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CODERIVATIVES OF FRONTIER AND SOLUTION MAPS
IN PARAMETRIC MULTIOBJECTIVE OPTIMIZATION

N. Q. Huy,1 B. S. Mordukhovich2 and J. C. Yao1,∗

Abstract. This paper concerns sensitivity analysis for general parametric con-
strained problems of multiobjective optimization in infinite-dimensional spaces
by using advanced tools of modern variational analysis and generalized differ-
entiation. We pay the main attention to computing and estimating coderivatives
of frontier and efficient solution maps in parametric multiobjective problems
with respect to generalized order optimality that include a vast majority of
conventional multiobjective problems in the presence of geometric, operator,
functional, and equilibrium constraints. The obtained results are new in both
finite-dimensional and infinite-dimensional spaces.

1. INTRODUCTION

This paper is devoted to developing new applications of some advanced tools
of modern variational analysis and generalized differentiation to parametric mul-
tiobjective optimization problems from the viewpoint of coderivative approach to
sensitivity of optimal value/frontier and efficient solution maps under parameter
perturbations.

Let X , Y , and Z be Banach spaces, and let Θ ⊂ Z be an arbitrary nonempty
subset (may not be convex and/or conic) that defines a generalized ordering relation
on Z in the sense precisely described in what follows. Given a single-valued cost
mapping f : X × Y → Z and a set-valued constraint mapping G : X ⇒ Y , we
consider the parametric family of constrainedmultiobjective optimization problems:

minimizeΘ f(x, y) subject to y ∈ G(x),(1.1)
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where the “minimization” with respect to the decision variable y is induced by the
ordering set Θ, and where x is a perturbation parameter. Let us associate with the
parametric problem (1.1) the corresponding frontier map F : X ⇒ Z defined by

F (x) := Eff
(
f(x, G(x)) |Θ)

(1.2)

and the optimal/efficient solution map S : X ⇒ Y given by

S(x) :=
{
y ∈ G(x)

∣∣ f(x, y) ∈ F(x)
}
.(1.3)

Note that the notion of optimality/efficiency employed in (1.2) and (1.3) is under-
stood in the sense of the so-called generalized order optimality defined and discussed
in Section 3; this includes and extends a vast majority if conventional notions broadly
used in multiobjective optimization. Observe also that for the case of scalar opti-
mization problems, the frontier map (1.2) reduces to the standard marginal/optimal
value function, which plays a significant role in various aspects of optimization the-
ory and its applications; see, e.g., [3, 20, 21, 28] with the discussions and references
therein.

It has been well recognized that the coderivative of set-valued mappings intro-
duced by Mordukhovich [17] is a convenient tool to study many important issues
in variational analysis and optimization; we refer the reader to the recent books
[4, 10, 20, 21, 28, 30] with their commentaries and bibliographies. In particular,
the coderivative construction of [17] and its infinite-dimensional extensions allow
us to fully characterized robust Lipschitzian stability of general set-valued map-
pings and their specifications frequently appeared in optimization frameworks; see
[18, 20, 28] and also Remark 5.5 below for more details and references.

There are numerous applications of coderivatives to sensitivity analysis of scalar
(single-objective) optimization problems; we refer the reader to [8, 12, 15, 19, 20, 23,
24, 25, 34] for just a few of them. Coderivatives have been also employed in, e.g.,
[1, 5, 6, 22, 21, 33, 32, 35] to derive necessary conditions in various multiobjective
optimization problems. However, we are not familiar with any results on using
coderivatives in sensitivity analysis for multiobjective problems (in particular, for
computing/estimating coderivatives of frontier and solution maps in multiobjective
optimization) although other primal-type generalized derivative constructions have
been employed for these purposes in [9, 11, 14, 29, 31].

The primary objective of this paper is to obtain verifiable formulas for comput-
ing or upper estimating the coderivatives of frontier and solution maps in general
parametric problems of constrained multiobjective optimization. The obtained re-
sults are new in both finite-dimensional and infinite-dimensional spaces not only
for the general problems under consideration but also for their more conventional
concretizations including those presented in the paper. Our approach is based on
the coderivative calculus developed in [20] with utilizing specific structures of mul-
tiobjective problems and their frontier and optimal solution maps defined in (1.2)
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and (1.3), respectively, with the notions of multiobjective optimality/efficiency made
precise below.

The rest of the paper is organized as follows. In Section 2 we recall and discuss
some basic constructions from variational analysis and generalized differentiation
broadly employed in the formulations and proofs of the main results.

Section 3 is devoted to deriving upper estimates and precise formulas for com-
puting coderivatives of the frontier map (1.2) with respect to the notion of efficiency
induced by the concept of generalized order optimality from [21], which encom-
passes various conventional as well as extended notions of optimal/efficient solutions
to multiobjective optimization and equilibrium problems. In Section 4 we specify
general coderivative formulas for frontier maps in multiobjective problems involv-
ing explicit constraints of geometric, operator, functional, and equilibrium types
particularly important in applications.

Finally, Section 5 contains results on computing/estimating coderivatives of the
efficient solution map (1.3) to the multiobjective optimization problem (1.1) via
the corresponding coderivatives of the frontier map (1.2). These results are based
on the extended coderivative analysis of solution maps to parameterized generalized
equations with moving constraints on decision variables and parameter-independent
fields (see below); they are certainly of their own interest being important for other
applications.

Throughout the paper we use the standard notation of variational analysis and
generalized differentiation; see, e.g., [20, 21]. Unless otherwise stated, all the
spaces are assumed to be Banach with the norm ‖ · ‖ and the canonical pairing
between the space in question and its topological dual. For a dual space X ∗,
the notation x∗

k → x∗ stands for the norm convergence of the sequence {x∗
k},

k ∈ N := {1, 2, . . .}, while x∗
k

w∗→ x∗ indicates the convergence of {x∗k} in the
weak∗ topology of X ∗. Furthermore, the symbol x

Ω→ x̄ for a set Ω ⊂ X means
that x → x̄ with x ∈ Ω. Given a set-valued mapping F : X ⇒ X ∗, we denote by

Lim sup
x→x̄

F (x) :=
{

x∗ ∈ X∗
∣∣∣ ∃ sequences xk → x̄ and x∗

k
w∗−−→ x∗

with x∗
k ∈ F (xk) for all k ∈ N

}(1.4)

the sequential Painlevé-Kuratowski upper/outer limit of the mapping F as x → x̄

with respect to the norm topology of X and the weak∗ topology of X∗. As usual,
B stands for the closed unit ball in the space in question,

Bη(x) = B(x; η) := x + ηB,

and A∗ : Y ∗ → X∗ denotes the adjoint operator— to a linear continuous operator
A : X → Y between Banach spaces.
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2. BASIC DEFINITIONS AND PRELIMINARIES

In this section we recall some basic definitions and preliminary material on
variational analysis and generalized differentiation taken from [20] and broadly
used in the paper. In [20], the reader can find proofs as well as related results,
discussions, and commentaries.

Given Ω ⊂ X and ε ≥ 0, we define the collection of ε-normals to Ω at x ∈ Ω
by

N̂ε(x; Ω) :=
{
x∗ ∈ X∗

∣∣∣ lim sup
u

Ω−→x

〈x∗, u− x〉
‖u − x‖ ≤ ε

}
.(2.1)

When ε = 0, observe that N̂ (x; Ω) := N̂0(x; Ω) in (2.1) is a cone called the
prenormal cone or the Fréchet normal cone to Ω at x. We further let for convenience
N̂ε(x; Ω) := ∅ if x /∈ Ω. The sequential outer limit (1.4) of N̂ε(x; Ω) as x → x̄ ∈ Ω
and ε ↓ 0 defined by

N (x̄; Ω) := Lim sup
x→x̄
ε↓0

N̂ε(x; Ω)(2.2)

is known as limiting, or basic, or Mordukhovich normal cone to Ω at x̄ introduced
in [16] in finite-dimensional spaces. We say that Ω is normally regular at x̄ ∈ Ω
if N (x̄; Ω) = N̂(x̄; Ω). Besides convex sets and those with smooth boundaries, the
class of normal regularity includes a range of “nice” sets and is stable with respect
to various operations under appropriate qualification conditions; see [20, 21] for
numerous results and discussions.

It is possible (while quite nontrivial) to equivalently put ε = 0 in (2.2), i.e., to
replace ε-normals in (2.2) by Fréchet normals at x ∈ Ω provided that Ω is locally
closed around x̄ and that the space X is Asplund. The latter remarkable subclass
of Banach spaces has been comprehensively investigated in the geometric theory
of functional analysis; it can be described as a collection of Banach spaces whose
every separable subspace has a separable dual. It is well known that the class of
Asplund spaces is sufficient large containing, in particular, all reflexive spaces and
all spaces with separable duals. It has been broadly applied in variational analysis;
see [20, 21] with numerous references and discussions on Asplund spaces and their
applications.

