TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 7, pp. 1769-1779, October 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

BANACH ALGEBRAS RELATED TO THE ELEMENTS OF THE UNIT BALL OF A BANACH ALGEBRA

R. A. Kamyabi-Gol and M. Janfada

Abstract. Suppose A is a Banach algebra and ϵ is in A with $\|\epsilon\| \leq 1$. In this note we aim to study the algebraic properties of the Banach algebra A_{ϵ} , where the product on A_{ϵ} is given by $a \odot b = a\epsilon b$, for $a, b \in A$. In particular we study the Arens regularity, amenability and derivations on A_{ϵ} . Also we prove that if A has an involution then A_{ϵ} has the same involution just when $\epsilon = 1$ or -1.

1. INTRODUCTION

Let A be a Banach algebra and ϵ be an element in the closed unit ball of A. A new product \odot is defined on A by

$$a \odot b = a \epsilon b$$
 for all $a, b \in A$

A with this product is a Banach algebra which we denote it by A_{ϵ} . We aim to study the algebraic properties of A_{ϵ} such as when A_{ϵ} has a unit, when an element of A_{ϵ} is invertible and so on. The necessary and sufficient conditions for the existence of involution on A_{ϵ} is investigated. In particular, when is A_{ϵ} a C^* -algebra. Derivations on A_{ϵ} , the Arens regularity of A_{ϵ} and amenability of A_{ϵ} are also examined.

2. The Elementary Properties of A_{ϵ}

Definition 2.1. Let A be a Banach algebra and ϵ an element of it's closed unit ball i.e. $\|\epsilon\| \le 1$. We define the new product \odot on a A by

$$a \odot b = a \ \epsilon \ b$$
 for all $a, b \in A$.

Received September 25, 2006, accepted May 5, 2007.

Communicated by Raibin Zhang.

²⁰⁰⁰ Mathematics Subject Classification: 46H99, 46L05, 46L57.

Key words and phrases: Banach algebra, Arens regularity, Amenability.

This work has a support of center of Excelency in Analysis on Algebric structure in Ferdowsi University of Mashhad.

One can easily check that A with this product is an algebra which we denote it by A_{ϵ} .

Proposition 2.2. With the above assumptions A_{ϵ} is a Banach algebra.

Proof. is immediate.

In the next proposition the algebraic properties of A_{ϵ} are investigated.

Proposition 2.3. If A is a Banach algebra. Then

- (i) A_{ϵ} is unital if and only if A is unital and ϵ is invertible.
- (ii) If A_{ϵ} is unital, then for any $a \in A$, $Sp_{A_{\epsilon}}(a) = Sp_A(a\epsilon)$. Where $Sp_{A_{\epsilon}}$ and Sp_A stand for the spectrum relative to A_{ϵ} and A respectively.
- (iii) If A_{ϵ} is unital then $Inv(A_{\epsilon}) = Inv(A)$. Where Inv denotes the set of all invertible elements.
- (iv) If ϵ_1 and ϵ_2 are in the closed unit ball of A, then $(A_{\epsilon_1})_{\epsilon_2} = A_{\epsilon_1 \epsilon_2 \epsilon_1}$. In particular, if ϵ is invertible then $(A_{\epsilon})_{\epsilon^{-2}} = A$.

Proof.

(i) Let A_{ϵ} be unital and 1_{ϵ} be the identity of A_{ϵ} . Then for any $a \in A$,

$$a \odot 1_{\epsilon} = 1_{\epsilon} \odot a = a.$$

Consequently $a(\epsilon 1_{\epsilon}) = (1_{\epsilon}\epsilon)a = a$. But $1_{\epsilon}\epsilon = (1_{\epsilon}\epsilon)(\epsilon 1_{\epsilon}) = \epsilon 1_{\epsilon}$. So $\epsilon 1_{\epsilon}$ is the unit of A and $\epsilon^{-1} = 1_{\epsilon}$.

For the converse, one can easily check that if ϵ is invertible, then ϵ^{-1} is the unit of A_{ϵ} .

