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BRIEF SURVEY OF RECENT APPLICATIONS
OF AN ORDER PRESERVING OPERATOR INEQUALITY

Takayuki Furuta
Dedicated to Professor Hang-Chin Lai with Respect and Affection

Abstract. This short paper surveys recent several applications of an order
preserving operator inequality, especially, logarithmic trace inequalities are
presented.

1. ORDER PRESERVING OPERATOR INEQUALITY AND ITS GENERALIZATION

A capital letter means a bounded linear operator on a Hilbert space without
specification.

Theorem L-H (Löwner-Heinz inequality). A ≥ B ≥ 0 ensures Aα ≥ Bα for
any α ∈ [0, 1].

Although Theorem L-H is very useful, the condition “ α ∈ [0, 1] ” is too
restrictive. In fact Theorem L-H does not always hold for α �∈ [0, 1]. The following
result was obtained from this point of view.

Theorem F. If A ≥ B ≥ 0, then for each r ≥ 0,

(i) (B
r
2 ApB

r
2 )

1
q ≥ (B

r
2 BpB

r
2 )

1
q and

(ii) (A
r
2 ApA

r
2 )

1
q ≥ (A

r
2 BpA

r
2 )

1
q hold for p ≥ 0 and q ≥ 1 with (1+r)q ≥ p+r.

In Theorem F, (i) is equivalent to (ii). The domain for p,q and r drawn in Figure
1 is the best possible one for Theorem F (Tanahashi [47]).

Theorem F yields the Löwner-Heinz inequality asserting thatA ≥ B ≥ 0 ensures
Aα ≥ Bα for any α ∈ [0, 1] when we put r = 0 in (i) or (ii) of Theorem F.
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Consider two magic boxes

f(�) = (B
r
2 �B

r
2 )

1
q andg(�) = (A

r
2 �A

r
2 )

1
q .

Theorem F can be regarded as follows. Although A ≥ B ≥ 0 does not always
ensure Ap ≥ Bp for p > 1, Theorem F asserts the following two “order preserving
operator inequalities”

f(Ap) ≥ f(Bp)andg(Ap) ≥ g(Bp)

hold whenever A ≥ B ≥ 0 under the condition on p , q and r in Figure 1.

Fig. 1.

We have been finding a lot of applications of Theorem F in several branches
according to remarkable achievements of many mathematicians who have been in-
terested in operator inequalities, we divide these branches into the following three
branches (A) operator inequalities, (B) norm inequalities, and (C) operator equations.

(A) Operator Inequalities

(A-1) Several characterizations of operators with logA ≥ logB and its applica-
tions;

(A-2) Applications to the relative operator entropy;
(A-3) Applications to Ando-Hiai log majorization and logarithmic trace inequali-

ties;
(A-4) Generalized Aluthge transformation on p-hyponormal operators;
(A-5) Several classes associated with log-hyponormal and paranormal operators;
(A-6) Operator functions implying order preserving inequalities;
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(A-7) Applications to Kantorovich type operator inequalities.

(B) Norm Inequalities

(B-1) Several generalizations of Heinz-Kato theorem;
(B-2) Generalizations of some theorems associated with norms;
(B-3) An extension of Kosaki trace inequality and parallel results.

(C) Operator Equations

(C-1) Generalizations of Pedersen-Takesaki’s theorem and related results.

In this short survey, we would like to focus ourselves to state log majorization
(A-3), Aluthge transformation (A-4) and order preserving operator functions (A-6).

Lemma A. (Lemma 1, Furuta [18]). Let X be a positive invertible operator
and Y be an invertible operator. For any real number λ,

(Y XY ∗)λ = Y X
1
2 (X

1
2 Y ∗Y X

1
2 )λ−1X

1
2 Y ∗.

Proof of Lemma A. Let Y X
1
2 = UH be the polar decomposition of Y X

1
2 ,where

U is unitary and H = |Y X
1
2 |. Then we have

(Y XY ∗)λ = (UH2U∗)λ = Y X
1
2 H−1H2λH−1X

1
2 Y ∗

= Y X
1
2 (X

1
2 Y ∗Y X

1
2 )λ−1X

1
2 Y ∗.

It easily turns out that we don’t require the invertibility of A and B in the
case λ ≥ 1 in Lemma A which is obviously seen in the proof. Lemma A is very
simple with its proof stated above, but quite a useful tool in order to treat operator
transformation in operator theory.

Proof of Lemma F. At first we prove (ii). In the case 1 ≥ p ≥ 0, the result
is obvious by Theorem L-H. We have only to consider p ≥ 1 and q = p+r

1+r since
(ii) of Theorem F for values q larger than p+r

1+r follows by Theorem L-H, that is, we
have only to prove the following

(1.1) A1+r ≥ (A
r
2 BpA

r
2 )

1+r
p+r for any p ≥ 1 and r ≥ 0.