Note that the basic normal cone (2.2) is often nonconvex, even for simple sets
in R

2 as, e.g., for the graph of the function ϕ(x) = |x| and for the epigraph
of the function ϕ(x) = −|x| at x̄ = 0. Therefore this normal cone cannot be
tangentially generated by a polarity/duality correspondence, since polarity always
implies convexity. In spite of (actually due to) nonconvexity, the normal cone
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(2.2) and the associated with it coderivatives of set-valued mappings and subdif-
ferentials of extended-real-valued functions enjoy comprehensive calculus rules and
other nice properties, especially in the Asplund space setting; see [20, 21] for an
extended theory and various applications. This is mainly based on the powerful
variational/extremal principles of modern variational analysis.

Let F : X ⇒ Y be a set-valued mapping between Banach spaces with the graph

gphF :=
{
(x, y) ∈ X × Y

∣∣ y ∈ F (x)
}
.

The normal coderivative D∗
NF (x̄, ȳ) : Y ∗ ⇒ X∗ of F at (x̄, ȳ) ∈ gphF is defined

by

D∗
NF (x̄, ȳ)(y∗) :=

{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N ((x̄, ȳ); gphF )

}
,(2.3)

which by (2.2) can be equivalently described as

D∗
NF (x̄, ȳ)(y∗)

=
{

x∗ ∈ X∗
∣∣∣ ∃ εk ↓ 0, (xk, yk) → (x̄, ȳ), (x∗

k, y
∗
k)

w∗→ (x∗, y∗)

with (x∗
k,−y∗k) ∈ N̂εk

(
(xk, yk); gphF

)}
.

(2.4)

The mixed coderivative D∗
MF (x̄, ȳ) : Y ∗ ⇒ X∗ of F at (x̄, ȳ) is defined by

D∗
MF (x̄, ȳ)(y∗) :

=
{

x∗ ∈ X∗
∣∣∣ ∃ εk ↓ 0, (xk, yk) → (x̄, ȳ), x∗

k
w∗→ x∗,

y∗k → y∗ with (x∗
k,−y∗k) ∈ N̂εk

(
(xk, yk); gphF

)}
.

(2.5)

We omit ȳ = f(x̄) in the above coderivative notion if F = f : X → Y is single-
valued. Note also that εk can be dropped (≡ 0) in the limiting expressions (2.4)
and (2.5) if the graph of F is locally closed around (x̄, ȳ) and if both spaces X and
Y are Asplund–in this case the product space X × Y is Asplund as well.

We can see from (2.4) and (2.5) that the only difference between the normal and
mixed coderivatives is that the weak∗ convergence of y∗k

w∗→ y∗ in (2.4) is replaced
by the strong (in the norm topology of Y∗) convergence of y∗k → y∗ in (2.3). Thus
these coderivatives agree if dimY < ∞, where they both reduce to the coderivative
D∗F (x̄, ȳ) originally introduced in [17]. In general we obviously have the inclusion

D∗
MF (x̄, ȳ)(y∗) ⊂ D∗

NF (x̄, ȳ)(y∗) for all y∗ ∈ Y ∗,(2.6)

where the equality holds in various settings with dimY = ∞, which are partially
listed in [20, Proposition 4.9], while the inclusion in (2.6) may be strict even for
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single-valued Lipschitz continuous mappings with values in Hilbert spaces; see [20,
Example 1.35].

We say that F is M -regular at (x̄, ȳ) ∈ gphF if

D∗
MF (x̄, ȳ)(y∗) =

{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N̂

(
(x̄, ȳ); gphF

)}
for all y∗ ∈ Y ∗ .

(2.7)

By (2.6) this property is generally less restrictive in comparison with itsN -regularity
counterpart when D∗

MF (x̄, ȳ) is replaced by D∗
NF (x̄, ȳ) in (2.7). Both there graph-

ical regularity properties hold, in particular, if either the graph of F is convex or
F = f : X → Y is single-valued and strictly differentiable at x̄ in the sense that

lim
x,u→x̄

f(x) − f(u) − 〈∇f(x̄), x− u〉
‖x− u‖ = 0

with the derivative operator ∇f(x̄); the latter is always the case when f ∈ C1

around x̄. Furthermore, for mappings f strictly differentiable at x̄ we have the
representation

D∗
Nf(x̄)(y∗) = D∗

Mf(x̄)(y∗) =
{∇f(x̄)∗y∗

}
for all y∗ ∈ Y ∗,(2.8)

which shows that the coderivatives under consideration are appropriate extensions
of the adjoint derivative operator to nonsmooth and set-valued mappings.

We pay the main attention in this paper to evaluating the mixed coderivative
in case of frontier maps, which plays the most crucial role in infinite-dimensional
spaces. The common notation D∗ for both mixed and normal is used when there is
no difference between them in the cases under consideration.

Finally in this section, recall two “normal compactness” properties that are
automatic in finite dimensions while playing a significant role in many aspects of
variational analysis and generalized differentiation in infinite dimensional spaces;
see [20, 21]. A set Ω is sequentially normally compact (SNC) at x̄ ∈ Ω if for any
sequences εk ↓ 0, xk

Ω→ x̄, and x∗
k ∈ N̂εk

(xk; Ω) we have the implication[
x∗

k
w∗→ 0

]
=⇒ [‖x∗

k‖ → 0
]
as k → ∞,

where εk can be omitted as usual if X is Asplund and if Ω is locally closed around
x̄. Note that the above SNC property of Ω is implied by the so-called “compactly
epi-Lipschitzian” property of Ω around x̄ in the sense of Borwein and Strójwas,
which is formulated in the primal space X with no use of generalized normals; see
[20, Subsection 1.1.4] for more details and references. If Ω is convex, the latter
property is equivalent to the finite codimensionality of Ω having nonempty relative
interior with respect to its closed span.



Coderivatives of Frontier and Solution Maps in Parametric Multiobjective Optimization 2089

A set-valued mapping F : X ⇒ Y is SNC at (x̄, ȳ) ∈ gphF if its graph enjoys
this property at (x̄, ȳ). A more subtle partial SNC (i.e., PSNC) property is defined as
follows. A mapping F is PSNC at (x̄, ȳ) if for any sequences εk ↓ 0, (xk, yk)

gphF→
(x̄, ȳ), and (x∗

k, y
∗
k) ∈ N̂εk

((xk, yk); gphF ) we have the implication[
x∗

k
w∗→ 0, ‖y∗k‖ → 0

]
=⇒ [‖x∗

k‖ → 0
]
as k → ∞,

where εk = 0 in the Asplund space and closed graph setting. The PSNC property
always holds when F is Lipschitz-like around (x̄, ȳ), or has the Aubin “pseudo-
Lipschitz” property: there exist neighborhoods U of x̄ and V of ȳ as well as
modulus � ≥ 0 such that

F (u) ∩ V ⊂ F (v) + �‖u− v‖B whenever u, v ∈ U.(2.9)

This reduces to the classical (Hausdorff) local Lipschitzian behavior of F around z̄
when V is taken as the whole space Y in (2.9).

3. CODERIVATIVES OF FRONTIER MAPS WITH RESPECT TO GENERALIZED ORDER
OPTIMALITY

In this section we derive verifiable formulas for computing and estimating both
normal and mixed coderivatives of frontier maps for multiobjective problems with
the notion of optimality/efficiency induced by the concept of generalized order
optimality from [21, Subsection 5.3.1], where the reader can find more details, dis-
cussions, and examples of reducing conventional preference relations to generalized
order optimality.

Definition 3.1. (efficient points with respect to generalized order optimality).
Let Θ ⊂ Z be an ordering subset of a Banach space Z with 0 ∈ Θ. Then:

(i) Given an nonempty set Ω ⊂ Z, we say that z̄ ∈ Ω is a local efficient point of Ω
with respect to Θ if there is a neighborhood V of z̄ and a sequence {vk} ⊂ Z

with vk → 0 as k → ∞ such that

z − z̄ /∈ Θ − vk for all z ∈ Ω ∩ V and k ∈ N.

The set of all the local efficient points of Ω with respect to Θ is denoted by
Eff(Ω|Θ).

(ii) Given a nonempty subsetΞ ⊂ X of a Banach spaceX and a mapping g : X →
Z, we say that x̄ ∈ Ξ is a local efficient/minimal solution to g on Ξ with respect to
Θ if there is a neighborhood U of x̄ such that g(x̄) ∈ Eff

(
g(Ξ∩ U)

∣∣Θ)
.
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The notions of generalized order optimality/efficiency from the Definition 3.1 en-
compass various preference relations; in particular, the so-called generalized Pareto
ones given by

z1 ≺ z2 if and only if z2 − z1 ∈ Θ \ {0},(3.1)

where Θ ⊂ Z is a convex ordering/positive cone in Z. This name for preferences
(3.1) comes from the fact that the classical notions of Pareto and weak Pareto
optimality as well as their various extensions can be written in form (3.1) by choosing
cones Θ satisfying certain properties; see [20, Section 5.3] and the recent paper [1]
for more details and discussions.