(ii) Let A_{ϵ} be unital and $\lambda \in P_A(a)$. Then there exists $b \in A$ such that

$$1_{\epsilon} = \epsilon^{-1} = (\lambda \epsilon^{-1} - a) \odot b = (\lambda \epsilon^{-1} - a)\epsilon b = (\lambda - a\epsilon)b.$$

So that $1 = (\lambda - a\epsilon)b\epsilon$. This means that $\lambda - a\epsilon$ is left invertible in A. Similarly $(\lambda - a\epsilon)$ has a right inverse in A. Therefore $\lambda \in Sp_A(a\epsilon)$. In other words, we have $Sp_{A_{\epsilon}}(a) \subseteq Sp_A(a\epsilon)$.

In a similar way, we can see $Sp_A(a\epsilon) \subseteq Sp_{A_{\epsilon}}(a)$.

(iii) Let $a \in Inv(A)$. Then there is $b \in A$ such that

$$ab = ba = 1$$

Therefore $a\epsilon(\epsilon^{-1}b\epsilon^{-1}) = (\epsilon^{-1}b\epsilon^{-1})\epsilon a = \epsilon^{-1}$. This means that

$$a \odot (\epsilon^{-1} b \epsilon^{-1}) = (\epsilon^{-1} b \epsilon^{-1}) \odot a = \epsilon^{-1}.$$

Consequently, $a \in Inv(A_{\epsilon})$ i.e. $Inv(A) \subseteq Inv(A_{\epsilon})$. The reverse inclusion holds similarly.

(iv) Proof is immediate.

In the next proposition we study the relation between the multiplicative linear functionals on A and A_{ϵ} .

Proposition 2.4.

- (*i*) If ϕ is a multiplicative linear functional on A, then $\psi = \phi(\epsilon)\phi$ is a multiplicative linear functional on A_{ϵ} .
- (ii) If A_{ϵ} is unital, and ψ is a multiplicative linear functional on A_{ϵ} , then $\phi(a) = \psi(\epsilon^{-1}a)$ is a multiplicative linear functional on A_{ϵ} .

Proof. (i) Let $a, b \in A$. Then

$$\psi(a \odot b) = \psi(a\epsilon b) = \phi(\epsilon)\phi(a)\phi(\epsilon)\phi(b) = \psi(a)\psi(b).$$

The proof of (ii) is clear by the identity $(A_{\epsilon})_{\epsilon^{-2}} = A$ and (i), also one can verify it directly.

Corollary 2.5.

- (*i*) If A_{ϵ} is unital, then the mapping $\phi \mapsto \psi$ between the set of all multiplicative linear functionals on A and A_{ϵ} is a one-to-one correspondence.
- (ii) $Ker\phi = Ker\psi$ and in particular $\bigcap M = \bigcap M_{\epsilon}$. Where M and M_{ϵ} run over the maximal ideal spaces of A and A_{ϵ} respectively.

3. Involution on A_{ϵ}

In this section the involutive Banach algebras are considered. Especially the necessary conditions for ϵ that A_{ϵ} is an involutive Banach algebra or a C^* -algebra, is investigated.

Proposition 3.1. Let A be an involutive Banach algebra with involution *. Then

(i) If ϵ is self-adjoint, then A_{ϵ} is a *-involutive Banach algebra.

(ii) If A is unital or has a bounded approximate identity and * is an involution on A_{ϵ} , then ϵ is self-adjoint.

In particular, any C^* -algebra has a bounded approximate identity and so (i) and (ii) is valid.

Proof.

- (i) is immediate.
- (ii) Let $\{e_{\alpha}\}_{\alpha \in I}$ be a bounded approximate identity for A. Then by the continuity of $*, \{e_{\alpha}^*\}$ is also a bounded approximate identity for A. On the other hand, since * is an involution for A_{ϵ} we have:

$$(e^*_{\alpha} \odot e_{\alpha})^* = e^*_{\alpha} \odot e_{\alpha}$$

and it is easy to see that $\lim_{\alpha} e_{\alpha}^* \epsilon e_{\alpha} = \epsilon$. Now,

$$\epsilon^* = \lim_{\alpha} (e_{\alpha}^* \epsilon^* e_{\alpha}) = \lim_{\alpha} (e_{\alpha}^* \epsilon e_{\alpha})^* = \lim_{\alpha} (e_{\alpha}^* \odot e_{\alpha})^*$$
$$= \lim_{\alpha} (e_{\alpha}^* \odot e_{\alpha}) = \lim_{\alpha} e_{\alpha}^* \epsilon e_{\alpha} = \epsilon.$$

The following proposition shows that when both A and A_{ϵ} are C^{*}-algebras, ϵ can not be an interior point of the unit ball of A.

