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BANACH ALGEBRAS RELATED TO THE ELEMENTS
OF THE UNIT BALL OF A BANACH ALGEBRA

R. A. Kamyabi-Gol and M. Janfada

Abstract. Suppose A is a Banach algebra and ε is in A with ‖ε‖ ≤ 1. In
this note we aim to study the algebraic properties of the Banach algebra Aε,
where the product on Aε is given by a� b = aεb, for a, b ∈ A. In particular
we study the Arens regularity, amenability and derivations on Aε. Also we
prove that if A has an involution then Aε has the same involution just when
ε = 1 or −1.

1. INTRODUCTION

Let A be a Banach algebra and ε be an element in the closed unit ball of A. A
new product � is defined on A by

a� b = a ε b for all a,b ∈ A

A with this product is a Banach algebra which we denote it by Aε. We aim to study
the algebraic properties of Aε such as when Aε has a unit, when an element of Aε

is invertible and so on. The necessary and sufficient conditions for the existence of
involution on Aε is investigated. In particular, when is Aε a C∗-algebra. Derivations
on Aε , the Arens regularity of Aε and amenability of Aε are also examined.

2. THE ELEMENTARY PROPERTIES OF Aε

Definition 2.1. Let A be a Banach algebra and ε an element of it‘s closed unit
ball i.e. ‖ε‖ ≤ 1. We define the new product � on a A by

a� b = a ε b for all a,b ∈ A.
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One can easily check that A with this product is an algebra which we denote it by
Aε.

Proposition 2.2. With the above assumptions Aε is a Banach algebra.

Proof. is immediate.

In the next proposition the algebraic properties of Aε are investigated.

Proposition 2.3. If A is a Banach algebra. Then

(i) Aε is unital if and only if A is unital and ε is invertible.
(ii) If Aε is unital, then for any a ∈ A, SpAε(a) = SpA(aε). Where SpAε and

SpA stand for the spectrum relative to A ε and A respectively.

(iii) If Aε is unital then Inv(Aε) = Inv(A). Where Inv denotes the set of all
invertible elements.

(iv) If ε1 and ε2 are in the closed unit ball of A, then (A ε1)ε2 = Aε1ε2ε1 . In
particular, if ε is invertible then (A ε)ε−2 = A.

Proof.

(i) Let Aε be unital and 1ε be the identity of Aε. Then for any a ∈ A,

a� 1ε = 1ε � a = a.

Consequently a(ε1ε) = (1εε)a = a. But 1εε = (1εε)(ε1ε) = ε1ε. So ε1ε is the
unit of A and ε−1 = 1ε.

For the converse, one can easily check that if ε is invertible, then ε−1 is the
unit of Aε.

(ii) Let Aε be unital and λ ∈ PA(a). Then there exists b ∈ A such that

1ε = ε−1 = (λε−1 − a) � b = (λε−1 − a)εb = (λ− aε)b.

So that 1 = (λ − aε)bε. This means that λ − aε is left invertible in A.
Similarly (λ−aε) has a right inverse in A. Therefore λ ∈ SpA(aε). In other
words, we have SpAε(a) ⊆ SpA(aε).
In a similar way, we can see SpA(aε) ⊆ SpAε(a).

(iii) Let a ∈ Inv(A). Then there is b ∈ A such that

ab = ba = 1.



Banach Algebras Related to the Elements of the Unit Ball 1771

Therefore aε(ε−1bε−1) = (ε−1bε−1)εa = ε−1.

This means that

a� (ε−1bε−1) = (ε−1bε−1) � a = ε−1.

Consequently, a ∈ Inv(Aε) i.e. Inv(A) ⊆ Inv(Aε). The reverse inclusion
holds similarly.

(iv) Proof is immediate.

In the next proposition we study the relation between the multiplicative linear
functionals on A and Aε.

Proposition 2.4.

(i) If φ is a multiplicative linear functional on A, then ψ = φ(ε)φ is a multi-
plicative linear functional on A ε.

(ii) If Aε is unital, and ψ is a multiplicative linear functional on A ε, then φ(a) =
ψ(ε−1a) is a multiplicative linear functional on A ε.

Proof. (i) Let a, b ∈ A. Then

ψ(a� b) = ψ(aεb) = φ(ε)φ(a)φ(ε)φ(b) = ψ(a)ψ(b).

The proof of (ii) is clear by the identity (Aε)ε−2 = A and (i), also one can verify
it directly.

Corollary 2.5.

(i) If Aε is unital, then the mapping φ �→ ψ between the set of all multiplicative
linear functionals on A and A ε is a one-to-one correspondence.

(ii) Kerφ = Kerψ and in particular
⋂
M =

⋂
Mε. WhereM andMε run over

the maximal ideal spaces of A and A ε respectively.