We may assume that A and B are invertible without loss of generality. In the
case r ∈ [0, 1], A ≥ B ≥ 0 ensures Ar ≥ Br holds by Theorem L-H. Then we
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have

(A
r
2 BpA

r
2 )

1+r
p+r = A

r
2 B

p
2 (B

−p
2 A−rB

−p
2 )

p−1
p+r B

p
2 A

r
2 by Lemma A

≤ A
r
2 B

p
2 (B

−p
2 B−rB

−p
2 )

p−1
p+r B

p
2 A

r
2

= A
r
2 BA

r
2 ≤ A1+r,

where the first inequality follows by B−r ≥ A−r and Theorem L-H since p−1
p+r ∈

[0, 1] holds, and the last inequality follows by A ≥ B > 0. So we have the following
(1.2)

(1.2) A1+r ≥ (A
r
2 BpA

r
2 )

1+r
p+r for p ≥ 1 and r ∈ [0, 1].

Put A1 = A1+r and B1 = (A
r
2 BpA

r
2 )

1+r
p+r in (1.2). Repeating (1.2) again for

A1 ≥ B1 ≥ 0, r1 ∈ [0, 1] and p1 ≥ 1,

A1+r1
1 ≥ (A

r1
2

1 Bp1
1 A

r1
2

1 )
1+r1

p1+r1 .

Put p1 = p+r
1+r ≥ 1 and r1 = 1, then

(1.3) A2(1+r) ≥ (Ar+ 1
2 BpAr+ 1

2 )
2(1+r)
p+2r+1 for p ≥ 1, and r ∈ [0, 1].

Put s
2 = r + 1

2 in (1.3). Then
2(1+r)
p+2r+1 = 1+s

p+s since 2(1 + r) = 1 + s, so that (1.3)
can be rewritten as follows;

(1.4) A1+s ≥ (A
s
2 BpA

s
2 )

1+s
p+s for p ≥ 1 and s ∈ [1, 3].

Consequently (1.2) and (1.4) ensure that (1.2) holds for any r ∈ [0, 3] since r ∈ [0, 1]
and s = 2r+1 ∈ [1, 3] and repeating this process proves (1.1) for any r ≥ 0. Hence
(ii) is shown.

If A ≥ B > 0, then B−1 ≥ A−1 > 0. Then by (ii), for each r ≥ 0,
B

−(p+r)
q ≥ (B

−r
2 A−pB

−r
2 )

1
q holds for each p and q such that p ≥ 0, q ≥ 1

and (1 + r)q ≥ p + r. Taking inverses gives (i), so the proof of Theorem F is
completed.

This one page proof is in Furuta [16] and the original one is in Furuta [14];
other proofs afterward are in M.Fijii [7] and Kamei [34].

Remark 1.1. Recall that the essential assertion of Theorem F is as follows
since Theorem F is obvious in case 1 ≥ p ≥ 0 by Theorem L-H:

A ≥ B ≥ 0 ⇐⇒ A1+r ≥ (A
r
2 BpA

r
2 )

1+r
p+r for p ≥ 1 and r ≥ 0.
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Theorem GF. (Generalization of Theorem F). If A ≥ B ≥ 0 with A > 0, then
for t ∈ [0, 1] and p ≥ 1,

G(A, B, r, s) = A
−r
2 {A r

2 (A
−t
2 BpA

−t
2 )sA

r
2} 1−t+r

(p−t)s+r A
−r
2

is a decreasing function for r ≥ t and s ≥ 1, and A 1−t = G(A, A, r, s) ≥
G(A, B, r, s), that is,

(GF) A1−t+r ≥ {A r
2 (A

−t
2 BpA

−t
2 )sA

r
2 } 1−t+r

(p−t)s+r

holds for t ∈ [0, 1], p ≥ 1, r ≥ t and s ≥ 1.

The original proof of Theorem GF is in Furuta [18], and an alternative one is in
M.Fijii-Kamei [9]. An elementary one-page proof of (GF) is in Furuta [20]. Further
extensions of Theorem GF and related results are obtained by many researchers,
and some of them are in Furuta [22], Furuta-Hashimoto-Ito [26], Furuta-Yanagida-
Yamazaki [28], Lin [41] and Kamei [35]. It was shown in Tanahashi [48] that
the exponent value

1 − t + r

(p − t)s + r
of the right hand of (GF) is the best possible and

alternative proofs of this fact are in Fujii-Matsumoto-Nakamoto [11] and Yamazaki
[53]. (GF) interpolates Theorem F and an inequality equivalent to the main result
of log majorization in Ando-Hiai [4]. (See Remark 3.1 in §3).

2. ALUTHGE TRANSFORMATION ON p-HYPONORMAL OPERATORS

An operator T on a Hilbert space H is said to be p-hyponormal if

(T ∗T )p ≥ (TT ∗)p for positive number p.

The class of p-hyponormal has been defined as an extension of hyponormal and
also it has been studied by many authors.

For a p-hyponormal operator T = U |T |, define T̃ as follows:

T̃ = |T | 12 U |T | 12

which is called “Aluthge transformation”.

Theorem AL. ([1]). Let T = U |T | be p-hyponormal for p > 0 and U be
unitary. Then

(i) T̃ = |T | 12 U |T | 12 is (p + 1
2 )-hyponormal if 0 < p < 1

2 .