Proposition 3.2. Let A and A_{ϵ} be C^{*}-algebras with the same involution. Then $\|\epsilon\| = 1$. Proof. It is known that any C^{*}-algebra admits an increasing bounded

approximate unit. Let $\{e_{\alpha}\}$ be such an approximate unit with $||e_{\alpha}|| = 1$ for all α 's. Since A_{ϵ} is also a C^* -algebra, we have:

$$1 = \|e_{\alpha}\|^2 = \|e_{\alpha} \odot e_{\alpha}^*\| = \|e_{\alpha} \epsilon e_{\alpha}^*\| \text{ and } \|e_{\alpha} \epsilon e_{\alpha}^*\| \longrightarrow \|\epsilon\|.$$

Consequently, $1 = \|\epsilon\|$.

Theorem 3.3. Let A and A_{ϵ} be C^* -algebras where ϵ is invertible, then $Sp(\epsilon) \subseteq \{-1, 1\}$.

Proof. First we show that when ϵ is invertible, there is a one-to-one correspondence between the irreducible representations of A and A_{ϵ} . Let $\{\pi, H\}$ be an irreducible representation of A. Then it is easy to see that $\{\pi_1, H\}$ is an irreducible representation on A_{ϵ} where $\pi_1(a) = \pi(\epsilon a)$ for all $a \in A$. Also if $\{\pi_1, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} , then $\{\pi, H\}$ is an irreducible representation of A_{ϵ} are C^* -algebras then by 2.7.1 and 2.7.3 of [2], for any $a \in A$, we have

$$||a|| = SUP\{||\pi(a)|| : \{\pi, H\} \text{ is an irreducible representation of } A\}$$

and

 $||a|| = SUP\{||\pi_1(a)|| : \{\pi_1, H\} \text{ is an irreducible representation of } A_{\epsilon}\}$

so that by what we have shown above,

 $||a|| = SUP\{||\pi(a)|| : \{\pi, H\} \text{ is an irreducible representation of } A\}$

 $= SUP\{\|\pi_1(\epsilon^{-1}a)\| : \{\pi_1, H\} \text{ is an irreducible representation of } A_{\epsilon}\} = \|\epsilon^{-1}a\|$ similarly,

$$||a|| = SUP\{||\pi_1(a)|| : \{\pi_1, H\} \text{ is an irreducible representation of } A_{\epsilon}\}$$

 $= SUP\{||\pi(a)|| : \{\pi, H\} \text{ is an irreducible representation of } A\} = ||\epsilon a||$

Hence, $||a|| = ||\epsilon a|| = ||\epsilon^{-1}a||$ for all $a \in A$. Therefore $1 = ||1|| = ||\epsilon|| = ||\epsilon^{-1}||$. This means that $0 \notin Sp\{\epsilon\}$, $Sp(\epsilon) \subseteq [-1,1]$ and $Sp(\epsilon^{-1}) \subseteq [-1,1]$. But $Sp(\epsilon^{-1}) = \{\frac{1}{\lambda} : \lambda \in Sp(\epsilon)\}$. Consequently $Sp(\epsilon) \subseteq \{-1,1\}$.

The next example shows that, $Sp(\epsilon) = \{-1, 1\}$ is possible. So, one can not find some more restriction conditions of Theorem 3.3 on ϵ .

Example 3.4. Let $A = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{C}. \right\}$. Then A is a C^* -algebra. Assume $\epsilon \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Then $Sp(\epsilon) = \{-1, 1\}$. For this ϵ , A_{ϵ} is a C^* -algebra. Indeed,

$$\left\| \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right\| = r \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = Max\{|a|, |b|\}$$

and for $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$,

$$\begin{split} \|A \odot A^*\| &= \left\| \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right\| \\ &= \left\| \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix} \right\| = Max\{|a^2|, |b^2|\} = \|A\|^2. \end{split}$$

The following example shows that the condition $Sp(\epsilon) = \{-1, 1\}$ by itself is not a sufficient condition for A_{ϵ} to be a C^* -algebra. In fact it shows that the converse of Theorem 3.3 does not hold if ϵ is not invertible.

