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ON A DIFFERENCE EQUATION MOTIVATED BY A HEAT
CONDUCTION PROBLEM

Jong-Yi Chen

Abstract. Let {τn} be a sequence of numbers recursively defined by
f(τn) + f(τn + τn−1) + · · ·+ f(τn + τn−1 + · · ·+ τ1) = 1,

where f is a continuous and strictly decreasing function on (0,∞) with
f(0+) ≥ 1, and f(∞) = 0. Assume the convexity of log f or log |f′|. It
can be shown that {τn} is increasing. Thus lim τn exists in (0,∞].

The difference equation above is motivated by a heat conduction problem
studied in Myshkis (1997) and Chen, Chow and Hsieh (2006).

1. INTRODUCTION

In this note we study the behaviour of a sequence {τn} which is recursively
defined by

(1.1)
n∑

j=1

f(
n∑

s=j

τs) = 1 ; n = 1, 2, ...,

where f is a continuous and strictly decreasing function on (0,∞) with f(0+) ≥ 1,

and f(∞) = 0.We will characterize the behaviour of the sequence {τn} by assuming
the convexity of log f or log |f′|.

Theorem 1.1. Assume f : R
+ → R

+ satisfies the conditions in (1.1). If
(log f)′′ or (log |f ′|)′′ is nonnegative (positive), then the sequence {τn} defined in
(1.1) is (strictly) increasing. Moreover,

lim τn = β < ∞ iff
∞∑

n=1

f(n) < ∞.
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In that case, β is uniquely determined by the equation
∑∞

n=1 f(nβ) = 1.

We remark that it is not difficult to check that

τ1 < τ2 = τ3 = · · · = τn = · · · in case f(x) = cqx with c > 1 > q > 0.

It indicates that if (log f)′′ or (log |f ′|)′′ is nonnegative only, then {τn} may not be
strictly increasing.

Also note that the condition (log f)′′ ( or (log |f ′|)′′) is nonnegative on (0,∞)
can be replaced by log f ( or log |f′|) is convex on (0,∞), which is slightly weaker.
By Proposition 5.17 in Royden (1988) [8], we may use any of the one-sided deriva-
tives of log f ( or of log |f′|) to replace (log f)′ ( or (log |f ′|)′).

It is easy to verify that f(x) = cx−δ, where c and δ are positive constants,
satisfies the condition in Theorem 1.1. Hence we get the following.

Corollary 1.2. ([3-5]). Let {τn} be defined in (1.1) with f(x) = cx−δ on
(0,∞), then {τn} is strictly increasing. Moreover, lim τn = ∞ for 0 < δ ≤ 1
and lim τn = (cζ(δ))1/δ for δ > 1. Here, ζ(s) =

∑∞
k=1 k−s is the Riemann-Zeta

function.

This research is motivated by a heat conduction problem studied by Myshkis
(1997) [6]. Assume the initial temperature of an infinite homogeneous medium set
in Rd is 0 and at time 0, a heat impulse of size b is applied at the origin. When the
temperature at the origin drops to a preset threshold u0 > 0, another heat impulse of
the same size is applied at the origin. The same procedure is repeated over and over.
Let t0 = 0, t1, t2, ..., tn−1 be the heating times obtained in this way. By solving the
heat equation

(1.2)

 ∂u/∂t = a ·
d∑

i=1

∂2u/∂x2
i ,

u(x, t+n−1) = u(x, tn−1) + b · δ(x),

where a is the heat conduction coefficient of the medium and δ(x) the Dirac function
at x = 0, it is not difficult to obtain from the superposition principle that for
tn−1 < t,

u(x, t) = b

n−1∑
j=0

(
1

4πa(t − tj)

)d/2

exp

(
−
∑d

i=1 x2
i

4a(t − tj)

)
.