(ii) T̃ = |T | 12 U |T | 12 is hyponormal if 1
2 ≤ p < 1.
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Proof. (i). Since T is p-hyponormal for p > 0 , the following (2.1) holds
obviously

(2.1) U∗|T |2pU ≥ |T |2p ≥ U |T |2pU∗ for any p > 0,

Let A = U ∗|T |2pU , B = |T |2p and C = U |T |2pU∗ in (2.1). Then (2.1) means

(2.2) A ≥ B ≥ C ≥ 0.

As (1+ 1
2p) 2

2p+1 = 1
p = 1

2p + 1
2p holds, we can apply Theorem F in §1, that is,

(2.3)

(T̃ ∗T̃ )p+ 1
2 = (|T | 12 U∗|T |U |T | 12 )p+ 1

2

= (B
1
4p A

1
2p B

1
4p )p+ 1

2

≥ (B
1
4p B

1
2p B

1
4p )p+ 1

2

≥ (B
1
4p C

1
2p B

1
4p )p+ 1

2

= (|T | 12 U |T |U∗|T | 12 )p+ 1
2

= (T̃ T̃ ∗)p+ 1
2

Hence (2.3) ensure (T̃ ∗T̃ )p+ 1
2 ≥ B

1+ 1
2p ≥ (T̃ T̃ ∗)p+ 1

2 that is, T̃ is p + 1
2 -

hyponormal.
(ii). As |T |2p ≥ |T ∗|2p, we have |T | ≥ |T∗| by Theorem L-H since 1

2p ∈ [ 12 , 1],
or equivalently

(2.4) U∗|T |U ≥ |T | ≥ U |T |U∗

Then we have

(2.5) T̃ ∗T̃ − T̃ T̃ ∗ = |T | 12 (U∗|T |U − U |T |U∗)|T | 12 ≥ 0 by (2.4).

(2.5) implies T̃ ∗T̃ ≥ T̃ T̃ ∗, that is, T̃ is hyponormal.

We state the following further extension of Theorem AL.

Theorem HIY. ([31, 32, 57]). Let T = U |T | be the polar decomposition of
p-hyponormal for p > 0. Then the following assertions hold: (i) T̃s,t = |T |sU |T |t

is
p + min{s, t}

s + t
-hyponormal for any s > 0 and t > 0 such that Max{s, t} ≥ p.

(ii) T̃s,t = |T |sU |T |t is hyponormal for s > 0 and t > 0 such thatMax{s, t} ≤
p.
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“Aluthge transformation” T̃ = |T | 12 U |T | 12 was originally defined in Aluthge
[1].

Aluthge transformation T̃ = |T | 12 |U |T | 12 is quite an interesting and useful idea
in order to reaerch operator theory. In fact, T̃ = |T | 12 |U |T | 12 has the same spectrum
as T = U |T | for p-hyponormal operator T = U |T | since σ(ST )−{0} = σ(TS)−
{0} for any operator S and T and we have to emphasize the following remarkable
and surprizing fact that

T̃ = |T | 12 U |T | 12 belongs to the class of (p +
1
2
)−hyponormal

that is, T̃ = |T | 12 U |T | 12 belongs to (p+ 1
2)-hyponormal class which is smaller than

the original class of p-hyponormal operators.
It is easily checked that the assumption of unitarity of U in Theorem AL is

needless.
Further extensions of generalized Aluthge transformation have been considered

and now many authors have been publishing a lot of papers which are too many to
state them here.

Theorem AL was obtained in Aluthge [1] as a very nice application of Theorem
F and Theorem HIY was proved in Huruya [31], Yoshino [57], Ito [32], and Furuta-
Yanagida [27] under some condition.

3. NOTATIONS AND FUNDAMENTAL RESULTS ASSOCIATED WITH LOG MAJORIZATION

In this section a capital letter means n × n matrix. Following Ando and Hiai
[4], let us define the log majorization for positive semidefinite matrices A, B ≥ 0,
denoted by A �

(log)
B if

k∏
i=1

λi(A) ≥
k∏

i=1

λi(B), k = 1, 2, ..., n− 1,

and
n∏

i=1

λi(A) =
n∏

i=1

λi(B), i.e., detA = detB,

where λ1(A) ≥ λ2(A) ≥ ... ≥ λn(A) and λ1(B) ≥ λ2(B) ≥ ... ≥ λn(B) are
the eigenvalues of A and B, respectively, arranged in decreasing order. When
0 ≤ α ≤ 1, the α-power mean of positive invertible matrices A, B > 0 is defined
in Kubo-Ando [40] by

A #αB = A
1
2 (A

−1
2 BA

−1
2 )αA

1
2 .
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Further, A#αB for A, B ≥ 0 is defined by A#αB = lim
ε↓0

(A + εI)#α(B + εI).

For the sake of notational convenience, we define A � sB, for any real number
s ≥ 0 and for A > 0 and B ≥ 0, by the following

A �sB = A
1
2 (A

−1
2 BA

−1
2 )sA

1
2 .

A �αB in the case 0 ≤ α ≤ 1 coincides with the usual α-power mean. The
following excellent and useful log majorization was shown in Ando and Hiai [4,
Theorem 2.1].

Theorem A. For every A, B ≥ 0 and 0 ≤ α ≤ 1,

(3.1) (A#αB)r �
(log)

Ar#αBr for r ≥ 1.