Example 3.5. Suppose A be the C*-algebra of all complex 3×3 matrixes entries and let $\epsilon = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Then it is clear that $Sp(\epsilon) = \{-1, 1\}$. But for $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$ we have:

$$9 = (r(A))^{2} = ||A||^{2} \neq ||A^{*} \odot A|| = ||A^{*} \epsilon A|| = r \begin{pmatrix} 1 & 0 & 0 \\ 0 & -4 & 4 \\ 0 & -2 & 11 \end{pmatrix}$$
$$= \max \left\{ 1, |\frac{1}{-2}(-7 - \sqrt{193})|, |\frac{1}{-2}(-7 + \sqrt{193})| \right\}$$

And this means that A_{ϵ} cannot be a C^* -algebra.

4. Derivations, Amenability, Arens Regularity of A_{ϵ}

In this section we investigate the derivations on A_{ϵ} and their relations with the derivations on A. Also we consider X-derivations where X is a A_{ϵ} -module, amenability of A_{ϵ} and it's relation with the amenability of A and finally we consider the Arens regularity of A_{ϵ} .

Definition 4.1. The linear operator $D: A \rightarrow A$ is called a derivation if

$$D(ab) = aD(b) + D(a)b.$$

The following proposition characterizes the derivations on A_{ϵ} with respect to the derivations on A.

Proposition 4.2.

- (i) Let D be a derivation on A such that $D(\epsilon) = 0$. Then D is a derivation on A_{ϵ} .
- (ii) If A has a bounded approximate identity and D is a derivation on both A and A_{ϵ} , then $D(\epsilon) = 0$.

Proof.

(i) Let D be a derivation on A such that $D(\epsilon) = 0$. Then for $a, b \in A$, we have

$$D(a \odot b) = D(a\epsilon b) = D(a\epsilon)b + a\epsilon D(b)$$

= $D(a)\epsilon b + aD(\epsilon)b + a\epsilon D(b) = D(a) \odot b + a \odot D(b)$

Hence D is a derivation on A_{ϵ} .

1774

(ii) Let {e_α}_{α∈I} be a bounded approximate identity on A and D be a derivation on A and A_ε. Let a, b ∈ A, then since D is a derivation on A_ε, we have

$$D(a \odot b) = D(a) \odot b + a \odot D(b) = D(a)\epsilon b + a\epsilon D(b).$$

Also since D is a derivation on A,

$$D(a \odot b) = D(a\epsilon b) = D(a)\epsilon b + aD(\epsilon)b + a\epsilon D(b).$$

Therefore for all a and b in A, $aD(\epsilon)b = 0$. So that

$$0 = e_{\alpha} D(\epsilon) e_{\alpha} \to D(\epsilon).$$

Hence $D(\epsilon) = 0$.

The next proposition shows that in a special case any inner derivation on A_{ϵ} is an inner derivation on A.

Proposition 4.3. If ϵ is in the algebraic center of A, then any inner derivation on A_{ϵ} is an inner derivation on A.

Proof. Let δ_c^{ϵ} be the inner derivation corresponding to c on A_{ϵ} . Then:

$$\delta_c^{\epsilon}(a) = a \odot c - c \odot a = a\epsilon c - c\epsilon a = a(\epsilon c) - (\epsilon c)a = \delta_{\epsilon c}(a)$$

In which $\delta_{\epsilon c}$ is the inner derivation corresponding to ϵc on A.

Remark 4.4. If ϵ is an element in the algebraic center of A, then the identity $\delta_c(\epsilon) = c\epsilon - \epsilon c = 0$ and the proposition 4.2 implies that when ϵ is invertible, we have $\delta_c = \delta_{\epsilon^{-1}c}^{\epsilon}$. So that in this case the converse of the proposition 4.3 holds.

Now we consider the relation between A-modules and A_{ϵ} -modules. Let X be a Banach A-module. We define

A be a Banaen A module. We define

 $\odot: A_{\epsilon} X \to X$ by $(a, x) \mapsto a \odot x = a \epsilon x$.

Then X is a A_{ϵ} -module. Indeed,

$$(a_1 \odot a_2) \odot x = (a_1 \epsilon a_2) \epsilon x = a_1 \epsilon (a_2 \epsilon x) = a_1 \odot (a_2 \odot x).$$

Also,

$$||a \odot x|| = ||(a\epsilon)x|| \le k ||a\epsilon|| ||x|| \le k ||\epsilon|| ||a|| ||x||.$$

Definition 4.5. The bounded linear operator $D : A \to X$ is called a X-derivation of A if D(ab) = D(a)b + aD(b), for all $a, b \in A$.

