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OPTIMAL ADJUSTMENT OF COMPETENCE SET
WITH LINEAR PROGRAMMING

Tsung-Chih Lai, Chieh-Yow Chianglin and Po-Lung Yu

Abstract. Management by objectives (MBO) is an effective way for enterprise
management. By setting the targets of the productivity the companies try their
best, including adjustment of resource allocation and competence, to reach
the targets. Within the same framework of productivity and of resources the
targets may not be attainable. However, by stretching a little bit, human
capacity, resources, the production coefficients, and other relevant parameters
may be adjusted so as to make the target feasible. In this article, we formulate
the program into linear programming model and study how to optimally adjust
the relevant coefficients so that the target solution could be attainable. In
case the target is unattainable, we may either utilize the bisection method or
the fuzzy linear programming techniques to revise the target as to make it a
reachable one.

1. INTRODUCTION

Management by objectives (MBO) is an efficient and effective managerial sys-
tem. Goal setting is the first crucial step in the system of MBO. At this step the
participants identify the targets to be achieved. The company then mobilizes all re-
sources and competence, including their reallocation, to reach the targets, or to move
toward the targets as close as possible. Therefore, achieving the targets becomes
one of the most important criterion in the system of MBO. In order to achieve the
targets some relevant parameters, such as the constraint coefficients and the right
hand sided resource level in linear programming (LP) problems, need to be adjusted
and/or expanded.

One of the well-known researches on the adjustment of parameters is the inverse
LP optimization. In the class of inverse LP problems, the parameters of the objective
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function with the minimum deviation from the original ones are sought so that
a given feasible solution x0 becomes an optimal one [7]. Zhang and Liu [13]
studied inverse assignment and minimum cost flow problems under L1-norm based
on optimality conditions for LP problems. Zhang and Liu [14] further tookL∞-norm
into account and investigated inverse 0-1 programming and network programming
problems. Ahuja and Orlin [1] considered more general inverse LP problems under
both L1- and L∞-norms. In addition, Troutt et al. [8] investigated a so-called
linear programming system identification problem in which both objective function
coefficients and constraint matrix are evaluated to best fit a set of historical decisions
and its corresponding used resources.

A competence set is a collection of ideas, knowledge, information, resources,
and skills for satisfactorily solving a given decision problem [10, 11]. By using
mathematical programming, a number of researchers have focused on searching for
the optimal expansion process from an already acquired competence set to a needed
one [4, 6, 12]. Feng and Yu [3] proposed a minimum spanning table algorithm to
find the optimal competence set expansion process without formulating the related
mathematical program. However, the competence set so far has been assumed to be
discrete and finite so as to represent its elements by nodes of a graph. This makes
the applications of the competence set expansion in these studies somehow limited,
because the number of feasible solutions of a linear system might not be discrete
and finite.

In this article, we focus on linear systems. While the literature on inverse LP
optimization treats only a feasible target, we intend to determine the optimal adjust-
ment of constraint coefficients in a linear system so that a given target, originally
unattainable, can be achieved. Given a target solution, we set up a competence
set adjustment model (CSA model) to study the optimal adjustment of the related
competence sets. The model will enable us to find the optimal adjustment whenever
the target is reachable.

In case the target is unattainable, we utilize the bisection method or the fuzzy
linear programming techniques to help the DM revise the target as to make it an
achievable one. The former is to find a solution which is as close as possible to the
target and the latter is to interactively select an achievable target. Then the optimal
adjustment could be derived from the aforementioned CSA model with the revised
target.

The rest of the paper is structured as follows. Section 2 states our problem more
formally. Section 3 proposes the CSA model for finding the optimal adjustment so
that x0 becomes a feasible solution. Section 4 applies the bisection algorithm to
find a best compromise between the target and the best solution before the adjust-
ment if the target is incapable of being attained. Section 5 utilizes fuzzy linear
programming technique to help the DM select an achievable target. Some examples
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and applications are also provided. Finally, Section 6 contains some concluding
remarks.

2. PROBLEM STATEMENT

Consider a standard LP problem as follows.