(3.1) was transformed into the following matrix inequality (3.2) of Theorem B in
Ando and Hiai [4,Theorem 3.5]:

Theorem B. If A ≥ B ≥ 0 with A > 0, then

(3.2) Ar ≥ {A r
2 (A

−1
2 BpA

−1
2 )rA

r
2} 1

p for r, p ≥ 1.

We obtained the following extension of Theorem A in Furuta [18, Therorem
2.1] applying the method in Ando and Hiai [4] to (GF) of Theorem GF in §1.

Theorem C. For every A > 0 , B ≥ 0 , 0 ≤ α ≤ 1 and for each t ∈ [0, 1],

(A#αB)h �
(log)

A1−t+r#β (A1−t �sB)

holds for s ≥ 1, and r ≥ t ≥ 0 , where β =
α(1 − t + r)

(1− αt)s + αr
and h =

(1 − t + r)s
(1 − αt)s + αr

.

Remark 3.1. The inequality (GF) in Theorem GF interpolates Theorem F and
Theorem B, in fact, when we put t = 1 and r = s in (GF), we have Theorem B,
and when we put t = 0 and s = 1 in (GF), we have Theorem F by Remark 1.1.
Also when we put t = 1 and r = s in Theorem C which is equivalent to (GF), we
have Theorem A.

Next, we state the following result which was shown in Hiai and Petz [30, The-
orem 3.5] and, recently, a new proof was given in Bebiano, Lemos and Providencia
[5, Theorem 2.2].
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Theorem D. If A, B ≥ 0, then for every p > 0

(3.3)
1
p

Tr[A log(A
p
2 BpA

p
2 )] ≥ Tr[A (logA + logB)]

holds and the left-hand side of (3.3) converges to the right-hand side as p ↓ 0.

Theorem E. If A ≥ 0, B > 0, 0 ≤ α ≤ 1 and p > 0, then

(3.4)
1
p
Tr [A log(Ap�αBp)] +

α

p
Tr [A log(A

p
2 B−pA

p
2 )] ≥ Tr[A logA]

holds and the left-hand side of (3.4) converges to the the right-hand side as p ↓ 0.

The inequality (3.4) was shown in Ando and Hiai [4, Theorem 5.3], and the
convergence of (3.4) was shown in Bebiano, Lemos and Providencia [5, Corollary
2.2].

We shall extend Theorem D and Theorem E.
We shall show a log majorization equivalent to an order preserving operator

inequality.

Theorem 3.1. ([23]). The following (i) and (ii) hold and are equivalent:

(i) If A, B ≥ 0, then for each t ∈ [0, 1] and r ≥ t A
1
2 (A

r−t
2 BpA

r−t
2 )

q
p A

1
2 �

(log)

A
(p−tq)s+rq

2ps {B p
2 (B

p
2 ArB

p
2 )s−1B

p
2 } q

ps A
(p−tq)s+rq

2ps holds for any s ≥ 1 and
p ≥ q > 0.

(ii) If A ≥ B ≥ 0 with A > 0, then for each t ∈ [0, 1] and r ≥ t

A
(p−tq)s+rq

ps ≥ {A r
2 (A

−t
2 B

p
q A

−t
2 )sA

r
2} q

ps .

holds for any s ≥ 1 and p ≥ q > 0.

Corollary 3.2. ([23]). The following (i) and (ii) hold and are equivalent:

(i) If A, B ≥ 0, then for each r ≥ 0

A
1
2 (A

r
2 BpA

r
2 )

q
p A

1
2 �

(log)
A

1
2
(1+ r

p
q)

BqA
1
2
(1+ r

p
q)

holds for any p ≥ q > 0.
(ii) If A ≥ B ≥ 0, then for each r ≥ 0

A1+ r
p
q ≥ (A

r
2 B

p
q A

r
2 )

q
p

holds for any p ≥ q > 0.
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Corollary 3.3. ([23]). The following (i) and (ii) hold and are equivalent:

(i) If A, B ≥ 0, then for each r ≥ 1

A
1
2 (A

r−1
2 BA

r−1
2 )qA

1
2 �

(log)
A

1
2 {B 1

2 (B
1
2 ArB

1
2 )r−1B

1
2} q

r A
1
2

holds for any 1 ≥ q > 0.
(ii) If A ≥ B ≥ 0 with A > 0, then for each r ≥ 1

A ≥ {A r
2 (A

−1
2 B

1
q A

−1
2 )rA

r
2} q

r .

holds for any 1 ≥ q > 0.

4. LOGARITHMIC TRACE INEQUALITIES AS AN APPLICATION OF THEOREM 3.1

Throughout this section, a capital letter means an n × n matrix.
For A, B > 0, the relative operator entropy Ŝ(A, B) is defined by

Ŝ(A, B) = A
1
2 log(A

−1
2 BA

−1
2 )A

1
2

in J.I.Fujii and Kamei [6], and Ŝ(A|I) = −A logA is the usual operator entropy
(see Nakamura-Umegaki [43]). The Umegaki relative operator entropy S(A, B) is
defined by

S(A, B) = Tr[A(logA − log B)]

(see Umegaki [60]). For A, B > 0, let ∆(A|B) are defined by

∆(A|B) = −Tr[Ŝ(A, B)]− S(A|B).