The next proposition shows the relation between X-derivations of A and Xderivations of A_{ϵ} .

Proposition 4.6.

- (*i*) If D is a X-derivation of A such that $D(\epsilon) = 0$, then D is a X-derivation of A_{ϵ} .
- (ii) If A has a bounded approximate identity for X, and D is a X-derivation of A and of A_{ϵ} , then $D(\epsilon) = 0$.

Proof. Proof is similar to proposition 4.2.

Now we consider the amenability of A_{ϵ} . The following proposition shows that if A is commutative and ϵ is idempotent then the amenability of A implies the amenability of A_{ϵ} .

Proposition 4.7. Let A be a Banach algebra and ϵ be an idempotent element of the algebraic center of A. If A is amenable, then A_{ϵ} is amenable.

Proof. Let A be an amenable Banach algebra. Then $A \otimes^{\wedge} A$ (for its definition see [1]), is also amenable (see Theorem 4.3 of [6]). Now let:

$$f: A \otimes A \to A_{\epsilon}$$
 be defined by $f(a \otimes b) = a\epsilon b$

Then f is a continuous homomorphism of Banach algebras. Indeed we have:

$$f((a_1 \otimes b_1)(a_2 \otimes b_2)) = f(a_1a_2 \otimes b_1b_2) = a_1a_2\epsilon b_1b_2 = a_1a_2\epsilon^3 b_1b_2$$
$$= (a_1\epsilon b_1)\epsilon(a_2\epsilon b_2) = f(a_1 \otimes b_1) \odot f(a_2 \otimes b_2)$$

Also, f is continuous, since for $u \in A \otimes A$, if

Λ

$$\sum_{i=1}^n a_i \otimes b_i$$

is one of the representations of u, then from the fact that $\|\epsilon\| \le 1$ we have

$$||f(u)|| = ||\sum_{i=1}^{n} a_i \epsilon b_i|| \le \sum_{i=1}^{n} ||a_i|| ||\epsilon|| ||b_i|| \le \sum_{i=1}^{n} ||a_i|| ||b_i||$$

1776

Consequently,

$$||f(u)|| \le inf\{\sum_{i=1}^{n} ||a_i|| ||b_i||: u = \sum_{i=1}^{n} a_i \otimes b_i\} = ||u||.$$

Therefore $||f|| \leq 1$. Also the range of f is A_{ϵ} , since for any $a \in A$

$$a = a1 = a\epsilon^2 = a\epsilon\epsilon,$$

and $a\epsilon\epsilon$ is an element in the range of f. Thus f is a continuous homomorphism of the amenable Banach algebra of $A \otimes^{\wedge} A$ onto A_{ϵ} . Now the amenability of Banach algebra A_{ϵ} is a consequence of Theorem 43.11 in [5].

Remark 4.8. If in the above proposition, we also assume that ϵ is invertible, then the amenability of A_{ϵ} implies the amenability of A. This is because of the identity

$$A = (A_{\epsilon})_{\epsilon^{-2}}.$$

We conclude this section with studding the Arens regularity of A_{ϵ} . In particular we show that if A is a left or right ideal of the Banach $(A^{**}, .)$, then A_{ϵ} is Arens regular for all ϵ in the unite ball of A.

We denote "." the first Arens product on A^{**} , which is defined as follows

$$< f.a, b > = < f, ab >$$

 $< n.f, a > = < n, f.a >$
 $< m.n, f > = < m, n.f >$

for $a, b \in A$, $f \in A^*$ and $m, n \in A^{**}$, and use " Δ " for the second Arens product on A^{**} which is defined as follows

$$< b, a\Delta f > = < ba, f >$$

 $< a, f\Delta m > = < a\Delta f, m >$
 $< f, m\Delta n > = < f\Delta m, n > .$

Also the topological center Z_1 and Z_2 corresponding to the first and the second Arens product respectively, is defined by

$$Z_1 = \{ m \in A^{**} : m.n = m\Delta n, \ \forall n \in A^* \}$$
$$Z_2 = \{ n \in A^{**} : m.n = m\Delta n, \ \forall m \in A^{**} \}.$$

We refer to [3] and [4] for elementary definitions and more information about Arens products, topological center and Arens regularity of Banach algebras. The Banach algebra A is called Arens regular if and only if $Z_1 = A^{**}$ or $Z_2 = A^{**}$. We recall that if A is a Banach algebra $a \in A$ and $n \in A^{**}$, then $A \subseteq Z_1 \cap Z_2$, so $a.n = a\Delta n$ and $n.a = n\Delta a$.

