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THE CAUCHY-NEUMANN PROBLEM FOR PARABOLIC EQUATIONS
IN DOMAINS WITH CONICAL POINTS

Nguyen Manh Hung and Nguyen Thanh Anh

Abstract. The purpose of this paper is to establish the well-posedness and
the regularity of solutions of the Cauchy-Neumann problem for second order
parabolic equations in cylinders with the base containing conical points.

1. INTRODUCTION

We are concerned with initial boundary value problems for parabolic equations
in nonsmooth domains. The Cauchy - Dirichlet problem for higher order parabolic
systems in domains containing conical points has been investigated in [5, 6]. The
Cauchy - Neumann problem in domains with edges has been dealt with for the
classical heat equation in [9]. In the present paper, we consider the Cauchy -
Neumann problem for general second order linear parabolic equations in domains
containing conical points.

The main goal of this paper is to obtain the regularity of the solution of the
problem. We will investigate the problem by modifying the approach suggested
in [2, 5]. First, we study the unique solvability and the regularity with respect
to the time variable for the generalized solution in the Sobolev space H1,1(Q)
by Galerkin’s approximate method. After that, we take the term containing the
derivative in time of the unknown function to the right-hand side of the equation
such that the problem can be considered as an elliptic one. With the help of some
auxiliary results we can apply the results for elliptic boundary value problems and
our previous ones to deal with the regularity with respect to both of time and spatial
variables of the solution.

Our paper is organized as follow. In Sec. 2, we introduce some notations and
the formulation of the problem. The main results, Theorems 3.1 and 3.2, are stated

Received May 6, 2007, accepted November 30, 2007.
Communicated by Jen-Chih Yao.
2000 Mathematics Subject Classification: 35D05, 35D10, 35K25, 35G10.
Key words and phrases: Parabolic equation, Initial boundary value problem, Nonsmooth domains,
Generalized solutions, Regularity.

1849



1850 Nguyen Manh Hung and Nguyen Thanh Anh

in Sec. 3. Sec. 4 is devoted to establish the unique existence and the regularity
in time of the generalized solution of the problem. In Sec. 5, we present some
auxiliary results and the proofs of Theorems 3.1, 3.2.

2. NOTATION AND FORMULATION OF THE PROBLEM

Let G be a bounded domain in Rn(n � 2) with the boundary ∂G. We suppose
that Γ = ∂G \ {0} is a smooth manifold and G in a neighborhood of the origin 0
coincides with the cone K = {x : x/|x| ∈ Ω} where Ω is a smooth domain on the
unit sphere Sn−1 in R

n. Set Qt = G × (0, t) for each t ∈ (0,+∞), Q = Q∞ =
G × (0,+∞), Q̃ = (G \ {0}) × [0,+∞), ST = Γ × [0, T ] and S = S∞ = Γ ×
[0,+∞). We will use notations: ∂xj = ∂/∂xj, uxj = ∂xju, utk = ∂k

t u, r = |x| =( ∑n
k=1 x

2
k

) 1
2 . For each multi-indexα = (α1, . . . , αn) ∈ Nn, set |α| = α1+· · ·+αn,

and ∂α = ∂α
x = ∂α1

x1
. . . ∂αn

xn
.

In this paper we consider the following problem

(2.1) ut − Lu = f in Q,

(2.2) Nu = 0, on S,

(2.3) u|t=0 = ϕ on G,

where L is a formal self-adjoint differential operator of second order defined in Q
with coefficients infinitely differentiable in Q,

Lu = L(x, t, ∂)u=
n∑

j,k=1

(ajk(x, t) uxk
)xj + a(x, t)u

(ajk = akj , j, k = 1, . . . , n, a = a),

and

N = N (x, t, ∂) =
n∑

j,k=1

ajk(x, t)uxk
cos(ν, xj)

is the conormal derivative on S, ν is the unit exterior normal to S.
Let us introduce some functional spaces which will be used in this paper.
Let l be a nonnegative integer. We define the weighted space V l

2,γ(G) (γ ∈ R)
as the closure of C∞

0 (G \ {0}) with respect to the norm

‖u‖V l
2,γ(G) =

( ∑
|α|�l

∫
G r

2(γ+|α|−l)|∂αu|2dx) 1
2 ,
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and the weighted space H l
γ(G) as the closure of C∞(G) with respect to the norm

‖u‖H l
γ(G) =

( ∑
|α|�l

∫
G r

2γ|∂αu|2dx)1
2 .

