TAIWANESE JOURNAL OF MATHEMATICS
Vol. 12, No. 7, pp. 1769-1779, October 2008
This paper is available online at http://www.tjm.nsysu.edu.tw/

BANACH ALGEBRAS RELATED TO THE ELEMENTS OF THE UNIT BALL OF A BANACH ALGEBRA

R. A. Kamyabi-Gol and M. Janfada

Abstract

Suppose A is a Banach algebra and ϵ is in A with $\|\epsilon\| \leq 1$. In this note we aim to study the algebraic properties of the Banach algebra A_{ϵ}, where the product on A_{ϵ} is given by $a \odot b=a \epsilon b$, for $a, b \in A$. In particular we study the Arens regularity, amenability and derivations on A_{ϵ}. Also we prove that if A has an involution then A_{ϵ} has the same involution just when $\epsilon=1$ or -1 .

1. Introduction

Let A be a Banach algebra and ϵ be an element in the closed unit ball of A. A new product \odot is defined on A by

$$
a \odot b=a \in b \quad \text { for all } \mathrm{a}, \mathrm{~b} \in A
$$

A with this product is a Banach algebra which we denote it by A_{ϵ}. We aim to study the algebraic properties of A_{ϵ} such as when A_{ϵ} has a unit, when an element of A_{ϵ} is invertible and so on. The necessary and sufficient conditions for the existence of involution on A_{ϵ} is investigated. In particular, when is A_{ϵ} a C^{*}-algebra. Derivations on A_{ϵ}, the Arens regularity of A_{ϵ} and amenability of A_{ϵ} are also examined.

2. The Elementary Properties of A_{e}

Definition 2.1. Let A be a Banach algebra and ϵ an element of it's closed unit ball i.e. $\|\epsilon\| \leq 1$. We define the new product \odot on a A by

$$
a \odot b=a \in b \quad \text { for all } \mathrm{a}, \mathrm{~b} \in A .
$$

[^0]One can easily check that A with this product is an algebra which we denote it by A_{ϵ}.

Proposition 2.2. With the above assumptions A_{ϵ} is a Banach algebra.
Proof. is immediate.
In the next proposition the algebraic properties of A_{ϵ} are investigated.
Proposition 2.3. If A is a Banach algebra. Then
(i) A_{ϵ} is unital if and only if A is unital and ϵ is invertible.
(ii) If A_{ϵ} is unital, then for any $a \in A, S p_{A_{\epsilon}}(a)=S p_{A}(a \epsilon)$. Where $S p_{A_{\epsilon}}$ and $S p_{A}$ stand for the spectrum relative to A_{ϵ} and A respectively.
(iii) If A_{ϵ} is unital then $\operatorname{Inv}\left(A_{\epsilon}\right)=\operatorname{Inv}(A)$. Where Inv denotes the set of all invertible elements.
(iv) If ϵ_{1} and ϵ_{2} are in the closed unit ball of A, then $\left(A_{\epsilon_{1}}\right)_{\epsilon_{2}}=A_{\epsilon_{1} \epsilon_{2} \epsilon_{1}}$. In particular, if ϵ is invertible then $\left(A_{\epsilon}\right)_{\epsilon^{-2}}=A$.

Proof.
(i) Let A_{ϵ} be unital and 1_{ϵ} be the identity of A_{ϵ}. Then for any $a \in A$,

$$
a \odot 1_{\epsilon}=1_{\epsilon} \odot a=a
$$

Consequently $a\left(\epsilon 1_{\epsilon}\right)=\left(1_{\epsilon} \epsilon\right) a=a$. But $1_{\epsilon} \epsilon=\left(1_{\epsilon} \epsilon\right)\left(\epsilon 1_{\epsilon}\right)=\epsilon 1_{\epsilon}$. So $\epsilon 1_{\epsilon}$ is the unit of A and $\epsilon^{-1}=1_{\epsilon}$.
For the converse, one can easily check that if ϵ is invertible, then ϵ^{-1} is the unit of A_{ϵ}.
(ii) Let A_{ϵ} be unital and $\lambda \in P_{A}(a)$. Then there exists $b \in A$ such that

$$
1_{\epsilon}=\epsilon^{-1}=\left(\lambda \epsilon^{-1}-a\right) \odot b=\left(\lambda \epsilon^{-1}-a\right) \epsilon b=(\lambda-a \epsilon) b
$$