We shall discuss the lower bound of ∆(A|B) in terms of the trace for A and
B and a parameter, and this result implies the well-known inequality ∆(A|B) ≥ 0
(for example, Hiai-Petz [30], Bebiano-Lemos-Providência [5]).

Theorem 4.1. ([23]). If A, B ≥ 0, then, for every t ∈ [0, 1] and p ≥ 0,

(4.1)
Tr[A log(A

r−t
2 BpA

r−t
2 )s]

≥ (r − ts)Tr[A logA] + Tr[A log{B p
2 (B

p
2 ArB

p
2 )s−1B

p
2 }]

holds for any r ≥ t and s ≥ 1.

Corollary 4.2 [23]. If A, B ≥ 0, then, for every p ≥ 0 and r ≥ 0,

(4.2) Tr[A log(A
r
2 BpA

r
2 )s] ≥ Tr[A logAr] + Tr[A log{B p

2 (B
p
2 ArB

p
2 )s−1B

p
2 }]
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holds for any s ≥ 1. In particular,

(4.3) Tr[A log(A
r
2 BpA

r
2 )] ≥ Tr[A logAr + A logBp]

and

(4.4) Tr[A log(A
r
2 BpA

r
2 )2] ≥ Tr[A logAr] + Tr[A log(BpArBp)].

The inequality (4.3) of Corollary 4.2 may be considered as the two parameter
version of (3.3) in Theorem D. In fact, (4.3) of Corollary 4.2 is equivalent to (3.3)
in Theorem D.

Corollary 4.3. ([23]). If A, B ≥ 0, then

(4.5) Tr[A log(A
r−1
2 BA

r−1
2 )r] ≥ Tr[A log{B 1

2 (B
1
2 ArB

1
2 )r−1B

1
2 }]

holds for every real number r ≥ 1. In particular,

(4.6) Tr[A log(A
1
2 BA

1
2 )2] ≥ Tr[A log(BA2B)].

Corollary 4.4. ([23]). If A, B > 0, then

(4.7)
∆(A|B) ≥ Tr[A logB] − 2(s − 1)

s
Tr[A logA]

+
1
s
Tr[A log{A−1(AB−1A)sA−1}]

holds for every real number s ≥ 1. In particular, ∆(A|B) ≥ 0 holds.

We remark that the right-hand side of (4.7) is zero when s = 1, or when A

commutes with B.

5. CONVERGENCE OF LOGARITHMIC TRACE INEQUALITIES VIA GENERALIZED
LIE-TROTTER FORMULAE

Throughout this section, a capital letter means an n × n matrix.
In this section, we shall state the convergence of the logarithmic trace inequalities

obtained in §4 via generalized Lie-Trotter formulae shown in [23].

Theorem 5.1. [23]. If A, B ≥ 0, then, for every p > 0,

(5.1)
s

p
Tr[A log(A

p
2 BpA

p
2 )]−1

p
Tr[A log{B p

2 (B
p
2 ApB

p
2 )s−1B

p
2 }] ≥ Tr[A logA]



2124 Takayuki Furuta

holds for any p > 0 and s ≥ 1, and the left-hand side converges to the right-hand
side as p ↓ 0.

Theorem 5.1 yields the following Corollary 5.2.

Corollary 5.2. ([23]). (i) If A, B ≥ 0, then, for every p > 0,

(5.2)
1
p
Tr[A log(A

p
2 BpA

p
2 )] ≥ Tr[A logA + A logB]

holds and the left-hand side converges to the right-hand side as p ↓ 0.
(ii) If A, B ≥ 0, then, for every p > 0,

(5.3)
2
p
Tr[A log(A

p
2 BpA

p
2 )] − 1

p
Tr[A log(BpApBp)] ≥ Tr[A logA]

holds and the left-hand side converges to the right-hand side as p ↓ 0.

We remark that (i) of Corollary 5.2 is Theorem D in §3.

Theorem 5.3. ([23]). If A > 0 and B ≥ 0, then, for every positive number β,

(5.4)
s

p
Tr[A log(Ap�βBp)]−1

p
Tr[A log{A−p

2 (Ap�βBp)sA
−p
2 }] ≥ Tr[A logA]

holds for any p > 0, s ≥ 1, and the left-hand side converges to the right-hand side
as p ↓ 0.

Theorem 5.3 implies the following Corollary 5.4.

Corollary 5.4. ([23]). (i) If A, B > 0, then, for every positive number β,

(5.5)
1
p
Tr[A log(Ap�βBp)]+

β

p
Tr[A log(A

p
2 B−pA

p
2 )] ≥ Tr[A logA]

holds for any p > 0, and the left-hand side converges to the right hand-side as
p ↓ 0.

(ii) If A, B > 0, then, for every positive number β,

(5.6)
2
p
Tr[A log(Ap�βBp)]−1

p
Tr[A log(A

−p
2 BpA

−p
2 )βAp(A

−p
2 BpA

−p
2 )β ]

≥ Tr[A logA]

holds for any p > 0 and the left-hand side converges to the right hand-side as
p ↓ 0.
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We remark that, when A ≥ 0, B > 0 and β ∈ [0, 1], (i) of Corollary 5.4
becomes Theorem E in §3.