To proceed, we fix an ordering set Θ ⊂ Z in what follows and introduce the
dual interior set for the ordering set Θ defined by

Θ∗
> :=

{
z∗ ∈ Z∗

∣∣∣ inf
θ∈Θ\{0}

〈z∗, θ〉
‖θ‖ > 0

}
.(3.2)

Observe that for Z = R
n and Θ = Rm

+ we have Θ∗
> = intRm

+ . The next lemma
establishes a relation between the normal and mixed coderivatives of a set-valued
mapping from X to Z and those for its Θ-addition in dual interior directions.

Lemma 3.2. (coderivatives of set-valued mappings at dual interior directions).
Let F : X ⇒ Z be a set-valued mapping between Banach spaces, and let (x̄, z̄) ∈
gphF . Then for all z∗ ∈ Θ∗

> we have the inclusion

D∗
MF (x̄, z̄)(z∗) ⊂ D∗

M(F + Θ)(x̄, z̄)(z∗).(3.3)

Proof. Fix an arbitrary direction z∗ ∈ Θ∗
> and pick any x∗ ∈ D∗

MF (x̄, z̄)(z∗).
By the mixed coderivative description (2.5), find sequences εk ↓ 0, (xk, zk) →
(x̄, ȳ), and x∗

k
w∗→ x∗, z∗k→z∗ as k → ∞ satisfying

(xk, zk) ∈ gphF and (x∗
k,−z∗k) ∈ N̂εk

(
(xk, zk); gphF

)
for all k ∈ N.

(3.4)

Fix k ∈ N and apply the construction of εk-normals from (2.1) to (x∗k,−z∗k) in
(3.4). In this way we get sequences γk ↓ 0 and ηk ↓ 0 for which

〈x∗
k, x − xk〉 ≤ 〈z∗k, z − zk〉 + εk

(‖x − xk‖+ ‖z − zk‖
)

(3.5)

whenever x ∈ xk + γkB, z ∈ zk + ηkB, (x, z) ∈ gphF and k ∈ N. It follows from
z∗k→z∗ as k → ∞ that 〈z∗k − z∗, θ〉 → 0 as k → ∞ for any θ ∈ Z. Furthermore,
we claim from the choice of z∗ ∈ Θ∗

> that there is a number ε > 0 for which

inf
θ∈Θ\{0}

〈z∗k, θ〉
‖θ‖ ≥ ε(3.6)
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whenever k ∈ N is sufficiently large. Assuming by the contrary that (3.6) does not
hold, for any n ∈ N find z∗kn

and θn ∈ Θ \ {0} satisfying

〈z∗kn
, θn〉

‖θn‖ <
1
n

, n ∈ N.

This implies the relations

〈z∗, θn〉
‖θn‖ =

〈
z∗kn

,
θn

‖θn‖
〉

+
〈
z∗ − z∗kn

,
θn

‖θn‖
〉

<
1
n

+
〈
z∗ − z∗kn

,
θn

‖θn‖
〉
, n ∈ N.

Passing to the limit as n → ∞ in the latter estimate and taking into account
the strong convergence ‖z∗kn

− z∗‖ → 0 as n → ∞ due the mixed coderivative
construction, we get that

inf
θ∈Θ\{0}

〈z∗, θ〉
‖θ‖ ≤ 0,

which contradicts (3.2) and hence justifies (3.6).
Assume further with no loss of generality that εk ≤ ε and (3.6) hold for all

k ∈ N. Thus we have the inequalities

〈x∗
k, x− xk〉 ≤ 〈z∗k, z + θ − zk〉 − ε‖θ‖ + εk

(‖x − xk‖ + ‖z − zk‖
)

≤ 〈z∗k, z + θ − zk〉 + εk

(‖x − xk‖+ ‖z + θ − zk‖
)
, k ∈ N,

for all x ∈ xk + γkB, z ∈ zk + ηkB, and θ ∈ Θ. Since obviously (xk, zk) ∈
gph (F + Θ) by the first inclusion in (3.4), the latter implies that

(x∗
k,−z∗k) ∈ N̂εk

(
(xk, zk); gph (F + Θ)

)
as z∗k ∈ Θ∗

>, k ∈ N.

Therefore we get x∗ ∈ D∗
M(F + Θ)(x̄, z̄)(z∗k) with the direction z∗ ∈ Θ∗

> fixed
above. This justifies (3.3) and completes the proof of the lemma.

In what follows, consider the image map

Σ(x) := f
(
x, G(x)

)
=

{
f(x, y)

∣∣ y ∈ G(x)
}
, x ∈ X,(3.7)

for the multiobjective optimization problem (1.1) with respect to the generalized
order optimality induced by the ordering set Θ ⊂ Z and the corresponding frontier
map F (x) defined in (1.2). We say that the domination property holds for problem
(1.1) with respect to the generalized order optimality/efficiency induced by Θ if

F (x) + Θ = f
(
x, G(x)

)
+ Θ, x ∈ X.(3.8)
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This property has been studied for some specific preference relations in, e.g., [1, 2,
7, 9, 13, 29, 31] and the references therein.

Our first theorem in this section provides efficient upper estimates for both
normal and mixed coderivatives of the frontier map (1.2) via the corresponding
coderivatives of the initial data in the multiobjective optimization problem (1.1).
To proceed, we introduce the normalized dual interior set for the ordering set Θ
constructed from the dual interior set (3.2) and the basic normal cone to Θ by

Θ∗
N := Θ∗

> ∩ ( − N (0; Θ)
)
.(3.9)

It is easy to observe that the inclusion Θ∗
N ⊂ Θ∗

<, which is obviously strict in
general, holds as equality Θ∗

N = Θ∗
> = intRm

+ in the classical setting of Θ = R
m
+ .

Theorem 3.3. (upper estimates for coderivatives of frontier maps with respect
to generalized order optimality). Let F be the frontier map (1.2) for multiobjective
problem (1.1) with the ordering set Θ locally closed around 0 ∈ Θ, and let (x̄, ȳ) ∈
gphS for the optimal solution map S from (1.3). Suppose that all the spaces
X, Y, Z are Asplund, that the cost mapping f is locally Lipschitzian around (x̄, ȳ)
and that the graph of the image map Σ from (3.7) is locally closed around (x̄, ȳ, z̄)
with z̄ := f(x̄, ȳ). Assume also that the domination property (3.8) is satisfied.
Then we have the upper estimate

D∗
MF (x̄, z̄)(z∗) ⊂ ⋃

(x∗,y∗)∈D∗
Mf(x̄,ȳ)(z∗)

[
x∗ + D∗

NG(x̄, ȳ)(y∗)
]

for all z∗ ∈ Θ∗
N

(3.10)

along the normalized set (3.9) of dual interior directions z ∗ ∈ Θ∗
N . If furthermore

f is strictly differentiable at (x̄, ȳ), then estimate (3.10) can be improved by

D∗
MF (x̄, z̄)(z∗) ⊂ ∇xf(x̄, ȳ)∗z∗ + D∗

MG(x̄, ȳ)
(∇yf(x̄, ȳ)∗z∗

)
for all z∗ ∈ Θ∗

N .
(3.11)

Proof. We first justify inclusion (3.10). It follows immediately from the
assumed domination property (3.8) that

D∗
M(F + Θ)(x̄, z̄)(z∗) = D∗

M(Σ + Θ)(x̄, z̄)(z∗) for all z∗ ∈ Z∗.(3.12)

To elaborate the right-hand side of equality (3.12), we apply the coderivative sum
rule from [20, Theorem 3.10] to the sum Σ(x) + Θ(x), where the second mapping
is constant: Θ(x) ≡ Θ on X . It is easy to check that

D∗
MΘ(x̄, 0)(z∗) =

{
0 for z∗ ∈ −N (0; Θ),
∅ otherwise .

(3.13)
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Moreover, it is obvious thatD∗
MΘ(x̄; 0)(0) = {0} and the constant mappingΘ(x) =

Θ is PSNC at (x̄, 0). Thus all the assumptions in [20, Theorem 3.10] are satisfied
and we get

D∗
M(Σ + Θ)(x̄, z̄)(z∗) ⊂ D∗

MΣ(x̄, z̄)(z∗) whenever − z∗ ∈ N (0; Θ).(3.14)

Observing further the composite form of the image map Σ in (3.7) and applying to it
the coderivative chain rule from [20, Theorem 3.18(i)] for the locally Lipschitzian
cost mapping f(x, y), we arrive at the inclusion

(3.15) D∗
MΣ(x̄, z̄)(z∗) ⊂

⋃
(x∗,y∗)∈D∗

Mf(x̄,ȳ)(z∗)

[
x∗+D∗

NG(x̄, ȳ)(y∗)
]
, z∗∈Z∗.