For γ = 0 the space H l
0(G) coincides with the usual Sobolev space H l(G) and

H0
0 (G) coincides with L2(G).

If l � 1, then V l− 1
2

2,γ (Γ), H
l− 1

2
γ (Γ) denote the spaces consisting of traces of

functions from respective spaces V l
2,γ(G), H l

γ(G) on Γ with the respective norms

‖u‖
V

l− 1
2

2,γ (Γ)
= inf

{‖v‖V l
2,γ(G) : v ∈ V l

2,γ(G), v|Γ = u
}
,

‖u‖
H

l−1
2

γ (Γ)
= inf

{‖v‖H l
γ(G) : v ∈ H l

γ(G), v|Γ = u
}
.

By H−1(G) we denote the dual space to H1(G). We write 〈., .〉 to denote the
pairing between H1(G) and H−1(G), and (., .) to denote the usual inner product
in L2(G). By identifying L2(G) with its dual, we have the continuous imbeddings
H1(G) ↪→ L2(G) ↪→ H−1(G) with the equation

〈f, v〉 = (f, v) for f ∈ L2(G) ⊂ H−1(G), v ∈ H1(G).

Let X, Y be Banach spaces. We denote by L2(0, T ;X) (0 < T � +∞) the
space consisting of all measurable functions u : (0, T ) → X with the norm

‖u‖L2(0,T ;X) =
( ∫ T

0
‖u(t)‖2

Xdt
) 1

2 ,

and by H1(0, T ;X, Y ) the space consisting of all functions u ∈ L2(0, T ;X) such
that the generalized derivative ut = u′ exists and belongs to L2(0, T ; Y ). The norm
in H1(0, T ;X, Y ) is defined by

‖u‖H1(0,T ;X,Y ) =
(‖u‖2

L2(0,T ;X) + ‖ut‖2
L2(0,T ;Y )

) 1
2 .

For shortness we set

H l,0(QT ) = L2(0, T ;H l(G)), H1,1(QT ) = H1(0, T ;H1(G), L2(G)),

H−1,0(QT ) = L2(0, T ;H−1(G)), H−1,1(QT ) = H1(0, T ;H−1(G), L2(G)),

H l,0
γ (QT ) = L2(0, T ;H l

γ(G)), H
l+ 1

2
,0

γ (ST ) = L2(0, T ;H
l+ 1

2
γ (Γ)),

and
H1,1(QT ) = H1(0, T ;H1(G), H−1(G)).
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Finally, by H2l,l
loc (Q̃) we denote the space of all functions having generalized deriva-

tives ∂αutk , |α|+ 2k � 2l, in Q such that∫
P

∑
|α|+2k�2l

|∂αutk |2dxdt < +∞

for every compact subset P of Q̃, and by H2l,l
γ (QT ) we denote the weighted Sobolev

space with respect to the norm

‖u‖
H2l,l

γ (QT )
=

(∫
QT

(
r2γ

∑
|α|+2k�2l

|∂αutk |2 +
l∑

k=0
|utk|2

)
dxdt

) 1
2
.

We set

B(t, u, v) =
∫

G

( n∑
j,k=1

ajk uxk
vxj + auv

)
dx.

Throughout this paper, we assume that coefficients of L together with all their
derivatives are bounded in Q and the form B(t, ., .) is H1(G)−coercive uniformly
with respect to t ∈ [0,+∞), i.e.,

(2.4) B(t, u, u) � µ‖u‖2
H1(G) for all u ∈ H1(G), t ∈ [0,+∞),

where µ is a positive constant independent of u and t.
Let f ∈ H−1,0(Q), ϕ ∈ L2(G). A function u ∈ H1,1(Q) is called a generalized

solution of the problem (2.1)-(2.3) iff u(., 0) = ϕ and the equality

(2.5) 〈ut(., t), v〉+ B(t, u, v) = 〈f(., t), v〉

holds for a.e. t ∈ (0,+∞) and all v ∈ H1(G).

3. FORMULATION OF THE MAIN RESULTS

Let ϕ ∈ H2h+1(G), f ∈ H2h,h
loc (Q), where h is a positive integer. We set

(3.1)
ϕ0 = ϕ, ϕ1 = f(., 0) + L(x, 0, ∂)ϕ0,

. . . , ϕh = fth−1(., 0) +
∑h−1

k=0

(
h−1

k

)
Lth−1−k(x, 0, ∂)ϕk,

where

Ltk(x, t, ∂)u =
n∑

j,k=1

(∂k
t ajk uxk

)xj + ∂k
t au.
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We will say that the hth-order compatibility conditions are fulfilled if ϕ0, . . . ,

ϕh−1 ∈ H2(G), ϕh ∈ H1(G) and

(3.2)
k∑

j=0

(
k
j

)
Ntk−j(x, 0, ∂)ϕj|Γ = 0, 0 � k � h− 1.