Theorem 5.5. ([23]). If A > 0 and B ≥ 0, then for every α ∈ [0, 1]

(5.7)
s

p
Tr[A log(Ap∇αBp)]−1

p
Tr[A log{A−p

2 (Ap∇αBp)sA
−p
2 }]≥ Tr[A logA]

holds for any p > 0, s ≥ 1, and the-left hand side converges to the right-hand side
as p ↓ 0, where S∇αT = (1 − α)S + αT for S, T ≥ 0.

Theorem 5.5 implies the following Corollary 5.6.

Corollary 5.6. ([23]). If A > 0 and B ≥ 0, then

(5.8)

1
p
Tr[A log((1− α)Ap + αBp)]

−1
p
Tr[A log{(1− α)I + A

−p
2 BpA

−p
2 }]≥ Tr[A logA]

holds for any p > 0, α ∈ [0, 1], and the left-hand side converges to the right
hand-side as p ↓ 0. Moreover,

(5.9)
s

p
Tr[A log

Ap + Bp

2
]−1

p
Tr[A log{A−p

2
(Ap + Bp

2
)s

A
−p
2 }] ≥ Tr[A logA]

holds for any p > 0, s ≥ 1, and the left-hand side converges to the right hand-side
as p ↓ 0.

6. OPERATOR INEQUALITY IMPLYING GENERALIZED BEBIANO-LEMOS-PROVIDÊNCIA ONE

Throughout this section a capital letter means n × n matrix.
Let A, B ≥ 0 and 0 ≤ α ≤ 1. The famous Araki-Cordes inequality states that

(A
1
2 BA

1
2 )α �

(log)
A

α
2 BαA

α
2 holds and also Bebiano-Lemos-Providência inequality

[5] asserts that

A
1
2 (A

s
2 BsA

s
2 )

t
s A

1
2 �
(log)

A
1+t
2 BtA

1+t
2 holds for s ≥ t ≥ 0.

Very recently, Fujii-Nakamoto-Tominaga [13, Theorem 2.1 and Corollary 2.2]
have shown the following interesting norm inequality:

Let A, B ≥ 0. Then

||A 1
2 (A

s
2 Bp+sA

s
2 )A

1
2 ||

p(1+s)
p+s ≥ ||A 1+s

2 B1+sA
1+s
2 ||
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holds for all p ≥ 1 and s ≥ 0.

In fact, this result is essentially equivalent to the following Theorem FNT, which
is essentially shown in Fujii-Nakamoto-Tominaga, as an extension of both Araki-
Cordes inequality and Bebiano-Lemos-Providência one:

Theorem FNT. ([13]). For every A, B ≥ 0 and p ≥ 1,

{A 1
2 (A

s
2 Bp+sA

s
2 )

1
p A

1
2} p(1+s)

p+s �
(log)

A
1+s
2 B1+sA

1+s
2

holds for any s ≥ 0.

As an application of (GF) of Theorem GF, we shall give an operator inequality
implying generalized Bebiano-Lemos-Providência one.

Theorem 6.1 [24]. The following (i) and (ii) hold and they are equivalent: (i)
For every A > 0, B ≥ 0, 0 ≤ α ≤ 1 and each t ∈ [0, 1], and any real number
q �= 0,

(6.1)
{A q

2 (A
1
2 BA

1
2 )αA

q
2}h

�
(log)

A
q(1−t+r)

2 {A−qr
2 (A

1+qt
2 BA

1+qt
2 )sA

−qr
2 }βA

q(1−t+r)
2

holds for s ≥ 1 and r ≥ t, where β =
α(1− t + r)

(1 − αt)s + αr
and h =

(1− t + r)s
(1− αt)s + αr

.

(ii) If A ≥ B ≥ 0 with A > 0, then for t ∈ [0, 1] and p ≥ 1,

(6.2) A1−t+r ≥ {A r
2 (A

−t
2 BpA

−t
2 )sA

r
2} 1−t+r

(p−t)s+r

holds for s ≥ 1 and r ≥ t.

Remark 6.1. (6.1) in (i) of Theorem 6.1 can be rewritten as follows: For every
A > 0, B ≥ 0, 0 ≤ α ≤ 1 and each t ∈ [0, 1], and any real number q �= 0,

(6.1’) {A 1+q
2 (A−1�αB)A

1+q
2 }h �

(log)
A

1+q
2 {Aq(r−t)−1�β(A−(1+qt)�sB)}A 1+q

2

holds for s ≥ 1 and r ≥ t, where β and h are as in (6.1).

Remark 6.2. Put q = −1 and replace A by A−1 in (6.1’), then (i) of Theorem
6.1 yields the following result (a). Moreover, (a) implies (b) by putting t = 1 and
r = s.
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(a) For every A > 0, B ≥ 0, 0 ≤ α ≤ 1 and each t ∈ [0, 1]

(A�αB)h �
(log)

A1−t+r�β(A1−t�sB)

holds for s ≥ 1 and r ≥ t, where β and h are as in (6.1).
(b) For every A, B ≥ 0, 0 ≤ α ≤ 1

(A�αB)r �
(log)

Ar�αBr r ≥ 1.