Combining now the relations in (3.12)–(3.15) with (3.3) from Lemma 3.2, we get
(3.10).

It remains to justify inclusion (3.11). Since f is now assumed to be strictly
differentiable at (x̄, ȳ), we have by (2.8) that

D∗
Nf(x̄, ȳ)(z∗) = D∗

Mf(x̄, ȳ)(z∗) =
{
(∇xf(x̄, ȳ)∗z∗,∇yf(x̄, ȳ)∗z∗)

}
, z∗ ∈ Z∗.

The latter immediately gives the normal counterpart of inclusion (3.11) but not the
claimed one for the mixed coderivatives. However, the above proof allows us to
get the conclusion of (3.11) by replacing the application of [20, Theorem 3.18(i)]
therein by a more delicate chain rule from [20, Theorem 3.18(ii)] held for the mixed
coderivative case under the strict differentiability assumption on the outer mapping
in the composition. This gives (3.11) and completes the proof of the theorem.

Next result provides precise/equality formulas for computing both normal and
mixed coderivatives of the frontier map (1.2) with respect to generalized order
optimality. Besides the notions of the M -regularity and N -regularity of set-valued
mappings F : X ⇒ Y at (x̄, ȳ) ∈ gphF introduced in Section 2, we recall the
following definition of the (local) upper Lipschitzian property for single-valued
mappings l : Ω ⊂ X → Y at x̄ ∈ Ω given by: there are numbers η > 0 and � ≥ 0
such that

‖l(x)− l(x̄)‖ ≤ �‖x− x̄‖ for all x ∈ Ω ∩ (x̄ + ηB).(3.16)

We say that a set-valued mapping L : Ω ⊂ X ⇒ Y admits an upper Lipschitzian
selection around (x̄, ȳ) ∈ gphL if there is a neighborhoodU of x̄ and a single-valued
mapping l : Ω ∩ U → Y such that

l(x̄) = ȳ, l(x) ∈ L(x) for all x ∈ Ω ∩ U,
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and l is upper Lipschitzian at x̄. In what follows we always assume that η in (3.16)
is selected so that x̄ + ηB ⊂ U .

Theorem 3.4. (computing coderivatives of frontier maps with respect to gener-
alized order optimality). In addition to all the assumptions of Theorem 3.3, suppose
that the optimal solution map S : domG ⇒ Y admits an upper Lipschitzian selec-
tion around (x̄, ȳ). Then we have the equality

(3.17)
D∗

MF (x̄, z̄)(z∗) = ∇xf(x̄, ȳ)∗z∗ + D∗
MG(x̄, ȳ)

(∇yf(x̄, ȳ)∗z∗
)

for all z∗ ∈ Θ∗
N

if G is M -regular at this point.

Proof. The inclusion “⊂” in (3.17) follows from the corresponding results
of Theorem 3.3 in the case of strictly differentiable cost mappings. We need to
justify the opposite inclusion “⊃” in (3.17) under the additional assumptions of the
theorem.

To proceed, fix any x∗ /∈ D∗
MF (x̄, z̄)(z∗) with z∗ ∈ Θ∗

N and show that

x∗ −∇xf(x̄, ȳ)∗z∗ /∈ D∗
MG(x̄, ȳ)

(∇yf(x̄, ȳ)∗z∗
)
.(3.18)

Since G is assumed to be M -regular at (x̄, ȳ), relation (3.18) is equivalent to(
x∗ −∇xf(x̄, ȳ)∗z∗,−∇yf(x̄, ȳ)∗z∗

)
/∈ N̂

(
(x̄, ȳ); gphG

)
.(3.19)

We obviously have from the choice of x∗ and the definition of the normal coderiva-
tive that

(x∗,−z∗) /∈ N̂
(
(x̄, z̄); gphF)

,

which implies by definition (2.1) with ε = 0 that

(3.20) lim sup
(x,z)

gph F−→ (x̄,z̄)

〈x∗, x− x̄〉 − 〈z∗, z − z̄〉
‖x − x̄‖ + ‖z − z̄‖ > 0.

Using the upper Lipschitzian assumption of the theorem, find l : domG → Y such
that l(x̄) = ȳ, that l is upper Lipschitzian at x̄, and that l(x) ∈ S(x) for all
x ∈ domG sufficiently close to x̄. It follows from (3.20) and from the above
properties of l(·) that there exist a number γ > 0 and a sequence xk → x̄ as
k → ∞ along which

〈z∗, zk − z̄〉 − 〈x∗, xk − x̄〉 ≤ −γ
(‖xk − x‖ + ‖zk − z̄‖)(3.21)

with zk = f(xk, yk), yk := l(xk) ∈ S(xk) and

‖xk − x̄‖ ≥ �−1‖yk − ȳ‖(3.22)
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for all k ∈ N sufficiently large. By (3.21) and the construction of zk via the strict
differentiable mapping f we have for such k ∈ N that

〈x∗, xk − x̄〉 ≥ 〈z∗, f(xk, yk) − f(x̄, ȳ)〉+ γ
(‖xk − x̄‖ + ‖f(xk, yk) − f(x̄, ȳ)‖)

= 〈z∗,∇f(x̄, ȳ)(xk − x̄, yk − ȳ)〉 + o
(‖xk − x̄‖ + ‖yk − ȳ‖)

+γ
(‖xk − x̄‖ + ‖f(xk, yk) − f(x̄, ȳ)‖)

= 〈∇f(x̄, ȳ)∗z∗, (xk − x̄, yk − ȳ)〉+ o
(‖xk − x̄‖ + ‖yk − ȳ‖)

+γ
(‖xk − x̄‖ + ‖f(xk, yk) − f(x̄, ȳ)‖).

The latter implies by (3.22) that

〈x∗ −∇xf(x̄, ȳ)∗z∗, xk − x̄〉 − 〈∇yf(x̄, ȳ)∗z∗, yk − ȳ〉
≥ γ

2
‖xk − x̄‖ +

γ

2�
‖yk − ȳ‖ + o

(‖xk − x̄‖ + ‖yk − ȳ‖)
≥ γ̃

(‖xk − x̄‖ + ‖yk − ȳ‖) + o
(‖xk − x̄‖ + ‖yk − ȳ‖)

with γ̃ := min{γ/2, γ/(2�)}. This gives

lim sup
(x,y)

gph G−→ (x̄,ȳ)

〈x∗ −∇xf(x̄, ȳ)∗z∗, x− x̄〉 − 〈∇yf(x̄, ȳ)∗z∗, y − ȳ〉
‖x − x̄‖ + ‖y − ȳ‖ ≥ γ̃,

which implies (3.19). Thus we get (3.18) and complete the proof of the theorem.

4. CODERIVATIVES OF FRONTIER MAPS IN SPECIAL CLASSES OF CONSTRAINED
MULTIOBJECTIVE PROBLEMS

In this section we derive efficient specifications of the general results obtained
in Section 3 for various classes of multiobjective optimization problems with the
constraint mapping G : X ⇒ Y given in the form

G(x) :=
{
y ∈ Y

∣∣ h(x, y) ∈ −K
}
,(4.1)

where h : X × Y → W is a single-valued mapping between Banach spaces, and
where ∅ �= K ⊂ W . In what follows we keep the notation of Section 3. Constraints
of type (4.1) are known as operator constraints (note that the range space W

is generally infinite-dimensional). They include geometric, functional, and other
types of constraints under appropriate specifications of h and K; see [21] for more
discussions and examples.

The next theorem provides upper estimating and precise computing formulas to
evaluate both normal and mixed coderivatives of the frontier map (1.2) with respect
to generalized order optimality for constraints given by (4.1). For simplicity we
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focus on the case when h(·) is strictly differentiable at the reference point with
the surjective derivative. The coderivative calculus rules from [20] allow us to
proceed in more general cases under more involved assumptions on h in smooth
and nonsmooth settings.

Theorem 4.1. (coderivatives of frontier maps for multiobjective problems with
operator constraints). Let (x̄, ȳ) ∈ gphS for problem (1.1) with the constraints
given by (4.1), let the assumptions of Theorem 3.3 be satisfied in the case of the
cost mapping f locally Lipschitzian around (x̄, ȳ), and let w̄ := h(x̄, ȳ). The
following assertions hold:

(i) Suppose that h in (4.1) is strictly differentiable at (x̄, ȳ) with the surjective
derivative operator ∇h(x̄, ȳ), where the range space W is Banach. Then we
have the estimate

(4.2)
D∗

MF (x̄, z̄)(z∗) ⊂
⋃

(x∗,y∗)∈D∗
Mf(x̄,ȳ)(z∗)

{
u∗ + x∗

∣∣∣ (u∗,−y∗)

∈ ∇h(x̄, ȳ)∗N (w̄;−K)
}

satisfied whenever z∗ ∈ Θ∗
N .