(1)

max z(x) = cx

s.t. Ax ≤ b,

x ≥ 0,

where c = [ci] is the 1× n objective coefficient vector, x = [xj] denotes the n × 1
decision vector, A = [aij] is the m × n consumption (or productivity) matrix, and
b = [bi] is the m × 1 resource availability vector.

Suppose that x0 is a target solution set by decision maker (DM). Let D be a
parameter matrix whose element, δij , denotes the deviation from aij , and γ be a
parameter vector whose component, γi, denotes the deviation from bi. By changing
D and γ , we tried to constructX0(D, γ), whereX0(D, γ) = {x|(A+D)x ≤ b+γ}.
Since aij = 0 implies that the resource i has no impact on the product j. Thus, aij

is not subject to adjustment. Consequently, we have δij = 0 if aij = 0.

Definition 2.1. Given a target x0, a feasible adjustment is a pair (D, γ) such
that (A + D)x0 ≤ b + γ . Thus, x0 ∈ X0(D, γ).

Let Ψ = {(D, γ)|x0 ∈ X0(D, γ)} be the set of all feasible adjustments, and
Φ = {(i, j)|aij �= 0},

Definition 2.2. Given a target solution x0, and (D0, γ0) ∈ Ψ, define the
relative adjustment measure of (D0, γ0) by

�(D0, γ0) =
∑

(i,j)∈Φ

rij(D0) +
m∑

i=1

si(γ0),

where
rij(D0) = |δ0

ij|/|aij|, aij �= 0,

and
si(γ0) = |γ0

i |/hi,

where

hi =

{ |bi|, if bi �= 0,

|Mi|, if bi = 0.
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Note that rij(D0), aij �= 0, is a relative adjustment measure with respect to the
parameter aij , while si(γ0) is that with respect to bi. Note, when bi = 0 |γ0

i |/|bi|
is not defined. The positive number Mi needs to be chosen properly to reflect the
impact of the adjustment on bi.

Remark 2.1. When needed, �(D0, γ0), rij and si can be changed into other
forms of cost functions to fit the cost of adjustment.

Definition 2.3. A feasible adjustment alternative (D ∗, γ∗) is optimal if (D∗, γ∗)
minimizes the relative adjustment measure over Ψ. That is,

�(D∗, γ∗) = min{�(D, γ)|(D, γ) ∈ Ψ}.

The adjustment deviation measure as defined in Definition 2.2 is not a linear
form because of ”absolute value”. To eliminate the sign of the absolute value in
Definition 2.2, the following Lemma 2.1 is useful.

Lemma 2.1. Given D = [δij] and γ = [γi], let āij = aij +δij and b̄i = bi +γi.
Define D+ = [δ+

ij ], D− = [δ−ij ], γ+ = (γ+
1 , . . . , γ+

m), and γ− = (γ−
1 , . . . , γ−

m) with

(2) δ+
ij =

{
āij − aij, if āij > aij ,

0, otherwise;

(3) δ−ij =

{
aij − āij, if aij > āij ,

0, otherwise;

(4) γ+
i =

{
b̄i − bi, if b̄i > bi,

0, otherwise;

(5) γ−
i =

{
bi − b̄i, if bi > b̄i,

0, otherwise.

Then:

(i) δij = δ+
ij − δ−ij and γi = γ+

i − γ−
i , or D = D+ − D− and γ = γ+ − γ−.

(ii) |δij| = δ+
ij + δ−ij and |γi| = γ+

i + γ−
i .

(iii) δ+
ij , δ

−
ij , γ

+
i , γ

−
i ≥ 0.
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Proof.

(i) Since āij = aij + δij , we have δij = āij − aij . We may replace (3) by (6) as
follows.

(6) δ−ij =

{
0, if āij > aij ,

aij − āij, otherwise.

By subtracting (6) from (2) on both sides, we have

(7) δ+
ij − δ−ij =

{
āij − aij , if āij > aij ,

āij − aij , otherwise.

By (7), we have δij = δ+
ij − δ−ij . That γi = γ+

i − γ−
i could be proved in a

similar way.
(ii) By definition,

(8) |δij| =

{
δij, if δij > 0,

−δij , otherwise.