3. INVOLUTION ON Aε

In this section the involutive Banach algebras are considered. Especially the
necessary conditions for ε that Aε is an involutive Banach algebra or a C∗-algebra,
is investigated.

Proposition 3.1. Let A be an involutive Banach algebra with involution ∗.
Then

(i) If ε is self-adjoint, then A ε is a ∗-involutive Banach algebra.
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(ii) If A is unital or has a bounded approximate identity and ∗ is an involution
on Aε, then ε is self-adjoint.
In particular, any C ∗-algebra has a bounded approximate identity and so (i)
and (ii) is valid.

Proof.
(i) is immediate.
(ii) Let {eα}α∈I be a bounded approximate identity for A. Then by the continuity

of ∗, {e∗α} is also a bounded approximate identity for A. On the other hand,
since ∗ is an involution for Aε we have:

(e∗α � eα)∗ = e∗α � eα

and it is easy to see that limα e
∗
αεeα = ε. Now,

ε∗ = lim
α

(e∗αε
∗eα) = lim

α
(e∗αεeα)∗ = lim

α
(e∗α � eα)∗

= lim
α

(e∗α � eα) = lim
α
e∗αεeα = ε.

The following proposition shows that when both A and Aε are C∗-algebras,
ε can not be an interior point of the unit ball of A.

Proposition 3.2. Let A and Aε be C∗-algebras with the same involution. Then
‖ε‖ = 1. Proof. It is known that any C∗-algebra admits an increasing bounded

approximate unit. Let {eα} be such an approximate unit with ‖eα‖ = 1 for all α‘s.
Since Aε is also a C∗-algebra, we have:

1 = ‖eα‖2 = ‖eα � e∗α‖ = ‖eαεe∗α‖ and ‖eαεe
∗
α‖ −→ ‖ε‖.

Consequently, 1 = ‖ε‖ .

Theorem 3.3. Let A and Aε be C∗-algebras where ε is invertible, then
Sp(ε) ⊆ {−1, 1}.

Proof. First we show that when ε is invertible, there is a one-to-one corre-
spondence between the irreducible representations of A and Aε. Let {π,H} be an
irreducible representation of A. Then it is easy to see that {π1, H} is an irre-
ducible representation on Aε where π1(a) = π(εa) for all a ∈ A. Also if {π1, H}
is an irreducible representation of Aε, then {π,H} is an irreducible representation
of A in which π(a) = π1(ε−1a) for all a ∈ A. Now if moreover A and Aε are
C∗-algebras then by 2.7.1 and 2.7.3 of [2], for any a ∈ A, we have

‖a‖ = SUP{‖π(a)‖ : {π,H} is an irreducible representation of A}
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and

‖a‖ = SUP{‖π1(a)‖ : {π1, H} is an irreducible representation of Aε}
so that by what we have shown above,

‖a‖ = SUP{‖π(a)‖ : {π,H} is an irreducible representation of A}

= SUP{‖π1(ε−1a)‖ : {π1, H} is an irreducible representation of Aε} = ‖ε−1a‖
similarly,

‖a‖ = SUP{‖π1(a)‖ : {π1, H} is an irreducible representation of Aε}

= SUP{‖π(a)‖ : {π,H} is an irreducible representation of A} = ‖εa‖
Hence, ‖a‖ = ‖εa‖ = ‖ε−1a‖ for all a ∈ A. Therefore 1 = ‖1‖ = ‖ε‖ =
‖ε−1‖.
This means that 0 /∈ Sp{ε}, Sp(ε) ⊆ [−1, 1] and Sp(ε−1) ⊆ [−1, 1]. But
Sp(ε−1) = { 1

λ : λ ∈ Sp(ε)}. Consequently Sp(ε) ⊆ {−1, 1}.

The next example shows that, Sp(ε) = {−1, 1} is possible. So, one can not
find some more restriction conditions of Theorem 3.3 on ε.

Example 3.4. Let A =
{(

a 0
0 b

)
: a, b ∈ C.

}
. Then A is a C∗-algebra.

Assume ε
(

1 0
0 −1

)
Then Sp(ε) = {−1, 1}. For this ε ,Aε is a C∗-algebra.

Indeed, ∥∥∥∥
(
a 0
0 b

)∥∥∥∥ = r

(
a 0
0 b

)
= Max{|a|, |b|}

and for A =
(
a 0
0 b

)
,

‖A�A∗‖ =
∥∥∥∥
(
a 0
0 b

)(
1 0
0 −1

)(
a 0
0 b

)∥∥∥∥
=

∥∥∥∥
(
a2 0
0 b2

)∥∥∥∥ = Max{|a2|, |b2|} = ‖A‖2.