(ii) Suppose in addition to (i) that f is strictly differentiable at (x̄, ȳ), and that
the solution map S : domG ⇒ Y admits a local upper Lipschitzian selection
around (x̄, ȳ), and that the set K is normally regular at −w̄. Then we have
the equality

(4.3)
D∗F (x̄, z̄)(z∗) =

{
u∗ + ∇xf(x̄, ȳ)∗z∗

∣∣∣ (
u∗,−∇yf(x̄, ȳ)∗z∗

)
∈ ∇h(x̄, ȳ)∗N (w̄;−K)

}
satisfied whenever z∗ ∈ Θ∗

N for both coderivatives D∗ = D∗
N , D∗

M .

Proof. Observe that the graph of the constraint mapping G in case (4.1) admits
the inverse image representation

gphG = h−1(−K) :=
{
(x, y) ∈ X × Y

∣∣ h(x, y) ∈ −K
}
.(4.4)

By the surjectivity assumption on the derivative operator ∇h(x̄, ȳ) we have from
[20, Theorem 1.17] that, in arbitrary Banach spaces,

N
(
(x̄, ȳ); h−1(−K)

)
= ∇h(x̄, ȳ)∗N (w̄;−K).

This allows us to conclude that the normal coderivative (2.3) of the constraint
mapping (4.1) is computed by

D∗
NG(x̄, ȳ)(y∗) =

{
u∗ ∈ X∗∣∣ (u∗,−y∗) ∈ ∇h(x̄, ȳ)∗N (w̄;−K)

}
.(4.5)
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Substituting (4.5) into the coderivative estimate (3.10) of Theorem 3.3, we arrive
at inclusion (4.2) for mixed coderivative D∗

M of the frontier map F in the case of
operator constraints (4.1) and thus get (i).

To justify assertion (ii), we employ Theorem 3.4 and the coderivative represen-
tation (4.5) to arrive at equality (4.3) for the normal coderivative case D∗ = D∗

N

provided that the constraint mapping (4.1) is N -regular at (x̄, ȳ). It further follows
from [20, Theorem 1.19] that the N -regularity of the above mapping G at (x̄, ȳ)
is equivalent, by the inverse image representation and the surjectivity assumption
on ∇h(x̄, ȳ), to the normal regularity of the set K at −w̄. This gives (4.3) for the
normal coderivative D∗

NF (x̄, z̄). The mixed coderivative equality in (4.3) follows
by the above arguments from Theorem 3.4 in the mixed coderivative case and the
obvious fact that the N -regularity of any mapping G implies its M -regularity at the
reference point.

Next we consider the multiobjective problems (1.1) with respect to generalized
order optimality subject to functional constraints of the equality and inequality type
given by

G(x) :=
{
y ∈ Y

∣∣ ϕi(x, y) ≤ 0, i = 1, . . . , m,

ϕi(x, y) = 0, i = m + 1, . . . , m + r
}
,

(4.6)

where ϕi, i = 1, . . . , m+r, are real-valued functions on the Asplund space X×Y .
Constraints of this type can be treated as a particular case of the operator constraints
(4.1) with h(x, y) := (ϕ1(x, y), . . . , ϕm+r(x, y)) and K = R

m+r
+ . Similarly to

Theorem 4.1 we concentrate in the next theorem on the case when the constraint
functions ϕi are strictly differentiable at the reference point (x̄, ȳ). However, we
do not impose assumptions on their gradients ensuring the surjectivity of ∇h(x̄, ȳ)
for the corresponding mapping h(·); such assumptions reduce in setting (4.6) to the
linear independence of the gradients ∇ϕ1(x̄, ȳ), . . . ,∇ϕm+r(x̄, ȳ). Instead we re-
quire the more relaxed Mangasarian-Fromovitz constraint qualification formulated
as follows:

the gradients ∇ϕm+1(x̄, ȳ), . . . ,∇ϕm+r(x̄, ȳ) are linearly independent, and
there is v ∈ X × Y such that 〈∇ϕi(x̄, ȳ), v〉 = 0 for i = m + 1, . . . , m + r

and that 〈∇ϕi(x̄, ȳ), v〉 < 0 whenever i = 1, . . . , m with ϕi(x̄, ȳ) = 0.

(4.7)

For each y∗ ∈ Y ∗ we consider the set of Lagrange multipliers satisfying the sign
and complementary slackness conditions:

(4.8)
Λ(x̄, ȳ; y∗) =

{
λ=(λ1, . . . , λm+r) ∈ R

m+r
∣∣∣y∗+m+r∑

i=1

λi∇yϕi(x̄, ȳ)=0,

λi ≥ 0, λiϕi(x̄, ȳ) = 0 for i = 1, . . . , m
}
.
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Theorem 4.2. (coderivatives of frontier maps for multiobjective problems with
functional constraints). Let F be the frontier map for the multiobjective problem
(1.1) in the sense of generalized order optimality/efficiency from Definition 3.1 with
the constraint mapping G given by (4.6), let Θ, X , Y , and Z be the same as in
Theorem 3.3, let the domination property (3.8) hold in (1.1), and let (x̄, ȳ) ∈ gphS

for the efficient solution map (1.3). Assume in addition that all the functions ϕ i,
i = 1, . . . , m + r, are strictly differentiable at (x̄, ȳ) and that the Mangasarian-
Fromovitz constraint qualification (4.7) is satisfied. Then we have the following
assertions:

(i) If the cost f in (1.1) is locally Lipschitzian around (x̄, ȳ), then the upper
estimate

(4.9) D∗
MF (x̄, z̄)(z∗) ⊂

⋃
(x∗,y∗)∈D∗

Mf(x̄,ȳ)(z∗)

⋃
λ∈Λ(x̄,ȳ,y∗)

[
x∗ +

m+r∑
i=1

λi∇xϕi(x̄, ȳ)
]

holds whenever z∗ ∈ Θ∗
N , where Λ(x̄, ȳ, y∗) in the second union of (4.9) is

the corresponding set of Lagrange multipliers defined in (4.8).

(ii) Suppose in addition to the assumptions of (i) that the cost f is strictly differ-
entiable at (x̄, ȳ) and that the solution map S : domG ⇒ Y admits a local
upper Lipschitzian selection around (x̄, ȳ). Then we have the equality

(4.10) D∗F (x̄, z̄)(z∗) =
⋃

λ∈Λ
(
x̄,ȳ,∇yf(x̄,ȳ)∗z∗

)
[
∇xf(x̄, ȳ)∗z∗+

m+r∑
i=1

λi∇xϕi(x̄, ȳ)
]

whenever z∗ ∈ Θ∗
N for both coderivativesD∗ = D∗

N , D∗
M of the frontier map

F .

Proof. To justify (i), we employ assertion (i) of Theorem 3.3 with a subse-
quent upper approximation of the normal coderivative D∗

NG(x̄, ȳ) of the mapping
G given by the classical functional constraint system (4.6) in nonlinear differen-
tiable programming. In fact, by [20, Corollary 4.35] we have the precise formula to
compute this coderivative under the assumptions made, which ensure furthermore
the N -regularity of the mapping G at (x̄, ȳ) in the Asplund space setting:

D∗
NG(x̄, ȳ)(y∗) =

{
x∗ ∈ X∗

∣∣∣(x∗,−y∗) ∈
m+r∑
i=1

λi∇ϕi(x̄, ȳ),

λi ≥ 0, λiϕi(x̄, ȳ) = 0 for i = 1, . . . , m
}
.

(4.11)
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Substituting (4.11) into (3.10) and taking into account construction (4.8) of the La-
grange multiplier set Λ(x̄, ȳ, y∗), we arrive at the upper estimate (4.9) for mixed
coderivatives D∗

M of the frontier map under consideration and thus get (i). Fur-
thermore, equality (4.11) and the afore-mentioned N -regularity of the constraint
mapping (4.6) allow us to derive the coderivative formula (4.10) directly from
Theorem 3.4 under the assumptions made in (ii). This completes the proof of the
theorem.

Finally in this section, we consider the multiobjective optimization problem (1.1)
with the notion of efficiency from Definition 3.1 and with the constraint mapping
G given by the parameterized generalized equation

G(x) :=
{
y ∈ Y

∣∣ 0 ∈ q(x, y) + Q(x, y)
}

(4.12)

in the sense of Robinson [27], where q : X × Y → W is a single-valued base
mapping and where Q : X × Y ⇒ W is a set-valued field mapping between Ba-
nach spaces. It has been well recognized that generalized equations of type (4.12)
provide a convenient framework for modeling various parameterized equilibrium
systems including variational inequalities, complementarity problems, etc. Multi-
objective problems involving such constraints encompass and/or are closely related
to some classes of the so-called equilibrium problems with equilibrium constraints
(EPECs). We refer the reader to [21, 22, 24, 26, 32] for more details, examples,
and discussions.