So that $\quad 1=(\lambda-a \epsilon) b \epsilon$. This means that $\quad \lambda-a \epsilon$ is left invertible in A. Similarly $(\lambda-a \epsilon)$ has a right inverse in A. Therefore $\lambda \in S p_{A}(a \epsilon)$. In other words, we have $S p_{A_{\epsilon}}(a) \subseteq S p_{A}(a \epsilon)$.
In a similar way, we can see $S p_{A}(a \epsilon) \subseteq S p_{A_{\epsilon}}(a)$.
(iii) Let $a \in \operatorname{Inv}(A)$. Then there is $b \in A$ such that

$$
a b=b a=1
$$

Therefore $a \epsilon\left(\epsilon^{-1} b \epsilon^{-1}\right)=\left(\epsilon^{-1} b \epsilon^{-1}\right) \epsilon a=\epsilon^{-1}$.
This means that

$$
a \odot\left(\epsilon^{-1} b \epsilon^{-1}\right)=\left(\epsilon^{-1} b \epsilon^{-1}\right) \odot a=\epsilon^{-1} .
$$

Consequently, $a \in \operatorname{Inv}\left(A_{\epsilon}\right)$ i.e. $\operatorname{Inv}(A) \subseteq \operatorname{Inv}\left(A_{\epsilon}\right)$. The reverse inclusion holds similarly.
(iv) Proof is immediate.

In the next proposition we study the relation between the multiplicative linear functionals on A and A_{ϵ}.

Proposition 2.4.

(i) If ϕ is a multiplicative linear functional on A, then $\psi=\phi(\epsilon) \phi$ is a multiplicative linear functional on A_{ϵ}.
(ii) If A_{ϵ} is unital, and ψ is a multiplicative linear functional on A_{ϵ}, then $\phi(a)=$ $\psi\left(\epsilon^{-1} a\right)$ is a multiplicative linear functional on A_{ϵ}.

Proof. (i) Let $a, b \in A$. Then

$$
\psi(a \odot b)=\psi(a \epsilon b)=\phi(\epsilon) \phi(a) \phi(\epsilon) \phi(b)=\psi(a) \psi(b) .
$$

The proof of $(i i)$ is clear by the identity $\left(A_{\epsilon}\right)_{\epsilon^{-2}}=A$ and (i), also one can verify it directly.

Corollary 2.5.

(i) If A_{ϵ} is unital, then the mapping $\phi \mapsto \psi$ between the set of all multiplicative linear functionals on A and A_{ϵ} is a one-to-one correspondence.
(ii) $\operatorname{Ker} \phi=$ Ker ψ and in particular $\bigcap M=\bigcap M_{\epsilon}$. Where M and M_{ϵ} run over the maximal ideal spaces of A and A_{ϵ} respectively.

3. Involution on A_{ϵ}

In this section the involutive Banach algebras are considered. Especially the necessary conditions for ϵ that A_{ϵ} is an involutive Banach algebra or a C^{*}-algebra, is investigated.

Proposition 3.1. Let A be an involutive Banach algebra with involution *. Then
(i) If ϵ is self-adjoint, then A_{ϵ} is a *-involutive Banach algebra.
(ii) If A is unital or has a bounded approximate identity and $*$ is an involution on A_{ϵ}, then ϵ is self-adjoint.
In particular, any C^{*}-algebra has a bounded approximate identity and so (i) and (ii) is valid.

Proof.