In fact (a) is Theorem C itself in §3 and (b) is Theorem A itself in §3, which is
a very important result in log majorization.

Corollary 6.2 ([24]). The following (i), (ii) and (iii) hold and they are equiva-
lent:

(i) For every A, B ≥ 0, 0 ≤ α ≤ 1 and any real number q �= 0,

{A q
2 (A

1
2 BA

1
2 )αA

q
2} 1+r

1+αr �
(log)

A
q(1+r)

2 (A
1−qr

2 BA
1−qr

2 )
α(1+r)
1+αr A

q(1+r)
2

holds for any r ≥ 0.

(ii) If A ≥ B ≥ 0, then for p ≥ 1,

A1+r ≥ (A
r
2 BpA

r
2 )

1+r
p+r

holds for any r ≥ 0.

(iii) For every A, B ≥ 0, p ≥ 1 and any real number q �= 0,

{A sq
2 (A

s
2 Bp+sA

s
2 )

1
p A

sq
2 } p(1+r)

p+r

�
(log)

A
sq(1+r)

2 (A
s(1−qr)

2 Bp+sA
s(1−qr)

2 )
1+r
p+r A

sq(1+r)
2

holds for any r ≥ 0 and s ≥ 0.

Corollary 6.3 [24]. The following (i), (ii) and (iii) hold and they are equivalent:

(i) For every A, B ≥ 0 and 0 ≤ α ≤ 1,

{A q
2 (A

1
2 BA

1
2 )αA

q
2 } 1+q

α+q �
(log)

A
1+q
2 B

α(1+q)
α+q A

1+q
2

holds for any q ≥ 0.
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(ii) If A ≥ B ≥ 0, then for p ≥ 1,

A1+r ≥ (A
r
2 BpA

r
2 )

1+r
p+r

holds for any r ≥ 0.

(iii) For every A, B ≥ 0 and p ≥ 1,

{A 1
2 (A

s
2 Bp+sA

s
2 )

1
p A

1
2}

p(1+s)
p+s �

(log)
A

1+s
2 B1+sA

1+s
2

holds for any s ≥ 0.

Remark 6.3. We remark that (i) of Theorem 6.1 is “log majorization equivalent
to Theorem GF in matrix case ”, and (i), (iii) of Corollary 6.2 and also (i), (iii) of
Corollary 6.3 are all considered as “log majorization equivalent to an essential part
of Theorem F in matrix case ”. Needless to say, (iii) of Corollary 6.3 is Theorem
FNT itself. And the equivalence between (i) and (iii) in Corollary 6.3 is essentially
shown in Mujii-Nakamoto-Tominaga.

7. DECREASING MONOTONICITY OF ORDER PRESERVING OPERATOR FUNCTIONS
ASSOCIATED WITH (GF) IN THEOREM GF IN §1

In this section, we state the recent results on decreasing monotonicity of or-
der preserving operator functions associated with (GF) and related satellite order
preserving operator inequalities associated with (GF).

Theorem 7.1. ([25]). Let A ≥ B ≥ 0 with A > 0, t ∈ [0, 1] and p ≥ 1. Then

F (λ, u) = A
−λ
2 {Aλ

2 (A
−t
2 BpA

−t
2 )uA

λ
2 } 1−t+λ

(p−t)u+λ A
−λ
2

satisfies the following properties:

(i) F (r, w) ≥ F (r, 1) ≥ F (r, s) ≥ F (r, s′)

holds for any s′ ≥ s ≥ 1, r ≥ t and
1 − t

p − t
≤ w ≤ 1.

(ii) F (q, s) ≥ F (t, s) ≥ F (r, s) ≥ F (r′, s)

holds for any r ′ ≥ r ≥ t, s ≥ 1 and t − 1 ≤ q ≤ t.

We state several satellite inequalities of (GF) in Theorem GF as applications of
Theorem 7.1.

Corollary 7.2. ([25]). If A ≥ B ≥ 0 with A > 0, then for t ∈ [0, 1] and
p ≥ 1,
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(i) (At�wBp)
1

(p−t)w+t ≥ B ≥ {A t
2 (A

−t
2 BpA

−t
2 )sA

t
2} 1

(p−t)s+t

≥ A
t−r
2 {A r

2 (A
−t
2 BpA

−t
2 )sA

r
2} 1−t+r

(p−t)s+r A
t−r
2

and
(ii) (At�wBp)

1
(p−t)w+t ≥ B ≥ A

t−r
2 (A

r−t
2 BpA

r−t
2 )

1+r−t
p+r−t A

t−r
2

≥ A
t−r
2 {A r

2 (A
−t
2 BpA

−t
2 )sA

r
2} 1−t+r

(p−t)s+r A
t−r
2

hold for s ≥ 1, r ≥ t and
1− t

p− t
≤ w ≤ 1.