The heating condition u(0, tn) = u0 then implies

u0 = u(0, tn) = b

n−1∑
j=0

(
1

4πa(tn − tj)

)d/2

.
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For j ≥ 1, define τj = 4πa(tj − tj−1)(u0/b)2/d as the normalized waiting time
between two consecutive heating times tj−1 and tj . A simple computation shows

(1.3) τ1 = 1 and
n∑

j=1

{
n∑

s=j

τs}−d/2 = 1 for n ≥ 2.

Corollary 1.2 can be applied to (1.3) if we take c = 1 and δ = d/2. When the heat
problem (1.2) is set in a general domain like a finite or semi-infinite region plus
some boundary conditions, its fundamental solution becomes very complicated and
can at most be expressed in sum of infinite series. This motivates us to study (1.1)
as a generalization to (1.3).

Note that Chen, Chow and Hsieh (2000) [5] showed that for the heat problem
(1.2), lim τn/n = π2/2 for d = 1 as conjectured in Myshkis (1997). Then Chang,
Chow and Wang (2003) [4] showed that lim τn/ logn = 1 for d = 2. These results
are not covered by Theorem 1.1. It is interesting to see how to get some similar
results for (1.1).

2. PROOF OF THEOREM 1.1

First we study the increasing property of the sequence {τn}. By (1.1), f(τ1) =
1 = f(τ2)+f(τ2 +τ1) > f(τ2). Since f(t) is strictly decreasing, we have τ2 > τ1.
By induction, it suffices to check τn+1 > τn under the hypothesis that

(2.1) τn > τn−1 > · · · > τ1.

Define T̃ k
j =

∑k
s=j τs and Φ(t) = f(t) +

∑n
j=1 f(t + T̃ n

j ), which is strictly de-
creasing. Assume temporarily that

(2.2)
n∑

j=1

f(τn + T̃ n
j ) >

n−1∑
j=1

f(T̃ n
j ).

Adding f(τn) to both sides above and using (1.1),

Φ(τn) > f(τn) +
n−1∑
j=1

f(T̃ n
j ) = 1 =

n+1∑
j=1

f(T̃ n+1
j ) = Φ(τn+1),

from which the desired inequality τn+1 > τn follows.
It remains to verify (2.2). First we show it under the assumption that (log f)′′ >

0, which implies f ′/f is strictly increasing.
Since both {T̃ n

j }, {T̃ n−1
j } are strictly decreasing in j and T̃ n

j+1 > T̃ n−1
j for

1 ≤ j ≤ n − 1 under the induction hypothesis (2.1), we have

(2.3) f(T̃ n−1
j ) > f(T̃ n

j+1) > f(T̃ n
1 ) and f(τn−1) > f(T̃ n−1

j−1 ).
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Denote q(t) = f(τn + t)/f(t). Because f ′/f is strictly increasing, q′(t) =
{f(τn + t)/f(t)} · (f ′(τn + t)/f(τn + t)−f ′(t)/f(t)) > 0. So q is strictly increas-
ing. Therefore for 2 ≤ n and 1 ≤ j ≤ n − 1,

(2.4) q(T̃ n
1 ) > q(T̃ n

j+1) > q(T̃ n−1
j ) and q(T̃ n−1

j−1 ) > q(τn−1) > 0.

For brevity, introduce aj = f(T̃ n
j+1), αj = f(T̃ n−1

j ), bj = q(T̃ n
j+1) and βj =

q(T̃ n−1
j ). Note that f(τn + T̃ n

j ) = f(T̃ n
j ) · q(T̃ n

j ) = aj−1bj−1 and f(T̃ n
j ) =

f(T̃ n−1
j + τn) = f(T̃ n−1

j ) · q(T̃ n−1
j ) = αjβj. By (2.3) and (2.4), we have b0 >

bj > βj > 0 and αj > aj > 0 for 1 ≤ j ≤ n − 1 and 2 ≤ n. Using (1.1), the
difference on both sides of (2.2) is

(2.5)

n−1∑
j=0

ajbj −
n−1∑
j=1

αjβj = a0b0 +
n−1∑
j=1

(aj(bj − βj) + βj(aj − αj))

> a0b0 + b0

n−1∑
j=1

(aj − αj) = b0(
n−1∑
j=0

aj −
n−1∑
j=1

αj) = 0.