We note that values of ftk(x, 0), k = 0, . . . , h, and the identity (3.2) are under-
stood in the trace sense. In general, the fact that ϕ ∈ H2h+1(G), f ∈ H2h,h

loc (Q)
does not guarantee that ϕ0, . . . , ϕh−1 ∈ H2(G), ϕh ∈ H1(G).

Let L0(x, t, ∂) be the principal homogenous part of L(x, t, ∂). We can write
L0(0, t, ∂), N(0, t, ∂) in the form

(3.3) L0(0, t, ∂) = r−2L(ω, t, ∂ω, r∂r),

(3.4) N (0, t, ∂) = r−1N (ω, t, ∂ω, r∂r),

where r = |x|, ω is an arbitrary local coordinate system on Sn−1. We denote by
U(λ, t) (λ ∈ C, t ∈ (0,+∞)) the operator of the parameter-depending boundary
problem

(3.5) L(ω, t, ∂ω, λ) = f in Ω,

(3.6) N (ω, t, ∂ω, λ) = g on ∂Ω.

For every fixed λ ∈ C this operator continuously maps

H l(Ω) into H l−2(Ω) ×H l− 3
2 (∂Ω) (l � 2).

For each t ∈ (0,+∞) we have the operator pencil U(λ, t) which has the spectrum
being an enumerable set of eigenvalues (see [4, Th. 5.2.1]).

Now let us give the main results of the present paper:

Theorem 3.1. Let h be a nonnegative integer. Let ϕ ∈ H 2h+1(G), f ∈
H2h,h

2h+1(Q) such that the hth-order compatibility conditions are fulfilled if h � 1.
Then the problem (2.1) − (2.3) has a unique generalized solution u ∈ H 1,1(Q)
which belongs to H 2h+2,h+1

2h+1 (Q), moreover,

(3.7) ‖u‖2
H

2h+2,h+1
2h+1 (Q)

� C
( h∑

j=0

‖ϕj‖2
H1(G) + ‖f‖2

H
2h,h
2h+1(Q)

)
,

where C is the constant independent of u, f, ϕ.
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Theorem 3.2. Let ϕ ∈ H2h+1(G), f ∈ H2h,h
γ (Q) such that the hth-order

compatibility conditions are fulfilled if h � 1, where h is a nonnegative integer and
0 � γ � 2h+1. Assume further that the strip 1− ε− n

2
� Reλ � −γ+2h+2− n

2
does not contain any eigenvalue of U(λ, t) for all t ∈ (0,+∞), where ε = 0 or
ε > 0 according as n > 2 or n = 2. Then the generalized solution of the problem
(2.1)− (2.3) belongs to H 2h+2,h+1

γ (Q), and the following estimate holds

(3.8) ‖u‖2
H2h+2,h+1

γ (Q)
� C

( h∑
j=0

‖ϕj‖2
H1(G) + ‖f‖2

H2h,h
γ (Q)

)
,

where C is the constant independent of u, f, ϕ.

4. SOLVABILITY AND REGULARITY WITH RESPECT TO THE TIME VARIABLE

For integer k � 0, u, v ∈ H1,0(QT ), t ∈ [0,+∞) we set

Btk (t, u, v) =
∫

G

( n∑
j,k=1

∂k
t ajkuxk

vxj + ∂k
t auv

)
dx.

Lemma 4.1. Let F (t, ., .) be a bilinear form on H 1(G) ×H1(G) such that

(4.1) |F (t, v, w)| � C‖v‖H1(G)‖w‖H1(G) (C = const )

for all t ∈ [0,+∞) and all v, w ∈ H 1(G), and F (., v, w) is measurable on [0,+∞)
for each pair v, w ∈ H 1(G). Assume that u ∈ H1,1(Q) satisfies u(., 0) ≡ 0 and

(4.2) 〈ut(., t), v〉 +B(t, u(., t), v) =
∫ t

0

F (τ, u(., τ), v)dτ

for a.e. t ∈ [0,+∞) and all v ∈ H 1(G). Then u ≡ 0 on Q.