Corollary 7.3. ([25]). If A ≥ B ≥ 0 with A > 0, then for t ∈ [0, 1] and p ≥ 1,

(i) At−q� 1−t+q
p−t+q

Bp ≥ B ≥ {A t
2 (A

−t
2 BpA

−t
2 )sA

t
2} 1

(p−t)s+t

≥ A
t−r
2 {A r

2 (A
−t
2 BpA

−t
2 )sA

r
2} 1−t+r

(p−t)s+r A
t−r
2

and
(ii) At−q� 1−t+q

p−t+q
Bp ≥ B ≥ A

t−r
2 (A

r−t
2 BpA

r−t
2 )

1+r−t
p+r−t A

t−r
2

≥ A
t−r
2 {A r

2 (A
−t
2 BpA

−t
2 )sA

r
2} 1−t+r

(p−t)s+r A
t−r
2

hold for s ≥ 1, r ≥ t and t − 1 ≤ q ≤ t.

Very recently, the following Theorem K is shown:

Theorem K. ([36, 10]). If A ≥ B ≥ 0 with A > 0, then for t ∈ [0, 1] and
p ≥ 1,

At� 1−t
p−t

Bp ≥ A
t
2 F (r, s)A

t
2 holds for r ≥ t and s ≥ 1.

Since A
t
2 F (r, s)A

t
2 = A

t−r
2 {A r

2 (A
−t
2 BpA

−t
2 )sA

r
2} 1−t+r

(p−t)s+r A
t−r
2 holds, (i) or

(ii) of Corollary 7.2 implies Theorem K. Also (i) or (ii) of Corollary 7.3 implies
Theorem K.

Corollary 7.2 and Corollary 7.3 easily imply the following known satellite in-
equalities in [22, § 3.2.5, Corollary 2],

If A ≥ B ≥ 0 with A > 0, then for t ∈ [0, 1] and p ≥ 1,

(i) {B t
2 (B

−t
2 ApB

−t
2 )sB

t
2 } 1

(p−t)s+t ≥ A ≥ B ≥ {A t
2 (A

−t
2 BpA

−t
2 )sA

t
2} 1

(p−t)s+t

and
(ii) B

t−r
2 (B

r−t
2 ApB

r−t
2 )

1−t+r
p−t+r B

t−r
2 ≥ A ≥ B ≥ A

t−r
2 (A

r−t
2 BpA

r−t
2 )

1−t+r
p−t+r A

t−r
2

hold for s ≥ 1, r ≥ t and t ∈ [0, 1].
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We list statements (7.1)-(7.4) in the following Remark 7.1 as a concluding
remark.

Remark 7.1. Let A ≥ B ≥ 0 with A > 0, t ∈ [0, 1] and p ≥ 1. Then the
following properties hold.
(7.1) F (r, s) = A

−r
2 {A r

2 (A
−t
2 BpA

−t
2 )sA

r
2} 1−t+r

(p−t)s+r A
−r
2

is a decreasing function of r and s such that r ≥ t and s ≥ 1.

(7.2) F (r, w) = A
−r
2 {A r

2 (A
−t
2 BpA

−t
2 )wA

r
2} 1−t+r

(p−t)w+r A
−r
2

is not a decreasing function of r and w such that r ≥ t and
1− t

p − t
≤ w ≤ 1, but

F (r, w) ≥ F (r, 1)

holds for any r ≥ t and
1 − t

p − t
≤ w ≤ 1.

(7.3) F (q, s) = A
−q
2 {A q

2 (A
−t
2 BpA

−t
2 )sA

q
2} 1−t+q

(p−t)s+q A
−q
2

is not a decreasing function of q and s such that 0 ≤ q ≤ t and s ≥ 1, but

F (q, s) ≥ F (t, s)

holds for any 0 ≤ q ≤ t and s ≥ 1.

(7.4) F (q, s) = A
−q
2 {A q

2 (A
−t
2 BpA

−t
2 )sA

q
2}

1−t+q
(p−t)s+q A

−q
2

is not a decreasing function of q and is not an increasing of s such that t − 1 ≤ q ≤ 0
and s ≥ 1, but

F (q, s) ≥ F (t, s)

holds for any t − 1 ≤ q ≤ 0 and s ≥ 1. (7.1) is nothing but the former half of
Theorem GF in §1.

(See that the coordinate (r, s) ∈ Drs in Figure 2).
The latter half of (7.2), that is, F (r, w) ≥ F (r, 1) holds for r ≥ t and

1 − t

p − t
≤ w ≤ 1 is shown by (i) of Theorem 7.1.

(See that the coordinate (r, w) ∈ Drw in Figure 2).
The latter half of (7.3), that is, F (q, s) ≥ F (t, s) holds for 0 ≤ q ≤ t and s ≥ 1

is shown by (ii) of Theorem 7.1.
(See that the coordinate (q, s) ∈ D+

qs in Figure 2).
The latter half of (7.4), that is, F (q, s) ≥ F (t, s) holds for t − 1 ≤ q ≤ 0 and

s ≥ 1 is shown by (ii) of Theorem 7.1.
(See that the coordinate (q, s) ∈ D−

qs in Figure 2).
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t ∈ [0, 1], p ≥ 1, r ≥ t, s ≥ 1,

1 − t

p − t
≤ w ≤ 1 and t − 1 ≤ q ≤ t

Fig. 2.
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