This verifies (2.2) and thus {τn} is strictly increasing under the assumption that
(log f)′′ > 0. Under the weaker assumption that (log f)′′ ≥ 0, we have f ′/f is
increasing. It is easy to see that all the strictly inequality from (2.1) to (2.5) can be
replaced by ≥. Hence {τn} is increasing.

Now we check (2.2) under the assumption that (log |f ′|)′′ > 0, which im-
plies f ′′/f ′ is strictly increasing. For brevity, denote δi =

∑n−1
j=n−i τj and γi =∑n

j=n−i+1 τj. By the induction hypothesis (2.1), δi < γi for 1 ≤ i ≤ n − 1.

Denote g(t) = −f ′(t). Since f is strictly decreasing with f(∞) = 0, it is easy
to verify that g(t) > 0 and g(∞) = 0. In terms of g, (1.1) becomes

(2.6)
∫ γ1

δ1

g(t)dt +
∫ γ2

δ2

g(t)dt + · · ·+
∫ γn−1

δn−1

g(t)dt =
∫ ∞

γn

g(t)dt.

Define φk(u) on [γn,∞) for 1 ≤ k ≤ n − 1 in the following way :∫ φk(u)

δk

g(t)dt =

(∫ γk

δk
g(t)dt∫∞

γn
g(t)dt

)∫ ∞

u

g(t)dt.

Note that φk(γn) = γk and φk(∞) = δk. Moreover, φ
′
k(u) < 0 and thus φk(u) is

strictly decreasing on [γn,∞). Rewrite (2.6) as∫ φ1(u)

δ1

g(t)dt +
∫ φ2(u)

δ2

g(t)dt + · · ·+
∫ φn−1(u)

δn−1

g(t)dt =
∫ ∞

u

g(t)dt.
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Differentiating both sides of this equation, we get

(2.7) g(u) +
n−1∑
j=1

g(φj(u))φ′
j(u) = 0.

Let H(u) = −g(u) +
∑n−1

j=1 g(δj)− g(φj(u)) on [γn,∞). Using g = −f ′ and
thus g ′ = g f ′′

f ′ ,

(2.8) H ′(u) = −(g · f ′′

f ′ )(u)−
n−1∑
j=1

(g · f ′′

f ′ )(φj(u)) · φ′
j(u).

Because f ′′/f ′ is strictly increasing, g > 0 and φj(u) ≤ γj < γn, φ′
j(u) < 0

for u ≥ γn and 1 ≤ j ≤ n − 1, we have

−(g · f ′′

f ′ )(φj(u)) · φ′
j(u) ≤ −f ′′

f ′ (u) · g(φj(u)) · φ′
j(u).

By (2.7),

(2.9) H ′(u) < −f ′′

f ′ (u)

g(u) +
n−1∑
j=1

g(φj(u))φ′
j(u)

 = 0 for u ≥ γn,

which means H(u) is strictly decreasing for u ≥ γn. Since H(∞) = 0, we assert
that H(u) > 0 on [γn,∞). In particular,

(2.10) H(γn) =
n∑

j=1

f ′(γj) −
n−1∑
j=1

f ′(δj) > 0.

By continuity and (1.1),

(2.11)
n∑

j=1

f(γj + x) >
<

n−1∑
j=1

f(δj + x) for x >
< 0 and small.