Proof. Substituting v := u(., t) into (4.2), then integrating both sides of the
obtained equality with respect to t from 0 to b (b > 0), after all using the assumptions
(2.4), (4.1), we arrive at

1
2
‖u(., b)‖2

L2(G) + µ‖u‖2
H1,0(Qb)

� C

∫ b

0

∫ t

0
‖u(., t)‖H1(G)‖u(., τ)‖H1(G)dτdt

� 1
2
C

∫ b

0

∫ t

0
(‖u(., t)‖2

H1(G) + ‖u(., τ)‖2
H1(G))dτdt � bC‖u‖2

H1,0(Qb)
.
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Choosing b =
µ

2C
, we have

1
2

(
‖u(., b)‖2

L2(G) + µ‖u‖2
H1,0(Qb)

)
� 0. This implies

u ≡ 0 on [0,
µ

2C
]. Repeating this argument we can show that u ≡ 0 on intervals

[
µ

2C
,
µ

C
], [
µ

C
,
3µ
2C

], . . ., and, therefore, u ≡ 0 on Q.

Lemma 4.2. Let f ∈ H−1,0(Q), ϕ ∈ H1(G). Then the problem (2.1)− (2.3)
has a unique generalized solution u ∈ H 1,1(Q). It satisfies the inequality

(4.3) ‖u‖2
H1,1(Q) � C

(‖ϕ‖2
H1(G) + ‖f‖2

H−1,0(Q)

)
with the constant C independent of ϕ, f .

Proof. The uniqueness follows directly from Lemma 4.1. The existence is
proved by Galerkin’s approximate method. Let {ψk}∞k=1 be a set of smooth functions
which is not only an orthogonal basis of H1(G) but also an orthonormal basis of
L2(G). Now for each positive integer N , we consider the function uN (x, t) =∑N

k=1 C
N
k (t)ψk(x), where {CN

k (t)}N
k=1 is the solution of the ordinary differential

system:

(4.4) (uN
t , ψl) + B(t, uN , ψl) = 〈f(., t), ψl〉,

(4.5) CN
k (0) = Ck, l, k = 1, . . . , N.

Here Ck = (ϕ, ψk)H1(G), k = 1, 2, . . . , (., .)H1(G) stands for the inner product in
H1(G). By the same arguments as in [7, Ch. III], [1, Ch. 7], one can receive the
following estimate

(4.6) ‖uN‖2
H1,1(QT ) � C

(‖ϕ‖2
H1(G) + ‖f‖2

H−1,0(Q)

)
,

where C is a positive constant independent of N, f, ϕ and T . Sending T → +∞,
we obtain

(4.7) ‖uN‖2
H1,1(Q) � C

(‖ϕ‖2
H1(G) + ‖f‖2

H−1,0(Q)

)
,

From this estimate, by the same arguments as in [1, Ch. 7, Th. 3], we conclude
that there exists a subsequence of {uN} which weakly converges to a generalized
solution u ∈ H1,1(Q) of the problem (2.1)-(2.3). The estimate (4.3) follows from
(4.7).

Lemma 4.3. Let ϕ ∈ H1(G), f ∈ L2(Q) or f ∈ H−1,1(Q) and u ∈ H1,1(Q)
be the generalized solution of the problem (2.1) − (2.3). Then u ∈ H 1,1(Q) and
the following estimate

(4.8) ‖u‖2
H1,1(Q) � C

(‖ϕ‖2
H1(G) + ‖f‖2

X

)
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holds with the constant C independent of ϕ, f, and u. Here X is L 2(Q) or
H−1,1(Q) according as f ∈ L2(Q) or f ∈ H−1,1(Q).

Proof. For the case f ∈ L2(Q) the assertion of the lemma is proved similarly
to [7, Th. 6.1] and [1, Ch. 7, Th. 5].

Now let f ∈ H−1,1(Q). Then f is continuous on [0,+∞) (as a function from
[0,+∞) to H−1(G)) and has the representation f(., t) = f(., s)+

∫ t
s ft(., τ)dτ for

all s, t ∈ [0,+∞) (see [1, Sec. 5.9, Th. 2]). This implies

(4.9) ‖f(., t)‖2
H−1(G) � 2‖f(., s)‖2

H−1(G) + 2
∫

J

‖ft(., τ)‖2
H−1(G)dτ,

where J = [a, b] ⊂ [0,+∞) such that a � t � b and b − a = 1. Integrating both
sides of (4.9) with respect to s on J , we obtain

(4.10) ‖f(., t)‖2
H−1(G) � 2‖f‖2

H−1,1(Q) (t ∈ [0,+∞)).