We may rewrite (8) as follows.

(9) |δij| =

{
āij − aij, if āij > aij ,

aij − āij, otherwise.

Observe that (9) could be obtained by adding (6) to (2). Thus, |δij| = δ+
ij +δ−ij .

That |γi| = γ+
i + γ−

i can be proved similarly.
(iii) It is obviously from (2)-(5).

Note that δ+
ij is the value of āij exceeding aij and δ−ij is that of āij below aij ,

while γ+
i is the value of b̄i exceeding bi and γ−

i is that of b̄i below bi.

3. OPTIMAL ADJUSTMENT OF COMPETENCE SET

Given a target x0, we try to identify the optimal adjustment alternative (D∗, γ∗)
by minimizing the relative adjustment measure �(D∗, γ∗) over Ψ. By using the
aforementioned definitions and lemma, the optimal adjustment of competence set
for reaching x0 can be formulated as the following competence set adjustment model
(CSA model).
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Program 3.1.

(10)

z0 = min
∑

(i,j)∈Φ

{(δ+
ij + δ−ij)/|aij|} +

m∑
i=1

{(γ+
i + γ−

i )/hi}

s.t.
∑

(i,j)∈Φ

(aij + δ+
ij − δ−ij )x

0
j ≤ bi + γ+

i − γ−
i , i = 1, 2, . . . , m,

δ+
ij ≥ 0, δ−ij ≥ 0, γ+

i ≥ 0, γ−
i ≥ 0.

Note that when z0 = 0, there is no need for adjustment. That is, the original
system can produce the target solution x0.

Lemma 3.1. The optimal solution (D+∗, D−∗, γ+∗, γ−∗) to Program 3.1 has
the property that δ+∗

ij · δ−∗
ij = 0, γ+∗

i · γ−∗
i = 0, for all i, j.

Proof.

(i) if δ+∗
ij > δ−∗

ij > 0, set δ+0
ij = δ+∗

ij − δ−∗
ij and δ−0

ij = 0;

(ii) if δ−∗
ij > δ+∗

ij > 0, set δ−0
ij = δ−∗

ij − δ+∗
ij and δ+0

ij = 0;

(iii) if γ+∗
i > γ−∗

i > 0, set γ+0
i = γ+∗

i − γ−∗
i and γ−0

i = 0;

(iv) if γ−∗
i > γ+∗

i > 0, set γ−0
i = γ−∗

i − γ+∗
i and γ+0

i = 0.

Then, (D+0, D−0,γ+0,γ−0) is a better solution which leads to a contradiction.

In order to make Program 3.1 more effective in computing, we derive the fol-
lowing proposition.

Proposition 3.1. Given a target solution x0, the optimal solution (D+∗, D−∗,
γ+∗, γ−∗) to Program 3.1 has the property that D +∗ = 0,and γ−∗ = 0.

Proof. Given a target solution x0, consider two possible cases.

Case 1.
∑n

j=1 aijx
0
j ≤ bi, ∀i ∈ {1, 2, . . . , m}. Then δ+∗

ij = δ−∗
ij = γ+∗

i =
γ−∗

i = 0, for all i, j, is the optimal solution. The property obviously holds.

Case 2. ∃i ∈ {1, 2, . . . , m} such that

(11)
n∑

j=1

aijx
0
j > bi.
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(i) Assume δ+∗
ij > 0. By Lemma , we have δ−∗

ij = 0. Thus, from (11), we have∑n
j=1 (aij + δ+∗

ij )x0
j > bi. In order to satisfy (10), γ+∗

i > 0, and γ−∗
i = 0

(by Lemma ). Indeed,

(12) γ+∗
i =

n∑
j=1

(aij + δ+∗
ij )x0

j − bi.

Choose δ+0
ij = δ−0

ij = 0,

(13) γ+0
i =

n∑
j=1

aijx
0
j − bi,

and γ−0
i = 0. Note, (12)-(13) and δ+∗

ij > 0 implies that γ+∗
i > γ+0

i . Thus,
(D+0, D−0, γ+0, γ−0) is a better solution than (D+∗, D−∗, γ+∗, γ−∗), which
leads to a contradiction.