We claim that
∑n

j=1 f(γj + x) >
∑n−1

j=1 f(δj + x) for all x > 0. Then letting
x = τn, we obtain (2.2) and thus {τn} is strictly increasing as desired. Suppose the
contrary. By (2.11), there exists a number v > 0 such that

(2.12)
n∑

j=1

f(γj + x) >

n−1∑
j=1

f(δj + x) for 0 < x < v,
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but
∑n

j=1 f(γj + v) =
∑n−1

j=1 f(δj + v). Repeating the same reasoning from (2.6)
on, but with δj and γj replaced by δj + v and γj + v respectively, we would obtain

n∑
j=1

f(γj + v + x) >
<

n−1∑
j=1

f(δj + v + x) for x >
< 0,

which contradicts to (2.12). This verifies the claim and thus the conclusion.
If we assume the weaker condition that (log |f ′|)′′ ≥ 0, then f ′′/f ′ is increasing

only. Equation (2.9) becomes H′(u) ≤ 0 in (γn,∞) and then it is possible that
H(γn) = 0 in (2.10). In that case, H(u) = 0 for u ≥ γn due to H ′(u) ≤ 0 and
H(∞) = 0. Consequently, H′(u) = 0 on (γn,∞). In view of (2.8) and (2.9),

−(g · f ′′

f ′ )(φj(u)) · φ′
j(u) = −f ′′

f ′ (u) · g(φj(u)) · φ′
j(u)

for 1 ≤ j ≤ n − 1 and u ∈ (γn,∞). Since g > 0 and φ′
j < 0, we get

f ′′

f ′ (φj(u)) =
f ′′

f ′ (u)

for 1 ≤ j ≤ n − 1 and u ∈ (γn,∞). Taking j = 1 and u = ∞, we have
(f ′′/f ′)(τn−1) = (f ′′/f ′)(∞). This implies that f ′′/f ′ is a constant function on
[τn−1,∞) due to the monotone assumption of f ′′/f ′. Note that f(∞) = 0. A
simple integration shows f(x) = cqx on [τn−1,∞), where c > 0 and 1 > q > 0
are constants. It is then easy to check that

τ1 < τ2 < · · · < τn = τn+1 = τn+2 = · · · .

So we can only claim that {τk; k ≥ 1} is increasing as remarked after Theorem 1.1.

Once we know {τk; k ≥ 1} is increasing. What remains is easy. Let lim τn =
β ≤ ∞. If β < ∞, we get from applying Monotone Convergence Theorem to (1.1)
that

(2.13)
∞∑

n=1

f(nβ) = 1.

Since f is strictly decreasing,
∑∞

n=1 f(n) = ∞ iff
∑∞

n=1 f(nx) = ∞ for any
x > 0. In that case, it is not difficult to see that β = ∞ by contradiction. Otherwise,
β < ∞ and is uniquely determined by (2.13).



On a Difference Equation Motivated by a Heat Conduction Problem 2007

ACKNOWLEDGMENT

The author wishes to thank Professor Y. Chow, Institute of Math., Academia
Sinica, Taiwan, for his help on this work.

REFERENCES

1. J. Y. Chen and Y. A. Chow, A heat conduction problem with the temperaturemeasured
away from the heating point, J. Difference Equ. Appl., 13 (2007), 431-441.

2. J. Y. Chen, Y. Chow and J. Hsieh, Some results on a heat conduction problem by
Myshkis, J. Comp. Appl. Math., 190 (2006), 190-199.

3. J. Y. Chen and Y. Chow , An inequality with application to a difference equation,
Bull. Austral. Math. Soc., 69 (2004), 519-528.

4. C. H. Chang, Y. Chow and Z. Wang, On the asymptotic behaviour of heating times,
Anal. Appl.( Singap.), 1 (2003), 429-432.

5. Y. M. Chen, Y. Chow and J. Hsieh, On a heat conduction problem by Myshkis, J.
Difference Equ. Appl., 6 (2000), 309-318.

6. A. D. Myshkis, On a recurrently defined sequence, J. Difference Equ. Appl., 3
(1997), 89-91.

7. A. D. Myshkis, Autoregulated impulse point heating of a finite medium,Math. Notes,
79 (2006), 92-96.

8. H. L. Royden, Real analysis, 3rd edition, Pearson Education, 1988.

Jong-Yi Chen
Department of Mathematics,
National Hualien University of Education,
Hualien, Taiwan
E-mail: jongyi@mail.nhlue.edu.tw