(i) is immediate.
(ii) Let $\left\{e_{\alpha}\right\}_{\alpha \in I}$ be a bounded approximate identity for A. Then by the continuity of $*,\left\{e_{\alpha}^{*}\right\}$ is also a bounded approximate identity for A. On the other hand, since $*$ is an involution for A_{ϵ} we have:

$$
\left(e_{\alpha}^{*} \odot e_{\alpha}\right)^{*}=e_{\alpha}^{*} \odot e_{\alpha}
$$

and it is easy to see that $\lim _{\alpha} e_{\alpha}^{*} \epsilon e_{\alpha}=\epsilon$. Now,

$$
\begin{aligned}
\epsilon^{*} & =\lim _{\alpha}\left(e_{\alpha}^{*} \epsilon^{*} e_{\alpha}\right)=\lim _{\alpha}\left(e_{\alpha}^{*} \epsilon e_{\alpha}\right)^{*}=\lim _{\alpha}\left(e_{\alpha}^{*} \odot e_{\alpha}\right)^{*} \\
& =\lim _{\alpha}\left(e_{\alpha}^{*} \odot e_{\alpha}\right)=\lim _{\alpha} e_{\alpha}^{*} \epsilon e_{\alpha}=\epsilon .
\end{aligned}
$$

The following proposition shows that when both A and A_{ϵ} are C^{*}-algebras, ϵ can not be an interior point of the unit ball of A.

Proposition 3.2. Let A and A_{ϵ} be C^{*}-algebras with the same involution. Then $\|\epsilon\|=1$. Proof. It is known that any C^{*}-algebra admits an increasing bounded approximate unit. Let $\left\{e_{\alpha}\right\}$ be such an approximate unit with $\left\|e_{\alpha}\right\|=1$ for all $\alpha^{\star} s$. Since A_{ϵ} is also a C^{*}-algebra, we have:

$$
1=\left\|e_{\alpha}\right\|^{2}=\left\|e_{\alpha} \odot e_{\alpha}^{*}\right\|=\left\|e_{\alpha} \epsilon e_{\alpha}^{*}\right\| \quad \text { and } \quad\left\|e_{\alpha} \epsilon e_{\alpha}^{*}\right\| \longrightarrow\|\epsilon\| .
$$

Consequently, $1=\|\epsilon\|$.
Theorem 3.3. Let A and A_{ϵ} be C^{*}-algebras where ϵ is invertible, then $S p(\epsilon) \subseteq\{-1,1\}$.

Proof. First we show that when ϵ is invertible, there is a one-to-one correspondence between the irreducible representations of A and A_{ϵ}. Let $\{\pi, H\}$ be an irreducible representation of A. Then it is easy to see that $\left\{\pi_{1}, H\right\}$ is an irreducible representation on A_{ϵ} where $\pi_{1}(a)=\pi(\epsilon a)$ for all $a \in A$. Also if $\left\{\pi_{1}, H\right\}$ is an irreducible representation of A_{ϵ}, then $\{\pi, H\}$ is an irreducible representation of A in which $\pi(a)=\pi_{1}\left(\epsilon^{-1} a\right)$ for all $a \in A$. Now if moreover A and A_{ϵ} are C^{*}-algebras then by 2.7.1 and 2.7.3 of [2], for any $a \in A$, we have

$$
\|a\|=S U P\{\|\pi(a)\|:\{\pi, H\} \text { is an irreducible representation of } A\}
$$

and

$$
\|a\|=S U P\left\{\left\|\pi_{1}(a)\right\|:\left\{\pi_{1}, H\right\} \text { is an irreducible representation of } A_{\epsilon}\right\}
$$

so that by what we have shown above,

$$
\|a\|=S U P\{\|\pi(a)\|:\{\pi, H\} \text { is an irreducible representation of } A\}
$$

$=\operatorname{SUP}\left\{\left\|\pi_{1}\left(\epsilon^{-1} a\right)\right\|:\left\{\pi_{1}, H\right\}\right.$ is an irreducible representation of $\left.A_{\epsilon}\right\}=\left\|\epsilon^{-1} a\right\|$ similarly,
$\|a\|=S U P\left\{\left\|\pi_{1}(a)\right\|:\left\{\pi_{1}, H\right\}\right.$ is an irreducible representation of $\left.A_{\epsilon}\right\}$
$=\operatorname{SUP}\{\|\pi(a)\|:\{\pi, H\}$ is an irreducible representation of $A\}=\|\epsilon a\|$
Hence, $\quad\|a\|=\|\epsilon a\|=\left\|\epsilon^{-1} a\right\|$ for all $a \in A$. Therefore $1=\|1\|=\|\epsilon\|=$ $\left\|\epsilon^{-1}\right\|$.
This means that $0 \notin S p\{\epsilon\}, \quad S p(\epsilon) \subseteq[-1,1]$ and $S p\left(\epsilon^{-1}\right) \subseteq[-1,1]$. But $S p\left(\epsilon^{-1}\right)=\left\{\frac{1}{\lambda}: \lambda \in S p(\epsilon)\right\}$. Consequently $S p(\epsilon) \subseteq\{-1,1\}$.