(ii) Assume γ−∗
i > 0. Then, by Lemma , γ+∗

i = 0. From 1, δ+∗
ij = 0. Thus,

n∑
j=1

(aij − δ−∗
ij )x0

j ≤ bi − γ−∗
i .

Choose δ−0
ij = δ−∗

ij , δ+0
ij = γ+0

i = γ−0
i = 0. Then (D+0, D−0, γ+0, γ−0)

is a feasible solution better than (D+∗, D−∗, γ+∗, γ−∗), which leads to a
contradiction.

According to Proposition 3.1 we could reduce the number of adjustment vari-
ables and obtain the following simplified CSA model.

Program 3.2.

(14)

min
∑

(i,j)∈Φ

{δ−ij/|aij|}+
m∑

i=1

{γ+
i /hi}

s.t.
∑

(i,j)∈Φ

(aij − δ−ij)x
0
j ≤ bi + γ+

i , i = 1, 2, . . . , m,

δ−ij ≥ 0, γ+
i ≥ 0.

The model we have described considered no adjustment bounds and no costs in-
curred by adjusting the constraint coefficients. Practically, the degrees of adjustment
may be bounded in a certain range as follows.
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(15) δ−ij ≤ lij, i = 1, 2, . . . , m, j = 1, 2, . . . , n,

(16) γ+
i ≤ ui, i = 1, 2, . . . , m,

where lij and ui denote the upper bounds for adjusting aij and bi respectively. In
addition, the budget constraint could be written as follows.

(17)
m∑

i=1




 n∑

j=1

wijδ
−
ij


 + piγ

+
i


 ≤ G,

where the cost for adjusting aij and bi is denoted respectively by wij and pi, and
G denotes the available budget for adjustment.

By combing (14)-(17), we have a more practical and general CSA model as
follows.

Program3.3.

(18)

min
∑

(i,j)∈Φ

{δ−ij/|aij|} +
m∑

i=1

{γ+
i /hi}

s.t.
∑

(i,j)∈Φ

(aij − δ−ij)x
0
j ≤ bi + γ+

i , i = 1, 2, . . . , m,

δ−ij ≤ lij, (i, j) ∈ Φ,

γ+
i ≤ ui, i = 1, 2, . . . , m,

m∑
i=1




 n∑

j=1

wijδ
−
ij


 + piγ

+
i


 ≤ G,

δ−ij ≥ 0, γ+
i ≥ 0.

Example 3.1. Consider the following LP problem.

max 90x1 + 70x2

s.t. 4x1 + 2x2 ≤ 200,

2x1 + 3x2 ≤ 240,

x1 ≥ 0, x2 ≥ 0,

where the optimal solution x∗ = (15, 70). Suppose the target solution x0 =
(20, 90) and the available budget for adjustment G = 2, 000 are set by decision



Optimal Adjustment of Competence Set with Linear Programming 2053

maker. L =
[

0.8 0.8
0.6 0.75

]
denotes the maximum deviation of adjusting aij ,

W =
[

120 90
80 100

]
denotes the unit price for adjusting aij , and p = (75, 85)

denotes the unit price for purchasing extra resources.

According to Program 3.3, the optimal adjustment problem can be formulated
as the following mathematical programming.

min (δ−11/4) + (δ−12/2) + (δ−21/2) + (δ−22/3) + (γ+
1 /200) + (γ+

2 /240)

s.t. 20δ−11 + 90δ−12 + γ+
1 ≥ 60,

20δ−21 + 90δ−22 + γ+
2 ≥ 70,

δ−11 ≤ 0.8,

δ−12 ≤ 0.8,

δ−21 ≤ 0.6,

δ−22 ≤ 0.75,

120δ−11 + 90δ−12 + 80δ−21 + 100δ−22 + 75γ+
1 + 85γ+

2 ≤ 2000,

δ−11 ≥ 0, δ−12 ≥ 0, δ−21 ≥ 0, δ−22 ≥ 0, γ+
1 ≥ 0, γ+

2 ≥ 0.