Let {uN}∞N=1 be the functions defined as in the proof of Lemma 4.2. Multiplying

both sides of (4.4) by
dCN

l

dt
, then taking sum with respect to l from 1 to N , after

that integrating with respect to t from 0 to T (0 < T < +∞), and adding the
obtained equality with its complex conjugate, we arrive at

2‖uN
t ‖2

L2(QT )+
∫

QT

( n∑
j,k=1

ajk∂t(uN
xk
uN

xj
)+a∂t(uNuN)

)
dxdt = 2Re

∫ T

0
〈f, uN

t 〉dt.

By the integration by parts, we get

(4.11)
2‖uN

t ‖L2(QT ) +B(T, uN , uN)|T0

=
∫ T

0
Bt(t, uN , uN)dt+ 2Re

∫ T

0
〈f, uN

t 〉dt.

Since ajk, a, ∂tajk, ∂ta are bounded on Q, using Cauchy’s inequality, we get

(4.12) |B(0, uN , uN)| � C‖uN (x, 0)‖2
H1(G) � C‖ϕ‖2

H1(G),

(4.13) |
∫ T

0
Bt(t, uN , uN)dt| � C‖uN‖2

H1,0(QT ).

Noting that
∫ T
0 〈f, uN

t 〉dt = − ∫ T
0 〈ft, u

N〉dt + 〈f, uN 〉
∣∣∣T
0
, and using (4.10), we

obtain



The Cauchy-Neumann Problem for Parabolic Equations 1857

(4.14)

∣∣∣∣
∫ T

0
〈f, uN

t 〉dt
∣∣∣∣ � ‖ft‖H−1,0(Q)‖uN‖H1,0(Q)

+‖f(., t)‖H−1(G)‖uN (., t)‖H1(G)

+‖f(., 0)‖H−1(G)‖uN(., 0)‖H1(G) � C(ε)‖f‖2
H−1,1(Q)

+ε
(‖uN‖2

H1,0(QT ) + ‖uN (., t)‖2
H1(G) + ‖uN (., 0)‖2

H1(G)

)
(ε > 0).

Using (2.4), (4.6), (4.12), (4.13) and (4.14) for 0 < ε < µ, we get from (4.11) that

‖uN
t ‖2

L2(QT ) � C
(‖ϕ‖2

H1(G) + ‖f‖2
H−1,1(Q)

)
.

Sending T → +∞, we can see

(4.15) ‖uN
t ‖2

L2(Q) � C
(‖ϕ‖2

H1(G) + ‖f‖2
H−1,1(Q)

)
.

Combining (4.7) and (4.15), we have

(4.16) ‖uN‖2
H1,1(Q) � C

(‖ϕ‖2
H1(G) + ‖f‖2

H−1,1(Q)

)
.

This implies that the sequence {uN} contains a subsequence which weakly con-
verges to a function v ∈ H1,1(Q). Passing to the limit of the subsequence, we
can see that v is also a generalized solution of the problem (2.1)-(2.2). Thus,
u = v ∈ H1,1(Q). The estimate (4.8) with X = H−1,1(Q) follows from (4.16).

Remark. It follows from the proof of Lemma 4.3 that if ϕ ∈ H1(G) and
f = f1 + f2, where f1 ∈ L2(Q), f2 ∈ H−1,1(Q) then the assertion of the lemma is
also true with ‖f‖2

X replaced by ‖f1‖2
L2(Q) + ‖f2‖2

H−1,1(Q).

Theorem 4.1. Let h be a nonnegative integer. Let ϕ ∈ H 2h+1(G), f ∈
H2h,h

loc (Q) such that hth-order compatibility conditions are fulfilled if h � 1 and
f, ft, . . . , fth ∈ L2(Q). Then the problem (2.1)− (2.3) has a unique generalized
solution u ∈ H1,1(Q), moreover,

(4.17) utk ∈ H1,1(Q) for k = 0, . . . , h,

and the following estimate holds

(4.18)
h∑

k=0

‖utk‖2
H1,1(Q) � C

h∑
k=0

(‖ϕk‖2
H1(G) + ‖ftk‖2

L2(Q)

)
,

where C is a constant independent of u, f, ϕ.
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Proof. We will show by induction that not only the assertions (4.17), (4.18)
but also the following equalities hold:

(4.19) utk(., 0) = ϕk, k = 1, . . . , h,

and

(4.20) (uth+1, η) +
h∑

k=0

(h
k

)
Bth−k(t, utk, η) = (fth , η) for all η ∈ H1(G).