The next example shows that, $S p(\epsilon)=\{-1,1\}$ is possible. So, one can not find some more restriction conditions of Theorem 3.3 on ϵ.

Example 3.4. Let $A=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right): a, b \in \mathbb{C}\right.$. $\}$. Then A is a C^{*}-algebra. Assume $\epsilon\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ Then $S p(\epsilon)=\{-1,1\}$. For this ϵ, A_{ϵ} is a C^{*}-algebra. Indeed,

$$
\left\|\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)\right\|=r\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)=\operatorname{Max}\{|a|,|b|\}
$$

and for $A=\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right)$,

$$
\begin{aligned}
\left\|A \odot A^{*}\right\| & =\left\|\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)\right\| \\
& =\left\|\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right)\right\|=\operatorname{Max}\left\{\left|a^{2}\right|,\left|b^{2}\right|\right\}=\|A\|^{2} .
\end{aligned}
$$

The following example shows that the condition $S p(\epsilon)=\{-1,1\}$ by itself is not a sufficient condition for A_{ϵ} to be a C^{*}-algebra. In fact it shows that the converse of Theorem 3.3 does not hold if ϵ is not invertible.

Example 3.5. Suppose A be the C^{*}-algebra of all complex 3×3 matrixes entries and let $\epsilon=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Then it is clear that $S p(\epsilon)=\{-1,1\}$. But for $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right)$ we have:

$$
\begin{aligned}
9=(r(A))^{2} & =\|A\|^{2} \neq\left\|A^{*} \odot A\right\|=\left\|A^{*} \epsilon A\right\|=r\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -4 & 4 \\
0 & -2 & 11
\end{array}\right) \\
& =\max \left\{1,\left|\frac{1}{-2}(-7-\sqrt{193})\right|,\left|\frac{1}{-2}(-7+\sqrt{193})\right|\right\}
\end{aligned}
$$

And this means that A_{ϵ} cannot be a C^{*}-algebra.

4. Derivations, Amenability, Arens Regularity of A_{ϵ}

In this section we investigate the derivations on A_{ϵ} and their relations with the derivations on A. Also we consider X-derivations where X is a A_{ϵ}-module, amenability of A_{ϵ} and it's relation with the amenability of A and finally we consider the Arens regularity of A_{ϵ}.

Definition 4.1. The linear operator $D: A \rightarrow A$ is called a derivation if

$$
D(a b)=a D(b)+D(a) b
$$

The following proposition characterizes the derivations on A_{ϵ} with respect to the derivations on A.

Proposition 4.2.

(i) Let D be a derivation on A such that $D(\epsilon)=0$. Then D is a derivation on A_{ϵ}.
(ii) If A has a bounded approximate identity and D is a derivation on both A and A_{ϵ}, then $D(\epsilon)=0$.

Proof.
(i) Let D be a derivation on A such that $D(\epsilon)=0$. Then for $a, b \in A$, we have

$$
\begin{aligned}
D(a \odot b) & =D(a \epsilon b)=D(a \epsilon) b+a \epsilon D(b) \\
& =D(a) \epsilon b+a D(\epsilon) b+a \epsilon D(b)=D(a) \odot b+a \odot D(b)
\end{aligned}
$$

Hence D is a derivation on A_{ϵ}.
(ii) Let $\left\{e_{\alpha}\right\}_{\alpha \in I}$ be a bounded approximate identity on A and D be a derivation on A and A_{ϵ}. Let $a, b \in A$, then since D is a derivation on A_{ϵ}, we have

$$
D(a \odot b)=D(a) \odot b+a \odot D(b)=D(a) \epsilon b+a \epsilon D(b)
$$

Also since D is a derivation on A,

$$
D(a \odot b)=D(a \epsilon b)=D(a) \epsilon b+a D(\epsilon) b+a \epsilon D(b)
$$

Therefore for all a and b in $A, a D(\epsilon) b=0$. So that

$$
0=e_{\alpha} D(\epsilon) e_{\alpha} \rightarrow D(\epsilon)
$$

Hence $D(\epsilon)=0$.

