in Fig. 1 show that networks can eventu-
ally achieve synchronization state at s(t) = 0 irrespectively of the size of the time
delay. This result is in agreement with that described in [16, 17], which is numer-
ically tested by the linear matrix inequalities and the matrix measure. Hence, our
approach provides a simple and effective alternative way to test the synchronization
of complex networks with coupling delays.

However, if l1 ≥ 0 for a certain µi, we can resort to Theorem 2 to estimate the
range of the time delay τ for the fixed value c, where the stability of synchronization
can be achieved. According to Theorem 2, ψ(θ) is given by
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Fig. 2. (a) Variations of ψ(θ) with respect to θ for the fixed µN when the coupling
strength is chosen as c = 0.5 and 0.8, respectively. (b) Synchronization and
non-synchronization region in the plane (c, τ).

Fig. 3. (a) Time series of the first variable x1i of node i for the time delay τ = 0.95.
(b) Time series of the first variable x1i of node i for the time delay τ = 1. Here,
the coupling strength is c = 0.5.

ψ(θ) = det[(J(e) + cµiΓe−jθ)
⊗

I3 + I3
⊗

(J(e) + cµiΓejθ)],

= (−2 + 2cµi cos(θ))(−3 + 2cµi cos(θ))2(−4 + 2cµi cos(θ))3

(−5 + 2cµi cos(θ))2(−6 + 2cµi cos(θ)),

b2 = max
θ∈[0,2π]

1
2
λmax{2cµi sin(θ)} = −cµi,

l2 = max{1
2
λmax(j(JT (e)− J(e))), b2},

= −cµi.

From the above calculations, one can see that when (−2 + 2cµi cos(θ)) > 0,
there exists at least one θ such that ψ(θ) = 0. For example, if we take c = 0.5, we
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have θ = 2.0808. Variations of ψ(θ) with the respect to θ are presented in Fig. 2.
At the same time, a simple calculation gives l2 = 2.0840. By virtue of Theorem 2,
we know that system (1) keeps its synchronization stability if τ < θ

l2
= 0.9985. The

corresponding numerical simulation is illustrated in Fig. 3 (a) and (b), respectively.
It is easy to observe that when τ = 0.95 and c = 0.5, time series x1i (i=1, 2, 3,
4, 5) eventually synchronize to the stability state of the zero solution; when τ = 1
and c = 0.5, the network can not synchronize. This agrees well with the theoretical
analysis established in Section 2.

Furthermore, note that from (−2+2cµN cos(θ)) = 0, when the coupling strength
increases, θ in Theorem 2 will decrease, and then the upper boundary of τ is lowered.
The corresponding numerical results are shown in Fig. 2 (a), which exhibits the
decreasing of θ. In Fig. 2 (b) it presents variations of the upper boundary of τ
when the coupling strength increases, which also verify our theoretical analysis.

Example 2. Consider the network consisting of the third-order smooth Chua’s
circuits [20], in which each node equation is given as

(8)

ẋi1 = −kαxi1 + kαxi2 − kα(ax3
i1 + bxi1),

ẋi2 = kxi1 − kxi2 + kxi3,

ẋi3 = −kβxi2 − kγxi3.

Making a linearization for (8) at its zero equilibrium point yields

J(e) =


 −kα − kαb kα 0

k −k k
0 −kβ −kγ


 .

If we take k = 1, α = −0.1, β = −1, γ = 1, a = 1 and b = −25, then J(e) is
stable, namely, system (8) is locally stable at zero.

The inner-coupling matrix is Γ = diag{1, 1, 1}. The outer-coupling matrix is

C =




−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2


 ,

with five eigenvalues -3.6180, -3.6180, -1.3820, -1.3820 and 0.000.
Now we will estimate the delay where the synchronization stability can be
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achieved. Using Theorem 2, we have

ψ(θ) = det[(J(e) + cµiΓe−jθ)
⊗

I3 + I3
⊗

(J(e) + cµiΓejθ)]

= det[J(e)
⊗

I3 + (cµiΓe−jθ)
⊗

I3 + I3
⊗

J(e) + I3
⊗

(cµiΓejθ)]

= det[J(e)
⊗

I3 + I3
⊗

J(e) + (cµiΓejθ + cµiΓe−jθ)
⊗

I3]

= det[J(e)
⊗

I3 + I3
⊗

J(e) + 2cµi cos θΓ
⊗

I3]

= (−0.0416 + cµi cos θ)(−4.3792 + cµi cos θ)2(19.2357− 8.7584cµi cos θ
+c2µ2

i cos2 θ)(4.9004− 4.4208cµi cos θ + c2µ2
i cos2 θ)2.

If we take c = 0.1, a simple computation shows that only in the case where
−0.0416 + cµi cos θ = 0, there exists a θ ∈ [0, π] such that ψ(θ) = 0. Hence,
we can have θ = arccos(−0.0416

0.3618) = 1.6861, which corresponds to the eigenvalue
µN = −3.618. Variations of |ψ(θ)| for different eigenvalues µi are shown in Fig.
4 (a). It is clear to see that there exists a minimal value θ = 1.6861 such that
|ψ(θ)| = 0, which is in a good agreement with our theoretical analysis. From
Theorem 2, we can find values of b2 and l2 as:

b2 = max
θ∈[0,2π]

1
2
λmax{j(JT (e) − J(e)) − 2cµNΓ sin(θ)}

= max
θ∈[0,2π]

{1809
5000

sin(θ) +
11
20

} = 0.9118,

l2 = max
(

1
2
λmax(j(JT (e) − J(e))), b2

)
= max{0.5500, 0.9118} = 0.9118.

Fig. 4. (a) Variations of |ψ(θ)| with respect to θ for two different eigenvalues. (b) Time
series of the first variable x1i of node i for the time delay τ = 1.8. with the
coupling strength c = 0.1.
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Using Theorem 2, if the time delay τ < 1.6861/0.9118 = 1.8492, the stability of
synchronization state is achieved for the network consisting of the third-order smooth
Chua’s circuits. When we take τ = 1.8, Fig. 4(b) shows that synchronization is
eventually realized as the time is evolving.

4. CONCLUSION

In this work synchronization of complex dynamical networks with coupling de-
lays was investigated. Based on the stability theory of the linear time-delay system,
we have obtained new stability criteria of synchronization state in complex dynam-
ical networks with coupling delays. By means of these criteria, we can estimate the
range of delay, in which, synchronization stability can be realized. Moreover, one
advantage of these criteria is that it is easy to be verified by means of combination
of the theoretical analysis and numerical simulations. These synchronization con-
ditions are also applicable to networks with different topologies and different sizes.
As illustrations, two examples are given to support our theoretical analysis.
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