The case h = 0 follows from Lemmas 4.2, 4.3. Assuming now that they hold for
h− 1, we will prove them for h (h � 1). We consider first the following problem:
find a function v ∈ H1,1(Q) satisfying v(., 0) = ϕh and

(4.21) 〈vt, η〉 +B(t, v, η) = (fth , η)−
h−1∑
k=0

(
h
k

)
Bth−k (t, utk, η)

for all η ∈ H1(G) and a.e. t ∈ (0,+∞).
Let F (t), t ∈ [0,+∞), be functionals defined by

(4.22) 〈F (t), η〉 = (fth , η)−
h−1∑
k=0

(
h
k

)
Bth−k(t, utk, η), η ∈ H1(G).

Then F ∈ H−1,0(Q) by the inductive assumption. Hence, according to Lemma 4.2,
the problem (4.21) has a solution v ∈ H1,1(Q). We put now

w(x, t) = ϕh−1(x) +
∫ t

0
v(x, τ)dτ, x ∈ G, t ∈ [0,+∞).

Then we have w(., 0) = ϕh−1, wt = v, wt(., 0) = ϕh. It follows from (5.21) that

(4.23)

〈wtt, η〉 +
∂

∂t
B(t, w, η) = (fth , η) +Bt(t, w− uth−1, η)

− ∂

∂t

h−2∑
k=0

(
h−1

k

)
Bth−1−k (t, utk, η).

One knows that

(Lψ, η)+ B(t, ψ, η) = (Nψ, η)Γ, ψ ∈ H2(G), η ∈ H1(G),

and therefore,

(4.24) (Ltkψ, η) +Btk (t, ψ, η) = (Ntkψ, η)Γ, t ∈ [0,+∞)
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where (., .)Γ stands for the usual inner product in L2(Γ), k is an arbitrary nonneg-
ative integer. From (4.24) and the conditions (3.2), we have

h−1∑
k=0

(h−1
k

)(
Lth−1−k(x, 0, ∂)ϕk, η

)
= −

h−1∑
k=0

(h−1
k

)
Bth−1−k(0, ϕk, η).

From this we have

(4.25) (ϕh, η) = (fth−1(., 0), η)−
h−1∑
k=0

(
h−1

k

)
Bth−1−k(0, ϕk, η).

Now integrating equality (4.23) with respect to t from 0 to t and using (4.25), we
arrive at

(4.26)

〈wt, η〉 +B(t, w, η) = (fth−1, η)

+
∫ t

0
Bt(τ, w− uth−1, η)dτ −

h−1∑
k=0

(h−1
k

)
Bth−1−k(t, utk, η).

Put z = w−uth−1 . Then z(., 0) = 0 since u(., 0) = w(., 0) = ϕh−1. It follows
from the inductive assumption (4.20) with h replaced by h− 1 and (4.26) that

(4.27) 〈zt(., t), η〉+ B(t, z(., t), η) =
∫ t

0
Bt(τ, z(., τ), η)dτ.

Applying Lemma 4.1, we can see from (4.27) that z ≡ 0 on Q. Therefore, uth =
wt = v ∈ H1,1(Q).

Now we show that in fact uth ∈ H1,1(Q). We rewrite (4.21) in the form

(4.28) 〈vt, η〉 +B(t, v, η) = (fth , η) + 〈F̂ (t), η〉,

where F̂ (t), t ∈ [0,+∞), are functionals on H1(G) defined by

(4.29) 〈F̂ (t), η〉 = −
h−1∑
k=0

(h
k

)
Bth−k (t, utk, η), η ∈ H1(G).

Since utk ∈ H1,0(Q) for k = 0, . . . , h, then F̂t exists and belongs to H−1,0(G).
Then, according to the remark below Lemma 4.3, we obtain from (4.28) that uth =
v ∈ H1,1(Q). The desired estimate holds since ‖fth‖L2(Q) and ‖F̂t‖H1,0(Q) can be
estimated by the right-hand side of (4.18). The proof is completed.
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5. PROOF OF THEOREMS 3.1, 3.2

The following lemma can be proved similarly to Lemma 3 of [3], Theorems
4.1, 4.1’ of [8] and Lemma 3.1 of [5].