The following two theorems provide, respectively, upper estimating and precise
computing the normal and mixed coderivatives of the frontier map (1.2) to the
multiobjective optimization problem (1.1) with the equilibrium constraints (4.12)
based on the general results of Theorem 3.3 and Theorem 3.4 combined with the
corresponding coderivative calculus formulas for equilibrium constraint mappings
of type (4.12). To proceed in this way, we employ some of the calculus results from
[20, Subsection 4.4.1], where the reader can find more calculus results, particular
cases, and discussions.

Theorem 4.3. (coderivatives of frontier maps for multiobjective problems with
equilibrium constraints). Consider the frontier map (1.2) in (1.1) with the constraint
system given by (4.12) and assume that the spaces X, Y, Z and the ordering set
Θ are the same as in Theorem 3.3, that the cost mapping f is locally Lipschitzian
around (x̄, ȳ) ∈ gphS with z̄ := f(x̄, ȳ), and that the domination property (3.8) is
satisfied. Suppose in addition that W is Asplund, that q : X × Y → W is locally
Lipschitzian around (x̄, ȳ), that Q : X × Y ⇒ W is closed-graph around (x̄, ȳ, w̄)
with w̄ := −q(x̄, ȳ), and that the Fredholm qualification condition

(4.13)

[
(x∗, y∗) ∈ D∗

Nq(x̄, ȳ)(v∗) ∩ ( − D∗
NQ(x̄, ȳ, w̄)(v∗))

]
=⇒ (x∗, y∗, v∗)

= (0, 0, 0)
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holds. Then we have the upper estimate

(4.14)
D∗

MF (x̄, z̄)(z∗) ⊂
⋃

(x∗,y∗)∈D∗
Mf(x̄,ȳ)(z∗)

{
u∗ + x∗

∣∣∣ ∃ v∗ ∈ W ∗ with

(u∗,−y∗) ∈ D∗
Nq(x̄, ȳ)(v∗) + D∗

NQ(x̄, ȳ, w̄)(v∗)
}

whenever z∗ ∈ Θ∗
N provided that either Q is SNC at (x̄, ȳ, w̄) or dimW < ∞.

Proof. It is easy to check that under the assumptions made we are in the setting
of Theorem 4.3 and hence have the mixed coderivative inclusion (3.10) with the
constraint mapping G given by (4.12). Applying now [20, Theorem 4.46], we get
the inclusion

D∗
NG(x̄, ȳ)(v∗) ⊂

{
u∗ ∈ X∗

∣∣∣ ∃ v∗ ∈ W ∗ with

(u∗,−y∗) ∈ D∗
Nq(x̄, ȳ)(v∗) + D∗

NQ(x̄, ȳ, w̄)(v∗)
}(4.15)

provided that the qualification condition (4.13) is satisfied and that either Q is SNC
at (x̄, ȳ, w̄) or dimW < ∞. Substituting (4.15) into (3.10) gives us inclusion (4.14)
and thus completes the proof of the theorem.

The next result ensures the equality in (4.14) for both coderivatives D∗ =
D∗

N , D∗
M under some additional assumptions on the initial data in (1.1) and (4.12).

Theorem 4.4. (computing coderivatives of frontier maps in multiobjective prob-
lems with equilibrium constraints). In addition to the assumptions of Theorem 4.3,
suppose that the solution map S : domG ⇒ Y admits an upper Lipschitzian se-
lection around (x̄, ȳ), that Q is N -regular at (x̄, ȳ, w̄), and that both mappings
f and q are strictly differentiable at (x̄, ȳ); the latter ensures that the Fredholm
qualification condition (4.13) is equivalent to the fact that the adjoint generalized
equation

0 ∈ ∇q(x̄, ȳ)∗v∗ + D∗
NQ(x̄, ȳ, w̄)(v∗)(4.16)

admits only the trivial solution v ∗ = 0. Then we have the equality

D∗F (x̄, z̄)(z∗)

=
{

u∗ + ∇xf(x̄, ȳ)∗z∗
∣∣∣ ∃ v∗ ∈ W ∗ with

(
u∗ −∇xq(x̄, ȳ)∗v∗,

−∇yf(x̄, ȳ)∗z∗ −∇yq(x̄, ȳ)∗v∗
)
∈ D∗Q(x̄, ȳ, w̄)(v∗)

}(4.17)

held for both coderivatives D ∗ = D∗
N , D∗

M whenever z∗ ∈ Θ∗
N .
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Proof. Observe first that the equivalence between the Fredholm qualification
condition (4.13) and the triviality of solutions to the adjoint generalized equation
(4.16) follows from the coderivative representation (2.8) in the case of strictly dif-
ferentiable mappings. By [20, Theorem 4.44(ii)] we have the formula

D∗
NG(x̄, ȳ)(y∗)

=
{
u∗ ∈ X∗

∣∣∣ ∃v∗ ∈ W ∗ with(
u∗ −∇xq(x̄, ȳ)∗v∗,−y∗ −∇yq(x̄, ȳ)∗v∗

) ∈ D∗
NQ(x̄, ȳ, w̄)(v∗)

}(4.18)

for computing the normal coderivative of the equilibrium constraint mapping G

from (4.12) under the validity of the assumptions of this theorem concerning G.
Furthermore, these assumptions ensure that the constraint mapping G is N -regular
at (x̄, ȳ). Substituting (4.18) into equality (3.17) of Theorem 3.4 in the normal
coderivative case, we arrive at (4.17) for D∗ = D∗

N . The fulfillment of (4.17) in
the mixed coderivative case follows by Theorem 3.4 from the assumedN -regularity
(and henceM -regularity) of the field mappingQ and the establishedN -regularity of
the equilibrium constraint mapping G at the corresponding points. This completes
the proof of the theorem.

5. CODERIVATIVES OF EFFICIENT SOLUTION MAPS

The primary goal of this section is to establish verifiable formulas for upper
estimating and/or precise computing the normal and mixed coderivatives of the op-
timal/efficient solution map S in the parametric multiobjective problem (1.1) under
consideration via the corresponding coderivatives of the frontier map F . To accom-
plish this, we employ the coderivative calculus developed in [20] and also derive
new calculus results needed in what follows, which are certainly of independent
interest.

Observe first that the optimal solution map (1.3) can be written in the constrained
generalized equation form

S(x) =
{
y ∈ G(x)

∣∣ 0 ∈ −f(x, y) + F (x)
}

(5.1)

via the initial cost and constraint data of (1.1) and the frontier map in this problem.
Comparing (5.1) with the generalized equation form (4.12) used in Section 4 for
modeling equilibrium constraints, we emphasize the two main differences:

(1) There are constraints on the decision variable y ∈ G(x) in (5.1) in contrast
to (4.12).

(2) The set-valued field mapping F of the generalized equation in (5.1)–which
is now the frontier map in the multiobjective optimization problem–depends
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only on the parameter x ∈ X . Note that, although form (4.12) involves field
mappings Q depending on both decision and parameter variables, the main
interest in theory and applications of optimization problems with equilibrium
constraints relate to the case of parameter-independent fields Q = Q(y) that
describe major models in parametric variational inequalities, complementarity
problems, KKT systems in optimality conditions, etc., where perturbation
parameters enter only the single-valued base mappings in the corresponding
generalized equations; see, e.g., [21, 25, 27, 28, 32] and the references therein.

Having in mind applications to the optimal solution map S for (1.1) written
as (5.1), we pay the main attention in this section to the coderivative analysis
of solutions to the parametric constrained generalized equations with parameter-
independent fields given by

H(x) :=
{
y ∈ P (x)

∣∣ 0 ∈ q(x, y) + Q(x)
}
,(5.2)

where q : X × Y → W , Q : X ⇒ W , and P : X ⇒ Y are, respectively, single-
valued and set-valued mappings between Banach spaces. As we can see below, the
generalized equation model (5.2) with parameter-independent fields possesses certain
specific features, which significantly distinguish it from its formally more general
counterpart with Q = Q(x, y) and allow us to establish in this way coderivative
results that do not hold for general parameter-dependent field models.

The results derived in the next two theorems–on, respectfully, upper estimating
and precise calculating the coderivatives ofH in (5.2)–extend to the constrained case
the previous developments in [20, Chapter 4] for general fields Q = Q(x, y) and
also, on the other hand, exploit specific features of parameter-independent fields in
(5.2). The first theorem gives upper estimates for both normal and mixed coderiva-
tives of solution maps to the constrained generalized equations (5.2).