The following example shows that the condition Sp(ε) = {−1, 1} by itself is not a
sufficient condition for Aε to be a C∗-algebra. In fact it shows that the converse of
Theorem 3.3 does not hold if ε is not invertible.
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Example 3.5. Suppose A be the C∗-algebra of all complex 3 × 3 matrixes

entries and let ε =


 1 0 0

0 −1 0
0 0 1




Then it is clear that Sp(ε) = {−1, 1}. But for A =


 1 0 0

0 2 1
0 0 3


 we have:

9 = (r(A))2 = ‖A‖2 	= ‖A∗ � A‖ = ‖A∗εA‖ = r


 1 0 0

0 −4 4
0 −2 11




= max
{

1, | 1
−2

(−7 −√
193)|, | 1

−2
(−7 +

√
193)|

}

And this means that Aε cannot be a C∗-algebra.

4. DERIVATIONS, AMENABILITY, ARENS REGULARITY OF Aε

In this section we investigate the derivations on Aε and their relations with
the derivations on A. Also we consider X-derivations where X is a Aε-module,
amenability of Aε and it’s relation with the amenability of A and finally we consider
the Arens regularity of Aε.

Definition 4.1. The linear operator D : A→ A is called a derivation if

D(ab) = aD(b) +D(a)b.

The following proposition characterizes the derivations on Aε with respect to
the derivations on A.

Proposition 4.2.
(i) Let D be a derivation on A such that D(ε) = 0. Then D is a derivation on

Aε.

(ii) If A has a bounded approximate identity and D is a derivation on both A
and Aε, then D(ε) = 0.

Proof.
(i) Let D be a derivation on A such that D(ε) = 0. Then for a, b ∈ A, we have

D(a� b) = D(aεb) = D(aε)b+ aεD(b)
= D(a)εb+ aD(ε)b+ aεD(b) = D(a)� b+ a�D(b).

Hence D is a derivation on Aε.
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(ii) Let {eα}α∈I be a bounded approximate identity on A and D be a derivation
on A and Aε. Let a, b ∈ A, then since D is a derivation on Aε, we have

D(a� b) = D(a) � b+ a�D(b) = D(a)εb+ aεD(b).

Also since D is a derivation on A,

D(a� b) = D(aεb) = D(a)εb+ aD(ε)b+ aεD(b).

Therefore for all a and b in A, aD(ε)b = 0. So that

0 = eαD(ε)eα → D(ε).

Hence D(ε) = 0.

The next proposition shows that in a special case any inner derivation on Aε is
an inner derivation on A.

Proposition 4.3. If ε is in the algebraic center of A, then any inner derivation
on Aε is an inner derivation on A.

Proof. Let δε
c be the inner derivation corresponding to c on Aε. Then:

δε
c(a) = a � c− c� a = aεc− cεa = a(εc)− (εc)a = δεc(a)

In which δεc is the inner derivation corresponding to εc on A.

Remark 4.4. If ε is an element in the algebraic center of A, then the identity
δc(ε) = cε− εc = 0 and the proposition 4.2 implies that when ε is invertible, we
have δc = δε

ε−1c. So that in this case the converse of the proposition 4.3 holds.
Now we consider the relation between A-modules and Aε-modules.

Let X be a Banach A-module. We define

� : Aε X → X by (a, x) �→ a� x = aεx.

Then X is a Aε-module. Indeed,

(a1 � a2) � x = (a1εa2)εx = a1ε(a2εx) = a1 � (a2 � x).

Also,

‖a� x‖ = ‖(aε)x‖ ≤ k‖aε‖ ‖x‖ ≤ k‖ε‖‖a‖‖x‖.
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Definition 4.5. The bounded linear operator D : A → X is called a X-
derivation of A if D(ab) = D(a)b+ aD(b), for all a, b ∈ A.

The next proposition shows the relation between X-derivations of A and X-
derivations of Aε.

Proposition 4.6.

(i) If D is a X-derivation of A such that D(ε) = 0, then D is a X-derivation
of Aε.

(ii) If A has a bounded approximate identity for X , and D is a X-derivation of
A and of Aε, then D(ε) = 0.

Proof. Proof is similar to proposition 4.2.

Now we consider the amenability of Aε. The following proposition shows that
if A is commutative and ε is idempotent then the amenability of A implies the
amenability of Aε.

Proposition 4.7. Let A be a Banach algebra and ε be an idempotent element
of the algebraic center of A. If A is amenable, then A ε is amenable.