Lemma 5.1. For every fixed t0 ∈ [0,+∞) let u ∈ H l+2
loc (G\{0})∩V 0

2,γ−l−2(G)
be a solution of the problem

(5.1) L(x, t0, ∂)u = f in G,

(5.2) N (x, t0, ∂)u = 0 on Γ,

where f ∈ V l
2,γ(G), l is a nonnegative integer. Then u ∈ V l+2

2,γ (G) and the following
estimate

(5.3) ‖u‖2
V l+2

2,γ (G)
� C

(‖f‖2
V l

2,γ(G)
+ ‖u‖2

V 0
2,γ−l−2(G)

)
holds with the constant C independent of u, f and t 0 .

Lemma 5.2. For every fixed t0 ∈ (0,+∞) let f ∈ H0
1 (G) and u ∈ H1(G) be

a generalized solution of the problem (5.1), (5.2), i.e u satisfies the identity

B(t0, u, η) = (f, η) for all η ∈ H 1(G).

Then u ∈ H2
1 (G) and

(5.4) ‖u‖2
H2

1(G) � C
(‖f‖2

H0
1(G) + ‖u‖2

H1(G)

)
,

where the constant C is independent of u, f and t 0.

Proof. According to results for elliptic boundary value problem in domains with
smooth boundaries, we have u ∈ H2

loc(G \ {0}). If n � 3, then H1(G) = V 1
2,0(G)

by [4, Th. 7.1.1], and therefore, the assertion of the lemma follows from Lemma
5.1.

Now let n = 2. According to [4, Th. 7.1.1], u ∈ H1(G) can be written in the
form u = v +w, where v ∈ V 1

2,0(G), w ∈ H2
1 (G), and

(5.5) ‖v‖2
V 1

2,0(G) + ‖w‖2
H2

1(G) � C‖u‖2
H1(G) (C = const).

We rewrite (5.1), (5.2) in the form

(5.6) L(x, t0, ∂)v = f − L(x, t0, ∂)w ∈ H0
1 (G) ≡ V 0

2,1(G),
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(5.7) N (x, t0, ∂)v = −N (x, t0, ∂)w ∈ H
1
2
1 (Γ) ≡ V

1
2

2,1(Γ).

Here we note that, according to [4, Th. 7.1.1], for n = 2, H1
1 (G) = V 1

2,1(G), and

therefore, H
1
2
1 (Γ) = V

1
2

2,1(Γ). Now applying Lemma 5.1, we can see from (5.6),
(5.7) that v ∈ V 2

2,1(G). Therefore, u = v+w ∈ H2
1 (G). The estimate (5.4) follows

from (5.3) and (5.5).

Lemma 5.3. Let l, k, s be nonnegative integers and γ, δ be real numbers,
k − δ > l− γ . Let u ∈ H l+2,0

γ (Q) be a solution of the following problem

(5.8) L(x, t, ∂)u= f in Q,

(5.9) N (x, t, ∂)u= g on S.

(i) If f ∈ H l+s,0
γ+s (Q), g ∈ H

l+s+ 1
2
,0

γ+s (S), then u ∈ H l+s+2,0
γ+s (Q) and

(5.10) ‖u‖2
H l+s+2,0

γ+s (Q)
� C

(‖f‖2
H l+s,0

γ+s (Q)
+ ‖g‖2

H
l+s+1

2 ,0

γ+s (S)
+ ‖u‖2

H l+2,0
γ

(Q)
)

with the constant C independent of u, f, g.

(ii) Suppose that f ∈ H k,0
δ (Q), g ∈ H

k+ 1
2
,0

δ (S) and the strip −γ + l+ 2 − n

2
�

Reλ � −δ + k + 2 − n

2
does not contain any eigenvalue of U(λ, t) for all

t ∈ (0,+∞) and γ +
n

2
/∈ {1, . . . , l}. Then u ∈ Hk+2,0

δ (Q) and

(5.11) ‖u‖2
H

k+2,0
δ (Q)

� C
(‖f‖2

H
k,0
δ (Q)

+ ‖g‖2

H
k+1

2 ,0

δ (S)
+ ‖u‖2

H
l+2,0
γ

)
with the constant C independent of u, f, g.

Proof. First, we prove the part (i). We fix t ∈ (0,+∞) and consider (5.8),
(5.9) as an elliptic boundary value problem. Since coefficients of L(x, t, ∂) are
bounded smooth functions, we can apply Theorems 7.2.2, 7.2.3 and 7.3.5 of [4] to
conclude that u(., t) ∈ Hk+2

δ (G) and

(5.12)
‖u(., t)‖

Hk+2
δ (G)

� C
(
‖f(., t)‖Hk

δ (G)

+‖g(., t)‖
H

k+1
2

δ (Γ)
+ ‖u(., t)‖2

H l+2
γ (G)

)
,

where the constant C is independent of u, f, g and t. Now integrating both sides of
(5.12) with respect to t from 0 to +∞, we get the assertion (i) of the lemma.
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The part (ii) of the lemma is proved by the same procedure as in the proof the
part (i), but we apply Theorems 7.2.2, 7.2.4 and the note below Theorem 7.3.5 of
[4] instead of ones above.