By using LINGO software, an optimal solution (adjustment) is obtained as fol-
lows.

D−∗ =

[
0 1115/2664

0 3/4

]
, γ+∗ = (3305/148, 5/2).

The total ratio of changes is 0.581344 and the total cost for adjustment is 2, 000.
The adjusted LP problem is presented as follows.

max 90x1 + 70x2

s.t. 4x1 + 1.58x2 ≤ 222.33,

2x1 + 2.25x2 ≤ 242.5,

x1 ≥ 0, x2 ≥ 0,

where the optimal solution x∗ = (20, 90). Note that the numerical values of the
parameters are rounded off.

The graphical representation of the optimal adjustment of competence set is
depicted in Figure 1 as follows.
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Fig. 1. Graphical representation of the optimal adjustment of competence set in Example
3.1.

4. BISECTION ALGORITHM

We have so far described how CSA models could be used to obtain the optimal
adjustment so that x0 becomes reachable. However, after having solved the CSA
model, we may have no solution because of the limitation in the budget level and the
bounds of adjustments. This section applies the bisection algorithm to find a revised
target solution which approximates the original one and obtains its corresponding
optimal adjustment.

Utilizing bisection algorithm is motivated in part by the behavior mechanism
[9, 10, 11] in Habitual Domains Theory (HDs) which characterized two modes of
behavior: active problem solving or avoidance justification. The former attempts
to work actively to move the perceived states closer to the ideal states; while the
latter tries to rationalize the situations so as to lower the ideal states closer to the
perceived states.

Figure 2 graphically illustrates the bisection method. When x0 is unlikely to
be reached, (refer to Figure 2) we bisect the interval [xL, xR] and try to obtain the
optimal adjustment of competence set with xM (1) as the target. If xM(1) is still
impossible to be reached, then we bisect the interval [xL, xM(1)] and try to obtain
the optimal adjustment of competence set with xM (3) as the target. Otherwise,
we bisect the interval [xM(1), xR] and try to obtain the optimal adjustment of
competence set with xM(2) as the target. The above procedures continue until the
sequence {xM(n)} converges within certain bound.

Based on the two modes of behavior in HDs, we operate the bisection algo-
rithm as Algorithm 1 to find a revised target solution and its corresponding optimal
adjustment.

Let x∗ be the optimal solution in the original system, and z(x∗) be the objective
value at x∗ (with respect to original objective function in (1)),
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Fig. 2. Graphical representation of the bisection method.

Algorithm 4.1.
Step 1. Set xL = x∗, where xL denotes the left end point, xR = x0, where xR

denotes the right end point, and xM = xR, where xM denotes the middle point of
the interval [xL, xR].

Step 2. Choose an ε > 0, where ε denotes the tolerant discrepancy between
z(xM ) and z(xL).

Step 3. Solve (18) with xM as the target to obtain D− and γ+.

Step 4. If (18) has no solution, set xR = xM and go to Step 6; otherwise, go
to Step 5.

Step 5. If the deviation of the objective value between xM and xL is smaller
than ε, that is |z(xM) − z(xL)| < ε, stop and xM is the desired critical target;
otherwise, set xL = xM and go to Step 6.

Step 6. Set xM = (xL + xR)/2 and go back to Step 3.

The flow chart of the Algorithm 1 is depicted in Figure 3.

Theorem 4.1. Let {xM(n)} be the sequence of middle points generated by
the above algorithm. The sequence converges to a critical point x c.

Proof. The proof of this theorem is similar to that of the bisection method. For
details, see Mathews and Fink [5].
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Fig. 3. Flow chart of the Algorithm 4.1.

Remark 4.1. Let ∆x = x0 − xc. We may interpret ∆x as the quantity of
products that needs outsourcing if the target must be reached.

Example 4.1. (Continue Example 3.1.) When the decision maker sets the
target to x0 = (70, 100), we may obtain no solution by applying the CSA model.
In this case, we utilize the bisection algorithm. By choosing ε = 10, we obtain the
sequence of middle points, xM(n), as follows:

xM (n)= (42.5, 85), (28.75, 77.5), (35.63, 81.25), (39.06, 83.13), (37.34, 82.19),

(38.2, 82.66), (38.63, 82.89), (38.42, 82.77), (38.53, 82.83), (38.47, 82.8).