The next proposition shows that in a special case any inner derivation on A_{ϵ} is an inner derivation on A.

Proposition 4.3. If ϵ is in the algebraic center of A, then any inner derivation on A_{ϵ} is an inner derivation on A.

Proof. Let δ_{c}^{ϵ} be the inner derivation corresponding to c on A_{ϵ}. Then:

$$
\delta_{c}^{\epsilon}(a)=a \odot c-c \odot a=a \epsilon c-c \epsilon a=a(\epsilon c)-(\epsilon c) a=\delta_{\epsilon c}(a)
$$

In which $\delta_{\epsilon c}$ is the inner derivation corresponding to ϵc on A.

Remark 4.4. If ϵ is an element in the algebraic center of A, then the identity $\delta_{c}(\epsilon)=c \epsilon-\epsilon c=0$ and the proposition 4.2 implies that when ϵ is invertible, we have $\delta_{c}=\delta_{\epsilon^{-1} c}^{\epsilon}$. So that in this case the converse of the proposition 4.3 holds.

Now we consider the relation between A-modules and A_{ϵ}-modules.
Let X be a Banach A-module. We define

$$
\odot: A_{\epsilon} X \rightarrow X \text { by }(a, x) \mapsto a \odot x=a \epsilon x
$$

Then X is a A_{ϵ}-module. Indeed,

$$
\left(a_{1} \odot a_{2}\right) \odot x=\left(a_{1} \epsilon a_{2}\right) \epsilon x=a_{1} \epsilon\left(a_{2} \epsilon x\right)=a_{1} \odot\left(a_{2} \odot x\right)
$$

Also,

$$
\|a \odot x\|=\|(a \epsilon) x\| \leq k\|a \epsilon\|\|x\| \leq k\|\epsilon\|\|a\|\|x\|
$$

Definition 4.5. The bounded linear operator $D: A \rightarrow X$ is called a X derivation of A if $D(a b)=D(a) b+a D(b)$, for all $a, b \in A$.

The next proposition shows the relation between X-derivations of A and X derivations of A_{ϵ}.

Proposition 4.6.

(i) If D is a X-derivation of A such that $D(\epsilon)=0$, then D is a X-derivation of A_{ϵ}.
(ii) If A has a bounded approximate identity for X, and D is a X-derivation of A and of A_{ϵ}, then $D(\epsilon)=0$.

Proof. Proof is similar to proposition 4.2.
Now we consider the amenability of A_{ϵ}. The following proposition shows that if A is commutative and ϵ is idempotent then the amenability of A implies the amenability of A_{ϵ}.

Proposition 4.7. Let A be a Banach algebra and ϵ be an idempotent element of the algebraic center of A. If A is amenable, then A_{ϵ} is amenable.

Proof. Let A be an amenable Banach algebra. Then $A \hat{\otimes} A$ (for its definition see [1]), is also amenable (see Theorem 4.3 of [6]). Now let:

$$
f: A \hat{\otimes} A \rightarrow A_{\epsilon} \text { be defined by } f(a \otimes b)=a \epsilon b
$$

Then f is a continuous homomorphism of Banach algebras.
Indeed we have:

$$
\begin{aligned}
f\left(\left(a_{1} \otimes b_{1}\right)\left(a_{2} \otimes b_{2}\right)\right) & =f\left(a_{1} a_{2} \otimes b_{1} b_{2}\right)=a_{1} a_{2} \epsilon b_{1} b_{2}=a_{1} a_{2} \epsilon^{3} b_{1} b_{2} \\
& =\left(a_{1} \epsilon b_{1}\right) \epsilon\left(a_{2} \epsilon b_{2}\right)=f\left(a_{1} \otimes b_{1}\right) \odot f\left(a_{2} \otimes b_{2}\right)
\end{aligned}
$$