Proof of Theorem 3.1. The proof is an induction on h. Let us consider first
the case h = 0. We rewrite the equation (2.1), (2.2) in the form

(5.13) L(x, t, ∂)u = f1 := ut − f in Q,

(5.14) N (x, t, ∂)u= 0 on S.

According to Theorem 4.1, we have ut ∈ L2(Q) ⊂ H0,0
1 (Q). Thus, f1 ∈ H0,0

1 (Q).
By Lemma 5.2, it follows from (5.13), (5.14) that for a.e. t ∈ (0,+∞) u(., t) ∈
H2

1 (G) and

(5.15) ‖u(., t)‖2
H2

1(G) � C
(‖f1(., t)‖2

H0
1

+ ‖u(., t)‖2
H1(G)

)
for a.e. t ∈ (0,+∞), where C is a constant independent of u, f1 and t. Integrating
both sides of (5.15) with respect to t from 0 to +∞, we obtain u ∈ H

2,0
1 (Q). This

and the fact that ut ∈ L2(Q) imply u ∈ H2,1
1 (Q). Hence, the theorem is valid for

h = 0.
Assume that it is true for h − 1, h � 1. Then we have u ∈ H 2h,h

2h−1(Q), and
therefore,

(5.16) uts ∈ H2h−2s,0
2h−1 (Q), s � h.

We prove now the theorem for h. We have to show that u ∈ H2h+2,h+1
2h+1 (Q). To

this end, it is only needed to make clear that

(5.17) utk ∈ L2(Q), k � h+ 1,

and

(5.18) utk ∈ H
2h−2k+2,0
2h+1 (Q)

for k � h + 1. (5.17) is true according to Theorem 4.1. We will prove (5.18) by
induction on k. By Theorem 4.1, uth+1 ∈ L2(Q) ⊂ H0,0

2h+1(Q). This means that
(5.18) holds for k = h + 1. Assume that it holds for k = h+ 1, h, . . . , p+ 1 (0 <
p < h). Differentiating both sides of (5.13), (5.14) with respect to t p times, we
have

(5.19) L(x, t, ∂)utp = utp+1 − ftp −
p−1∑
s=0

(
p
s

)
Ltp−s(x, t, ∂)uts in Q,
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(5.20) N (x, t, ∂)utp = −
p−1∑
s=0

(
p
s

)
Ntp−s(x, t, ∂)uts on S.

By (5.16), we see that uts ∈ H2h−2s,0
2h−1 (Q) ⊂ H2h−2p+2,0

2h−1 (Q) ⊂ H2h−2p+2,0
2h+1 (Q),

s � p − 1. Moreover, utp+1 ∈ H2h−2p,0
2h+1 (Q) by the inductive assumption, and

ftp ∈ H2h−2p,0
2h+1 (Q) by the assumption of the theorem. Therefore, the right-hand

side of (5.19) belongs to H2h−2p,0
2h+1 (Q). From uts ∈ H2h−2p+2,0

2h+1 (Q) we also have

Ntp−s(x, t, ∂)uts ∈ H
2h−2p+1

2
,0

2h+1 (S), s � p − 1. Now we can apply the part (i) of
Lemma 5.3 to the problem (5.19), (5.20) to conclude that utp ∈ H2h−2p+2,0

2h+1 (Q).
Thus, (5.18) holds for all k � h+1. The inequality (3.7) is obtained by the estimates
in Theorem 4.111 and Lemma 5.3. The proof is completed.

Proof of Theorem 3.2. The theorem is proved by a similar procedure as in
the proof of Theorem 3.1 above. However, instead of applying the assertion (i) of
Lemma 5.3, which we made use to prove Theorem 3.1, we use the assertion (ii).
For example, in the case h = 0, from (5.13), (5.14) with f1 ∈ H0,0

γ (Q), first we
have u ∈ H2,0

1 (Q) by Lemma 5.2, and after that we can conclude u ∈ H2,1
γ (Q)

thanks to the assumption that the strip 1 − ε− n

2
� Reλ � −γ + 2 − n

2
is free of

eigenvalues of U(λ, t) for all t ∈ (0,+∞).
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