Theorem 5.1. (upper estimates for coderivatives of solution maps to constrained
generalized equations with parameter-independent fields). Let q : X × Y → W ,
Q : X ⇒ W , and P : X ⇒ Y be mappings between Asplund spaces, and let
(x̄, ȳ) ∈ gphH with w̄ := −q(x̄, ȳ) ∈ Q(x̄). Assume that q is locally Lipschitz
continuous around (x̄, ȳ) and that P and Q are locally closed-graph around (x̄, ȳ)
and (x̄, w̄), respectively. Suppose also that the constraint qualification conditions

(5.3)

[
(x∗, y∗)∈D∗

Nq(x̄, ȳ)(v∗)+
(
D∗

NQ(x̄, w̄)(v∗), 0
)
, −x∗∈D∗

NP (x̄, ȳ)(y∗)
]

=⇒ x∗ = 0, y∗ = 0 and

(x∗, 0) ∈ D∗
Nq(x̄, ȳ)(v∗) ∩ ( − D∗

NQ(x̄, w̄)(v∗), 0
)

=⇒ x∗ = 0, v∗ = 0(5.4)

hold and that one of the following requirements (a), (b) is satisfied:
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(a) P is SNC at (x̄, ȳ), and either Q is SNC at (x̄, w̄) or dimW < ∞;
(b) Either Q is SNC at (x̄, w̄), or the spaces X and W are finite-dimensional.

Then for both coderivatives D ∗ = D∗
N , D∗

M of the mapping H in (5.2) we
have

D∗H(x̄, ȳ)(y∗)

⊂
{
x∗ ∈ X∗

∣∣∣ ∃ v∗ ∈ W ∗ with (x∗,−y∗) ∈ D∗
Nq(x̄, ȳ)(v∗)

+
(
D∗

NQ(x̄, w̄)(v∗), 0
)
+ N

(
(x̄, ȳ); gphP

)}
, y∗ ∈ Y ∗.

(5.5)

Proof. Since D∗
MH(x̄, ȳ)(y∗) ⊂ D∗

NH(x̄, ȳ)(y∗), it is sufficient to justify the
upper estimate (5.5) for the normal coderivative. To proceed, we observe the graph
intersection relation

gphH = gphP ∩ gphT(5.6)

for the mappings in (5.2), where the graph of T : X ⇒ Y is given by the inverse
image

gph T := g−1(Λ) =
{
(x, y) ∈ X × Y

∣∣ g(x, y) ∈ Λ with Λ := gphQ
}

(5.7)

of the graphical set Λ ⊂ X × W under the mapping g : X × Y → X × W defined
by

g(x, y) :=
(
x,−q(x, y)

)
, x ∈ X, y ∈ Y.(5.8)

To obtain the claimed estimate for the normal coderivative of the mapping H
generated by the normal cone to the graph of H , we start with applying the fun-
damental normal intersection rule from [20, Theorem 3.4] to the sets in (5.6) that
belong to the Asplund space X × Y ; in fact, we employ just [20, Corollary 3.5]
for simplicity. Observe that the assumptions made in the theorem ensures the lo-
cal closedness of the sets in (5.6) around (x̄, ȳ). Employing the afore-mentioned
intersection rule, we get the inclusion

N
(
(x̄, ȳ); gphH

) ⊂ N
(
(x̄, ȳ); gphP

)
+ N

(
(x̄, ȳ); gphT

)
(5.9)

provided that either P or T is SNC at (x̄, ȳ) and that the normal qualification
condition

N
(
(x̄, ȳ); gphP

) ∩ [ − N
(
(x̄, ȳ); gphT

)]
= {0}(5.10)

is satisfied. Assume first that the mapping P is SNC at (x̄, ȳ), which corresponds
to case (a) in the assumptions of the theorem, and proceed with the representation of
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the normal cone to gphT in (5.9) and (5.10). By the inverse image description (5.7)
we employ the calculus rule from [20, Theorem 3.8] on basic normals to inverse
images that gives the inclusion

N
(
(x̄, ȳ); gphT

) ⊂
⋃

(x∗,v∗)∈N(g(x̄,ȳ);gph Q)

D∗
Ng(x̄, ȳ)(x∗, v∗)(5.11)

provided that the qualification condition

N
(
g(x̄, ȳ); gphQ

) ∩ kerD∗
Ng(x̄, ȳ) = {0}(5.12)

is satisfied and that eitherQ is SNC at (x̄, w̄) or g−1 is PSNC at (g(x̄, ȳ), x̄, ȳ). Due
to the obvious sum representation g(x, y) = (x, 0) + (0,−q(x, y)) of the mapping
g in (5.8) we have by the sum rule from [20, Theorem 1.62(ii)] that

D∗
Ng(x̄, ȳ)(x∗, v∗) = (x∗, 0) + D∗

Nq(x̄, ȳ)(−v∗)
for all x∗ ∈ X∗ and v∗ ∈ W ∗.

(5.13)

It follows from the proof of [20, Theorem 4.46] that the mapping g−1 is PSNC
at (g(x̄, ȳ), x̄, ȳ) if (actually if and only if) dimW < ∞. It is a simple matter to
check that (5.3) and (5.4) imply (5.10) and (5.12). Substituting now the coderivative
representation (5.13) into (5.11) and (5.4) and then into (5.9) and (5.10), we arrive
at the coderivative upper estimate (5.5) under the qualification condition (5.3) and
(5.4) in case (a) of the theorem. To finish the proof in this case, observe that
the qualification condition (5.4) automatically holds when dimW < ∞ due to the
local Lipschitz continuity of q around (x̄, ȳ), since the latter property implies that
D∗

Mq(x̄, ȳ)(0) = {0} by [20, Theorem 1.44].
Consider further the remaining case when P is not assumed to be SNC at (x̄, ȳ).

Thus to get (5.9) and proceed further by the above arguments, we need to derive
verifiable conditions ensuring the SNC property of the mapping T from (5.7) at the
point (x̄, ȳ). The SNC calculus/preservation results from [20, Theorem 3.84] allow
us to conclude that the inverse image (5.7) is SNC at (x̄, ȳ) if the qualification
condition (5.12) holds and if either Q is SNC at (x̄, w̄) or g is SNC at (x̄, ȳ);
note that g is surely PSNC at this point. Taking into account the structure of g in
(5.8) and using [20, Corollary 3.30], we get that the SNC property of g at (x̄, ȳ)
is equivalent to the finite dimensionality of both spaces X and W . It allows us
to justify by the above arguments the validity of the coderivative upper estimate
(5.5) in case (b) under the corresponding assumptions made therein and therefore
to complete the proof of the theorem.

The next result presents verifiable requirements on the initial data of (5.2), gen-
erally different from those in Theorem 5.1, ensuring precise formulas for computing
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the normal and mixed coderivatives of the solution map H , which specify and
simplify both the qualification conditions and the coderivative expression–held as
equality–of Theorem 5.1.

Theorem 5.2. (computing coderivatives of solution maps to constrained gen-
eralized equations with parameter-independent fields). Let (x̄, ȳ) ∈ gphH in the
notation of Theorem 5.1, where the mapping q : X × Y → W is strictly differen-
tiable at (x̄, ȳ). The following assertions hold:

(i) Assume that P (x) ≡ Y , that all the spaces are Banach, and that the partial
derivative operator ∇yq(x̄, w̄) : X × Y → W is surjective. Then we have
the equality

(5.14)
D∗

NH(x̄, ȳ)(y∗) =
{∇xq(x̄, ȳ)∗v∗ + D∗

NQ(x̄, w̄)(v∗)
∣∣ − y∗

= ∇yq(x̄, ȳ)∗v∗
}

for the normal coderivative of H at (x̄, ȳ) whenever y ∗ ∈ Y ∗.

(ii) Let the assumptions of Theorem 5.1 be satisfied, where the qualification
conditions (5.3) and (5.4) reduce to[

0 ∈ ∇xq(x̄, ȳ)∗v∗ + D∗
NQ(x̄, w̄)(v∗) + D∗

NP (x̄, ȳ)(y∗),

y∗ = ∇yq(x̄, ȳ)∗v∗
]

=⇒ v∗ = 0.
(5.15)

Suppose in addition that P and Q are N -regular at the points (x̄, ȳ) and
(x̄, w̄), respectively. Then for both coderivatives D ∗ = D∗

N , D∗
M we get the

equality

D∗H(x̄, ȳ)(y∗) =
{
∇xq(x̄, ȳ)∗v∗ + D∗Q(x̄, w̄)(v∗) + u∗

∣∣∣
u∗ ∈ D∗P (x̄, ȳ)

(
y∗ + ∇yq(x̄, ȳ)∗v∗

)}
.

(5.16)

Proof. To justify assertion (i), observe that in this case we have

gphH = g−1(gphQ),(5.17)

where g : X × Y → W is defined by (5.8). The inverse image calculus rule from
[20, Theorem 1.17] in arbitrary Banach spaces yields the equality

N
(
(x̄, ȳ); gphH

)
= ∇g(x̄, ȳ)∗N

(
g(x̄, ȳ); gphQ

)
(5.18)

provided that the derivative operator ∇g(x̄, ȳ) : X×Y → X×W is surjective. It is
easy to conclude from the structure of g in (5.8) that the surjectivity of ∇g(x̄, ȳ) is
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equivalent to the surjective of the partial derivative ∇yq(x̄, ȳ). Thus, by elementary
calculation, we get formula (5.14) from (5.18), (5.8), and definition (2.3) of the
normal coderivative.