Proof. Let A be an amenable Banach algebra. Then A
∧⊗ A (for its definition

see [1]), is also amenable (see Theorem 4.3 of [6]). Now let:

f : A
∧⊗ A→ Aε be defined by f(a⊗ b) = aεb

Then f is a continuous homomorphism of Banach algebras.
Indeed we have:

f((a1 ⊗ b1)(a2 ⊗ b2)) = f(a1a2 ⊗ b1b2) = a1a2εb1b2 = a1a2ε
3b1b2

= (a1εb1)ε(a2εb2) = f(a1 ⊗ b1) � f(a2 ⊗ b2)

Also, f is continuous, since for u ∈ A ⊗A, if

n∑
i=1

ai ⊗ bi

is one of the representations of u, then from the fact that ‖ε‖ ≤ 1 we have

‖f(u)‖ = ‖
n∑

i=1

aiεbi‖ ≤
n∑

i=1

‖ai‖‖ε‖‖bi‖ ≤
n∑

i=1

‖ai‖‖bi‖
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Consequently,

‖f(u)‖ ≤ inf{
n∑

i=1

‖ai‖‖bi‖ : u =
n∑

i=1

ai ⊗ bi} = ‖u‖.

Therefore ‖f‖ ≤ 1. Also the range of f is Aε, since for any a ∈ A

a = a1 = aε2 = aεε,

and aεε is an element in the range of f. Thus f is a continuous homomorphism of
the amenable Banach algebra of A

∧⊗ A onto Aε. Now the amenability of Banach
algebra Aε is a consequence of Theorem 43.11 in [5].

Remark 4.8. If in the above proposition, we also assume that ε is invertible,
then the amenability of Aε implies the amenability of A. This is because of the
identity

A = (Aε)ε−2.

We conclude this section with studding the Arens regularity of Aε. In particular
we show that if A is a left or right ideal of the Banach (A∗∗, .), then Aε is Arens
regular for all ε in the unite ball of A.

We denote ”.” the first Arens product on A∗∗, which is defined as follows

< f.a, b >=< f, ab >

< n.f, a >=< n, f.a >

< m.n, f >=< m, n.f >

for a, b ∈ A, f ∈ A∗ and m, n ∈ A∗∗, and use ”∆” for the second Arens product
on A∗∗ which is defined as follows

< b, a∆f >=< ba, f >

< a, f∆m>=< a∆f,m >

< f,m∆n >=< f∆m, n > .

Also the topological center Z1 and Z2 corresponding to the first and the second
Arens product respectively, is defined by

Z1 = {m ∈ A∗∗ : m.n = m∆n, ∀n ∈ A∗}

Z2 = {n ∈ A∗∗ : m.n = m∆n, ∀m ∈ A∗∗}.
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We refer to [3] and [4] for elementary definitions and more information about
Arens products, topological center and Arens regularity of Banach algebras. The
Banach algebra A is called Arens regular if and only if Z1 = A∗∗ or Z2 = A∗∗.
We recall that if A is a Banach algebra a ∈ A and n ∈ A∗∗, then A ⊆ Z1 ∩
Z2, so a.n = a∆n and n.a = n∆a.

Theorem 4.9. Let A be a Banach algebra and A is a left or right ideal of
A∗∗, with the products a.n and n.a, (a ∈ A, n ∈ A∗∗). Then for each ε in the
unit ball of A, Aε is Arens regular.

Proof. Let ⊕ denotes the first Arens product on A∗∗
ε and ∆⊕ be the second

Arens product on A∗∗
ε . Let m, n ∈ A∗∗

ε , f ∈ A∗
ε = A∗ and a, b ∈ Aε, we have

< f ⊕ a, b >=< f, a⊕ b >=< f, aεb >=< f.aε, b >

so f ⊕ a = f.aε, for all a ∈ A. Also

< n⊕ f, a >=< n, f ⊕ a >=< n, f.aε >

=< (ε∆n).f, a >=< ε.n.f, a > .

The last equality holds, since A ⊆ Z1∩Z2 and so ε∆n = ε.n. Hence n⊕f = ε.n.f .
Furthermore

< m⊕ n, f >=< m, n⊕ f >=< m, ε.n.f >=< m.ε.n, f > .

Thus m ⊕ n = m.ε.n. Similarly one can show that m∆⊕n = m∆ε∆n. Now
supposeA is a left ideal inA∗∗. This implies that for eachm, n ∈ A∗∗, ε.n(= ε∆n)
belongs to Z1 and

m⊕ n = m.(ε.n) = m∆(ε.n)

= m∆(ε∆n) = m∆⊕n.

Hence A∗∗
ε is Arens regular. Similar arguments prove that Aε is Arens regular when

A is a right ideal of A∗∗.

Remark 4.10. If A is Arens regular then the equalitiesm⊕n = m.ε.n and m
∆⊕n = m∆n∆n implies that Aε is Arens regular. But the converse is not true in
general, for example let G be an infinite compact topological group. By Theorem
[7] 4.1 we know that A = L1(G) is a right ideal in its second dual so by the
previous Theorem for each ε in the unit ball of A, Aε is Arens regular, but from
[8] we know L1(G) is Arens regular if and only if G is finite, which shows that A
is not Arens regular.
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