Also, f is continuous, since for $u \in A \otimes A$, if

$$
\sum_{i=1}^{n} a_{i} \otimes b_{i}
$$

is one of the representations of u, then from the fact that $\|\epsilon\| \leq 1$ we have

$$
\|f(u)\|=\left\|\sum_{i=1}^{n} a_{i} \epsilon b_{i}\right\| \leq \sum_{i=1}^{n}\left\|a_{i}\right\|\|\epsilon\|\left\|b_{i}\right\| \leq \sum_{i=1}^{n}\left\|a_{i}\right\|\left\|b_{i}\right\|
$$

Consequently,

$$
\|f(u)\| \leq \inf \left\{\sum_{i=1}^{n}\left\|a_{i}\right\|\left\|b_{i}\right\|: \quad u=\sum_{i=1}^{n} a_{i} \otimes b_{i}\right\}=\|u\| .
$$

Therefore $\|f\| \leq 1$. Also the range of f is A_{ϵ}, since for any $a \in A$

$$
a=a 1=a \epsilon^{2}=a \epsilon \epsilon,
$$

and $a \epsilon \epsilon$ is an element in the range of f. Thus f is a continuous homomorphism of the amenable Banach algebra of $A \hat{\otimes} A$ onto A_{ϵ}. Now the amenability of Banach algebra A_{ϵ} is a consequence of Theorem 43.11 in [5].

Remark 4.8. If in the above proposition, we also assume that ϵ is invertible, then the amenability of A_{ϵ} implies the amenability of A. This is because of the identity

$$
A=\left(A_{\epsilon}\right)_{\epsilon^{-2}} .
$$

We conclude this section with studding the Arens regularity of A_{ϵ}. In particular we show that if A is a left or right ideal of the Banach $\left(A^{* *},.\right)$, then A_{ϵ} is Arens regular for all ϵ in the unite ball of A.

We denote "." the first Arens product on $A^{* *}$, which is defined as follows

$$
\begin{aligned}
<f \cdot a, b> & =<f, a b> \\
\langle n \cdot f, a> & =<n, f \cdot a> \\
<m \cdot n, f> & =<m, n \cdot f>
\end{aligned}
$$

for $a, b \in A, f \in A^{*}$ and $m, n \in A^{* *}$, and use " Δ " for the second Arens product on $A^{* *}$ which is defined as follows

$$
\begin{gathered}
\langle b, a \Delta f>=<b a, f> \\
<a, f \Delta m>=<a \Delta f, m> \\
<f, m \Delta n>=<f \Delta m, n>.
\end{gathered}
$$

Also the topological center Z_{1} and Z_{2} corresponding to the first and the second Arens product respectively, is defined by

$$
\begin{aligned}
& Z_{1}=\left\{m \in A^{* *}: m \cdot n=m \Delta n, \quad \forall n \in A^{*}\right\} \\
& Z_{2}=\left\{n \in A^{* *}: m \cdot n=m \Delta n, \quad \forall m \in A^{* *}\right\} .
\end{aligned}
$$

We refer to [3] and [4] for elementary definitions and more information about Arens products, topological center and Arens regularity of Banach algebras. The Banach algebra A is called Arens regular if and only if $Z_{1}=A^{* *}$ or $Z_{2}=A^{* *}$. We recall that if A is a Banach algebra $a \in A$ and $n \in A^{* *}$, then $A \subseteq Z_{1} \cap$ Z_{2}, so $a . n=a \Delta n$ and $n . a=n \Delta a$.

Theorem 4.9. Let A be a Banach algebra and A is a left or right ideal of $A^{* *}$, with the products a.n and n.a, $\left(a \in A, n \in A^{* *}\right)$. Then for each ϵ in the unit ball of A, A_{ϵ} is Arens regular.