The revised target solution is (38.47, 82.80). The optimal adjustment corre-
sponding to the revised target can be derived from the CSA model as follows.

D− =

[
0.8 0.8

0.6 0.75

]
, γ+ = (22.47, 0.28).

The total ratio of changes is 1.26206 and the total cost for adjustment is 2, 000.
The adjusted LP problem is listed as follows.
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max 90x1 + 70x2

s.t. 3.2x1 + 1.2x2 ≤ 222.47,

1.4x1 + 2.25x2 ≤ 240.28,

x1 ≥ 0, x2 ≥ 0,

where the optimal solution x∗ = (38.47, 82.80). Note that the numerical values of
the parameters are rounded off.

5. TARGET REVISION BY THE FUZZY LINEAR PROGRAMMING

The use of the fuzzy linear programming (FLP) technique in this study is mo-
tivated in part by the nature of the optimal adjustment of competence set problems
that some constraint coefficients may be adjusted within some tolerant ranges. We
may treat these coefficients with the fuzzy sets and then formulate a FLP model with
a crisp objective function. In turn, the revised target could be derived by solving
the FLP model.

While the bisection method finds a revised target solution which approximates
the original optimal solution (a status quo), the FLP techniques allow the decision
maker (DM) to interactively select an achievable target. This section demonstrates
how the FLP can help the DM to interactively revise the unattainable targets as to
get the final target.

FLP problems [2] with a crisp objective function could be represented as fol-
lows.

(19)

max z(x) = cx

s.t. Ãx ≤ b̃,

x ≥ 0,

where Ã is the m×n consumption (or productivity) matrix whose elements ãij are
fuzzy sets with membership function µãij , and b̃ is the m × 1 resource availability
vector whose components b̃i are fuzzy sets with membership function µb̃i

. After
having defined the appropriate membership function and α parameter, we could
transform (19) into (20) as follows.

(20)

max z(x) =
n∑

j=1

cjxj

s.t.
n∑

j=1

µ−1
ãij

(α)xj ≤ µ−1
b̃i

(α), ∀i = 1, 2, . . . , m,

xj ≥ 0, ∀j = 1, 2, . . . , n.
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In order to apply (20) to solve FLP problems, membership functions have to
be defined for the fuzzy sets of the constraint coefficients first. Assume that aij ∈[
a0

ij, a
0
ij + dij

]
(interval from a0

ij to a0
ij + dij), and bi ∈

[
b0
i − hi, b

0
i

]
. Note that

dij and hi are the maximum tolerable deviation from a0
ij and b0

i respectively. Given
α ∈ [0, 1], let aij(α) = a0

ij + (1−α)dij , and bi(α) = b0
i − (1−α)hi. To illustrate

the method, assume that the membership functions of the fuzzy sets ãij and b̃i are
linear as follows.

µãij (aij(α)) =




1, if aij(α) < a0
ij ,

α, if a0
ij ≤ aij(α) ≤ a0

ij + dij ,

0, if aij(α) > a0
ij + dij .

µb̃i
(bi(α)) =




1, if bi(α) > b0
i ,

α, if b0
i − hi ≤ bi(α) ≤ b0

i ,

0, if bi(α) < b0
i − hi.

The graphical representations of the above two membership functions are de-
picted in Figure 4.

Fig. 4. The membership functions of the fuzzy sets Ã and b̃.

Given α, confidence or tolerable level, the following linear programming prob-
lem can be set to find the desired target.

(21)

max z(x) =
n∑

j=1

cjxj

s.t.
n∑

j=1

aij(α)xj ≤ bi(α), ∀i = 1, 2, . . . , m,

xj ≥ 0, ∀j = 1, 2, . . . , n.
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Therefore, by varying α within 0 to 1 we can derive a set of optimal solutions
for the corresponding targets.