Let us now justify assertion (ii) for both coderivativesD∗ = D∗
N , D∗

M . Consid-
ering the normal coderivative case in (5.16), we will see from the proof below that
the assumptions made in (ii) ensure that the normal and mixed coderivatives of H
agree, and thus we simultaneously justify equality (5.16) in the mixed coderivative
case as well.

Since g is assumed to be strictly differentiable at (x̄, ȳ), we get from the coderiva-
tive representation (2.8) that the qualification conditions (5.3) and (5.4) reduce to
(5.15), and the right-hand side of (5.5) reduces to that of (5.16). Proceeding as in
the proof of Theorem 5.1, observe that the additionalN -regularity assumption on P

in (ii) and the N -regularity property of T ensure the equality in the intersection rule
(5.9) and the N -regularity of H by the equality and regularity conclusions of [20,
Theorem 3.4] in the Asplund space setting. Furthermore, the strict differentiability
of g and theN -regularity assumption on Q in (ii) imply the equality in (5.11) and the
N -regularity of T by the equality and regularity conclusions of [20, Corollary 3.16]
applied to the set indicator outer function F (·) = δ(·; gphQ) therein. Taking all
this into account and following the proof of Theorem 5.1, we justify assertion (ii)
under the assumptions made and thus complete the proof of the theorem.

Now it is easy to derive from Theorems 5.1 and 5.2 the corresponding results
on upper estimating and precise computing coderivatives of the efficient solution
map for the initial multiobjective problem (1.1) under consideration.

Theorem 5.3. (upper estimates for coderivatives of efficient solution maps
in multiobjective optimization). Let S in (1.3) be the efficient solution map for
the multiobjective optimization problem (1.1), where the spaces X , Y , and Z are
Asplund. Given (x̄, ȳ) ∈ gphS with z̄ := f(x̄, ȳ), assume that f is strictly Lipschitz
continuous around (x̄, ȳ) and that G and F are locally closed-graph around (x̄, ȳ)
and (x̄, z̄), respectively. Suppose also that the constraint qualification conditions[

(x∗, y∗) ∈ D∗
Nf(x̄, ȳ)(−z∗) +

(
D∗

NF (x̄, z̄)(z∗), 0
)
, −x∗ ∈ D∗

NG(x̄, ȳ)(y∗)
]

=⇒ x∗ = 0, y∗ = 0 and

(x∗, 0) ∈ D∗
Nf(x̄, ȳ)(−z∗) ∩ ( − D∗

NF (x̄, z̄)(z∗), 0
)

=⇒ x∗ = 0, z∗ = 0

hold and that one of the following requirements (a), (b) is satisfied:

(a) G is SNC at (x̄, ȳ), and either F is SNC at (x̄, z̄) or dimW < ∞;
(b) Either F is SNC at (x̄, z̄), or the spaces X and Z are finite-dimensional.

Then for both coderivatives D ∗ = D∗
N , D∗

M of the solution map S we have



Coderivatives of Frontier and Solution Maps in Parametric Multiobjective Optimization 2107

D∗S(x̄, ȳ)(y∗) ⊂
{
x∗ ∈ X∗

∣∣∣ ∃ z∗ ∈ Z∗ with (x∗,−y∗) ∈ D∗
Nf(x̄, ȳ)(−z∗)

+
(
D∗

NF (x̄, z̄)(z∗), 0
)
+ N

(
(x̄, ȳ); gphG

)}
, y∗ ∈ Y ∗.

Proof. Since f is strictly Lipschitz continuous around (x̄, ȳ), it follows from
[20, Theorem 3.28] that

D∗(−f)(x̄, ȳ)(z∗) = D∗f(x̄, ȳ)(−z∗), z∗ ∈ Z∗.(5.19)

Due to representation (5.1) of the efficient solution map we deduce these results
from Theorem 5.1 with q = −f , Q = F , and P = G. The proof is complete.

Similarly we deduce from Theorem 5.2 precise formulas for computing coderiva-
tives of the efficient solution map S for the multiobjective problem (1.1).

Theorem 5.4. (computing coderivatives of efficient solution maps in multiob-
jective optimization). Let (x̄, ȳ) ∈ gphS in the notation of Theorem 5.3, where the
mapping f : X×Y → Z is strictly differentiable at (x̄, ȳ). The following assertions
hold:

(i) Assume that G(x) ≡ Y , that all the spaces are Banach, and that the partial
derivative operator ∇yf(x̄, w̄) : X ×Y → Z is surjective. Then we have the
equality

D∗
NS(x̄, ȳ)(y∗) =

{
D∗

NF (x̄, z̄)(z∗) −∇xf(x̄, ȳ)∗z∗
∣∣ y∗ = ∇yf(x̄, ȳ)∗z∗

}
for the normal coderivatives of the efficient solutionmap S at (x̄, ȳ) whenever
y∗ ∈ Y ∗.

(ii) Let the assumptions of Theorem 5.3 be satisfied, where the qualification
conditions reduce to[

0 ∈ D∗
NF (x̄, z̄)(z∗) −∇xf(x̄, ȳ)∗z∗ + D∗

NG(x̄, ȳ)(y∗),

−y∗ = ∇yf(x̄, ȳ)∗z∗
]

=⇒ z∗ = 0.

Suppose in addition that G and F are N -regular at the points (x̄, ȳ) and
(x̄, z̄), respectively. Then for both coderivatives D ∗ = D∗

N , D∗
M we have the

equality

D∗S(x̄, ȳ)(y∗) =
{

D∗F (x̄, z̄)(z∗) −∇xf(x̄, ȳ)∗z∗ + u∗
∣∣∣

u∗ ∈ D∗G(x̄, ȳ)
(
y∗ −∇yf(x̄, ȳ)∗z∗

)}
.
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Proof. Follows from Theorem 5.2 with q = −f , Q = F , and P = G due to
representation (5.1) and the coderivative relation (5.19).

We conclude the paper by the following remark on robust Lipschitzian stability of
the frontier and efficient solution maps for the multiobjective optimization problem
(1.1).

Remark 5.5. (Lipschitzian stability of frontier and efficient solution maps in
multiobjective optimization). As mentioned in Section 1, one of the most important
applications of the coderivatives under consideration is the possibility to establish
complete characterizations of robust Lipschitzian stability for general set-valued
mappings between finite-dimensional and infinite-dimensional spaces. By this we
mean deriving verifiable necessary and sufficient coderivative conditions for the
Lipschitz-like property (2.9), which encompasses classical local Lipschitzian be-
havior of single-valued and set-valued mappings being robust/stable with respect of
perturbations of the initial data and being equivalent to the linear openness/covering
property of the mapping in question and to the metric regularity property of its in-
verse. Moreover, we get precise coderivative formulas for computing exact bounds
of Lipschitzian (linear openness, metric regularity) moduli. The coderivative results
derived in this vein allow us to obtain numerous applications to broad classes of
structural problems in variational analysis, optimization, and related areas due to
well-developed coderivative calculus. We refer the reader to [18, 20, 28] for more
details, discussions, and applications.

For closed-graph mappings F : X ⇒ Y between finite-dimensional spaces the
coderivative/Mordukhovich criterion for the Lipschitz-like/Aubin property of F
around (x̄, ȳ) is given by the simple formula

D∗F (x̄, ȳ)(0) = {0},(5.20)

and the exact bound (infimum) of all the Lipschitzian moduli � in (2.9) denoted by
lipF (x̄, ȳ) is computed by the coderivative norm

(5.21) lipF (x̄, ȳ)=‖D∗F (x̄, ȳ)‖ :=sup
{‖x∗‖∣∣x∗∈D∗F (x̄, ȳ)(y∗), ‖y∗‖≤1

}
;

see [18, Theorem 5.7] and [28, Theorem 9.40]. Thus the coderivative results (upper
estimates and precise formulas) obtained in this paper allow us to derive from
(5.20) and (5.21) verifiable sufficient as well as necessary and sufficient conditions
for robust Lipschitzian properties of frontier and efficient solution maps in the
multiobjective problems under consideration and also estimate/compute exact bounds
of Lipschitzian moduli.

The case of set-valued mappings F : X ⇒ Y between infinite-dimensional
spaces is significantly more involved in comparison with its finite-dimensional
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counterpart. Pointbased necessary and sufficient coderivative conditions for the
Lipschitz-like property of mappings between Asplund spaces (the necessity part
holds in arbitrary Banach spaces) are derived in [19, Theorem 3.3] and [20, Theo-
rem 4.10] via the mixed coderivative of F and the PSNC property of this mapping,
while upper and lower estimates of the exact Lipschitzian bound employ both nor-
mal and mixed coderivatives. In our further research we intend to implement the
afore-mentioned results as well as those developed in this paper to deriving veri-
fiable conditions for robust Lipschitzian stability of frontier and efficient solution
maps in various problems of constrained multiobjective optimization and equilibria.
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