Proof. Let \oplus denotes the first Arens product on $A_{\epsilon}^{* *}$ and Δ_{\oplus} be the second Arens product on $A_{\epsilon}^{* *}$. Let $m, n \in A_{\epsilon}^{* *}, f \in A_{\epsilon}^{*}=A^{*}$ and $a, b \in A_{\epsilon}$, we have

$$
<f \oplus a, b>=<f, a \oplus b>=<f, a \epsilon b>=<f . a \epsilon, b>
$$

so $f \oplus a=f . a \epsilon$, for all $a \in A$. Also

$$
\begin{gathered}
<n \oplus f, a>=<n, f \oplus a>=<n, f \cdot a \epsilon> \\
=<(\epsilon \Delta n) . f, a>=<\epsilon . n . f, a>
\end{gathered}
$$

The last equality holds, since $A \subseteq Z_{1} \cap Z_{2}$ and so $\epsilon \Delta n=\epsilon$.n. Hence $n \oplus f=\epsilon$.n.f. Furthermore

$$
<m \oplus n, f>=<m, n \oplus f>=<m, \text { є.n. } f>=<m . \epsilon . n, f>
$$

Thus $m \oplus n=m . \epsilon . n$. Similarly one can show that $m \Delta_{\oplus} n=m \Delta \epsilon \Delta n$. Now suppose A is a left ideal in $A^{* *}$. This implies that for each $m, n \in A^{* *}, \epsilon . n(=\epsilon \Delta n)$ belongs to Z_{1} and

$$
\begin{gathered}
m \oplus n=m \cdot(\epsilon . n)=m \Delta(\epsilon . n) \\
\quad=m \Delta(\epsilon \Delta n)=m \Delta_{\oplus} n
\end{gathered}
$$

Hence $A_{\epsilon}^{* *}$ is Arens regular. Similar arguments prove that A_{ϵ} is Arens regular when A is a right ideal of $A^{* *}$.

Remark 4.10. If A is Arens regular then the equalities $m \oplus n=m . \epsilon . n$ and m $\Delta_{\oplus} n=m \Delta n \Delta n$ implies that A_{ϵ} is Arens regular. But the converse is not true in general, for example let G be an infinite compact topological group. By Theorem [7] 4.1 we know that $A=L^{1}(G)$ is a right ideal in its second dual so by the previous Theorem for each ϵ in the unit ball of A, A_{ϵ} is Arens regular, but from [8] we know $L^{1}(G)$ is Arens regular if and only if G is finite, which shows that A is not Arens regular.

References

1. F. F. Bonsal, J. Duncan, Complete normed algebras, Springer-Verlag, 1973.
2. J. Dixmier, C^{*}-Algebras, N. H. Publishing Company, 1977.
3. J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Edinburg, 84A (1979), 309-325.
4. A. T. Lau and A. Ulger, Topological center of certain dual algebras., Trans. Amer. Math. Soc., 348(3) (1996), 1191-1212.
5. G. J. Murphy, C^{*}-Algebras and operator theory, Academic Press Inc, 1990.
6. M. Takesaki, Theory of operator algebras, Vol. I, Springer-Verlag Heidelberg, 1979.
7. S. Watanabe, A Banach algebra which is an ideal in the second dual space, Science Rep. of Niigata Univ. Series A., 11 (1974), 95-101.
8. N. J. Young, The irregularity of multiplication in group algebras, Quart. J. Math. (Oxford), 24(2) (1973), 59-62.

R. A. Kamyabi-Gol
Department of Mathematics,
Ferdowsi University of Mashhad,
Mashhad, P. O. Box 1159-91775,
Iran
E-mail: kamyabi@ferdowsi.um.ac.ir
M. Janfada
Department of Mathematics,
Teacher Training University of Sabzevar,
Sabzevar,
Iran
E-mail: m_janfada@sttu.ac.ir

[^0]: Received September 25, 2006, accepted May 5, 2007.
 Communicated by Raibin Zhang.
 2000 Mathematics Subject Classification: 46H99, 46L05, 46L57.
 Key words and phrases: Banach algebra, Arens regularity, Amenability.
 This work has a support of center of Excelency in Analysis on Algebric structure in Ferdowsi University of Mashhad.