Theorem 4.9. Let A be a Banach algebra and A is a left or right ideal of A^{**} , with the products a.n and n.a, $(a \in A, n \in A^{**})$. Then for each ϵ in the unit ball of A, A_{ϵ} is Arens regular.

Proof. Let \oplus denotes the first Arens product on A_{ϵ}^{**} and Δ_{\oplus} be the second Arens product on A_{ϵ}^{**} . Let $m, n \in A_{\epsilon}^{**}$, $f \in A_{\epsilon}^{*} = A^{*}$ and $a, b \in A_{\epsilon}$, we have

$$< f \oplus a, b > = < f, a \oplus b > = < f, a \epsilon b > = < f.a \epsilon, b >$$

so $f \oplus a = f.a\epsilon$, for all $a \in A$. Also

$$< n \oplus f, a > = < n, f \oplus a > = < n, f.a\epsilon >$$

 $= < (\epsilon \Delta n).f, a > = < \epsilon.n.f, a > .$

The last equality holds, since $A \subseteq Z_1 \cap Z_2$ and so $\epsilon \Delta n = \epsilon . n$. Hence $n \oplus f = \epsilon . n . f$. Furthermore

$$< m \oplus n, f > = < m, n \oplus f > = < m, \epsilon.n.f > = < m.\epsilon.n, f > .$$

Thus $m \oplus n = m.\epsilon.n$. Similarly one can show that $m\Delta_{\oplus}n = m\Delta\epsilon\Delta n$. Now suppose A is a left ideal in A^{**} . This implies that for each $m, n \in A^{**}$, $\epsilon.n(=\epsilon\Delta n)$ belongs to Z_1 and

$$m \oplus n = m.(\epsilon . n) = m\Delta(\epsilon . n)$$

= $m\Delta(\epsilon\Delta n) = m\Delta_{\oplus}n.$

Hence A_{ϵ}^{**} is Arens regular. Similar arguments prove that A_{ϵ} is Arens regular when A is a right ideal of A^{**} .

Remark 4.10. If A is Arens regular then the equalities $m \oplus n = m.\epsilon.n$ and $m \Delta_{\oplus}n = m\Delta n\Delta n$ implies that A_{ϵ} is Arens regular. But the converse is not true in general, for example let G be an infinite compact topological group. By Theorem [7] 4.1 we know that $A = L^1(G)$ is a right ideal in its second dual so by the previous Theorem for each ϵ in the unit ball of A, A_{ϵ} is Arens regular, but from [8] we know $L^1(G)$ is Arens regular if and only if G is finite, which shows that A is not Arens regular.

References

- 1. F. F. Bonsal, J. Duncan, Complete normed algebras, Springer-Verlag, 1973.
- 2. J. Dixmier, C*-Algebras, N. H. Publishing Company, 1977.
- J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, *Proc. Roy. Edinburg*, 84A (1979), 309-325.
- A. T. Lau and A. Ulger, Topological center of certain dual algebras., *Trans. Amer. Math. Soc.*, 348(3) (1996), 1191-1212.
- 5. G. J. Murphy, C*-Algebras and operator theory, Academic Press Inc, 1990.
- 6. M. Takesaki, Theory of operator algebras, Vol. I, Springer-Verlag Heidelberg, 1979.
- 7. S. Watanabe, A Banach algebra which is an ideal in the second dual space, *Science Rep. of Niigata Univ. Series A.*, **11** (1974), 95-101.
- N. J. Young, The irregularity of multiplication in group algebras, *Quart. J. Math.* (Oxford), 24(2) (1973), 59-62.

R. A. Kamyabi-Gol Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, P. O. Box 1159-91775, Iran E-mail: kamyabi@ferdowsi.um.ac.ir

M. Janfada Department of Mathematics, Teacher Training University of Sabzevar, Sabzevar, Iran E-mail: m_janfada@sttu.ac.ir