Example 5.1. (Continue Example 3.1) When the DM set the target to x0 =
(70, 100), we may obtain no solution by applying the CSA model. In this case, we
utilize the fuzzy linear programming techniques as follows.

max 90x1 + 70x2

s.t. [3.2α=1, 4α=0]x1 + [1.2α=1, 2α=0]x2 ≤ [200α=0, 226.6α=1],

[1.4α=1, 2α=0]x1 + [2.25α=1, 3α=0]x2 ≤ [240α=0, 263.5α=1],

x1 ≥ 0, x2 ≥ 0.

Suppose that the value of α has been given by the DM as 0.8, a linear program-
ming problem could be obtained as follows by (21).

max 90x1 + 70x2

s.t. 3.36x1 + 1.36x2 ≤ 221.28,

1.52x1 + 2.40x2 ≤ 258.8,

x1 ≥ 0, x2 ≥ 0,

where the optimal solution is x∗ = (29.87, 88.92). Then, we may solve Program ??
with x∗ as the target and obtain the corresponding optimal adjustment of competence
set listed as follows.

D− =

[
0.8 0.8

0.04 0.75

]
, γ+ = (2.288, 18.614).

Table 1 shows the optimal adjustments of competence set by varying the value
of α within {0, 0.1, 0.2, . . . , 1}, where x∗ presents the optimal solution derived
from solving (21) with a given α. The optimal adjustment of competence set
is obtained by solving Program 3.3 with x∗ as the target. The total adjustment
ratio corresponding to the optimal adjustment is also listed. Note that by setting
α = 0.9 and α = 1 we obtain the revised target: x∗ = (32.37, 91.99) and x∗ =
(35.08, 95.28) respectively and there is no feasible adjustment. This is due to the
constraints imposed on the budget and on the tolerant ranges of adjustment. In this
case, the DM may decrease the value of α or apply the aforementioned bisection
method.
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Table 1. Optimal adjustment of competence set with different α values.
α x∗ Optimal adjustment of competence set Total

adjustment ratio
0.0 (15,70) D− = 0, γ+ = 0 0

0.1 (16.47,71,93) D− = 0, γ+ = (9.47, 8.73) 0.085075

0.2 (18.03,73.97) D− =

[
0 0
0 0.166781

]
, γ+ = (9.47, 8.73) 0.179365

0.3 (19.68,76.12) D− =

[
0 0.063787
0 0.364162

]
, γ+ = (26.1046, 0) 0.283803

0.4 (21.45,78.39) D− =

[
0 0.214547
0 0.485649

]
, γ+ = (25.7617, 0) 0.397965

0.5 (23.35,80.79) D− =

[
0 0.365915
0 0.607377

]
, γ+ = (25.4177, 0) 0.512505

0.6 (25.37,83.33) D− =

[
0 0.516803
0 0.728789

]
, γ+ = (25.0748, 0) 0.626705

0.7 (27.54,86.04) D− =

[
0 0.78
0 0.75

]
, γ+ = (14.90, 8.67) 0.751935

0.8 (29.87,88.92) D− =

[
0.8 0.8
0.04 0.75

]
, γ+ = (2.288, 18.614) 0.959017

0.9 (32.37,91.99) No feasible adjustment N/A

1.0 (35.08,95.28) No feasible adjustment N/A

6. CONCLUSIONS

In this article, given a specific target,x0, we have considered a class of optimal
adjustment of competence set problems. A competence set adjustment model (CSA
model) has been formulated to provide useful information for the optimal adjust-
ment of the competence set. The bisection algorithm (BA) and the fuzzy linear
programming (FLP) techniques have been utilized to search for a good target, when
the original target is not attainable. The former is to find a solution which is as
close as possible to the target from a status quo, and the latter is to help the DM to
identify an achievable target depending on fuzzy tolerance. The optimal adjustment
could then be derived from the aforementioned CSA model with the new target
obtained.

A number of research problems remain to be explored. For example: (i) What
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is the relationship between the optimal adjustment of competence set problem and
the ordinary goal programming? (ii) How to effectively determine the optimal
adjustment if a set of targets, instead of a single target, is given?
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