TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 7, pp. 1757-1767, October 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

COMPACT EMBEDDINGS OF THE SPACES $A_{w,\omega}^p(R^d)$

A. Turan Gürkanlı

Abstract. For $1 \le p \le \infty$, $A_{w,\omega}^p(R^d)$ denotes the space (Banach space) of all functions in $L_w^1(R^d)$ a weighted L^1 -space (Beurling algebra) with Fourier transforms \hat{f} in $L_\omega^p(R^d)$ which is equipped with the sum norm

$$\|f\|_{w,\omega}^p = \|f\|_{1,w} + \left\| \stackrel{\wedge}{f} \right\|_{p,\omega},$$

where w and ω are Beurling weights on \mathbb{R}^d . This space was defined in [5] and generalized in [6].

The present paper is a sequal to these works. In this paper we are going to discuss compact embeddings between the spaces $A_{w,\omega}^p(R^d)$.

0.1. notation

In this paper we will work on \mathbb{R}^d with Lebesgue measure dx. We denote by $C_c(\mathbb{R}^d)$ the spaces of complex-valued, continuous functions with compact support. Also the translation and modulation operators L_y, M_t are given by $L_y f(x) = f(x-y)$ and $M_t f(x) = e^{2\pi i tx} f(x)$ for all $x, y, t \in \mathbb{R}^d$. In this paper we will also use the Beurling's weight functions, i.e real valued, measurable and locally bounded functions w on \mathbb{R}^d which satisfy

$$w(x) \ge 1, w(x+y) \le w(x) \cdot w(y)$$
 for all $x, y \in \mathbb{R}^d$.

For $1 \le p < \infty$, we set

$$L_w^p\left(R^d\right) = \left\{f: fw \in L^p\left(R^d\right)\right\}$$

Communicated by Sen-Yen Shaw.

Received November 1, 2006, accepted May 5, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 43A15.

Key words and phrases: Weighted L^p-spaces, Beurling algebra, Compact embedding.

It is known that $L_w^p(\mathbb{R}^d)$ is a Banach space under the norm $||f||_{p,w} = ||fw||_p$. Particularly $\left(L_w^1(\mathbb{R}^d), ||f||_{1,w}\right)$ is a Banach convolution algebra. It is called as Beurling algebra. For two weight functions w_1 and w_2 we write $w_1 \preceq w_2$ if there exists C > 0 such that $w_1(x) \leq Cw_2(x)$ for all $x \in \mathbb{R}^d$. We write $w_1 \approx w_2$ if and only if $w_1 \preceq w_2$ and $w_2 \preceq w_1$. The main tool in this work is the Fourier transform denoted by the symbol $(\stackrel{\Lambda}{\cdot})$. One can find more informations about these notations in [11, 12].

We will denote by $A_p(R^d)$ the vector spaces of all functions in $L^1(R^d)$ whose Fourier transforms \hat{f} belong to $L^p(R^d) \cdot A_p(R^d)$ is a Banach convolution algebra with the norm

$$||f||^p = ||f||_1 + \left\| \stackrel{\wedge}{f} \right\|_p.$$

Research on $A^p(\mathbb{R}^d)$ was initiated by Larsen, Liu and Wang [10] and a number of authors such as Martin and Yap [13], Gürkanlı [8] worked on these spaces.Later some generalization to the weighted case was given by Feichtinger and Gürkanlı [5], Fisher, Gürkanlı and Liu [6].

2. MAIN RESULTS

Definition 1. Let w, ω be Beurling weights on \mathbb{R}^d . For $1 \leq p \leq \infty$, we set

$$A_{w,\omega}^{p}\left(R^{d}\right) = \left\{ f \in L_{w}^{1}\left(R^{d}\right) : \stackrel{\wedge}{f} \in L_{\omega}^{p}\left(R^{d}\right) \right\}$$

and equip it with the norm

$$||f||_{w,\omega}^p = ||f||_{1,w} + \left\| \stackrel{\wedge}{f} \right\|_{p,\omega}.$$

This space is a Banach space under this norm see [5], [6]. In the mentioned papers some properties of this space has been discussed.

Lemma 2. Let $(f_n)_{n \in N}$ be a sequence in $A^p_{w,\omega}(\mathbb{R}^d)$. If $(f_n)_{n \in N}$ converges to zero in $A^p_{w,\omega}(\mathbb{R}^d)$, then $(f_n)_{n \in N}$ also converges to zero in the vague topology(which means that

$$\int_{R^{d}} f_{n}(x) k(x) dx \to 0,$$

for $n \to \infty$ for all $k \in C_c(\mathbb{R}^d)$. See [2]).

Proof. Let $k \in C_c(\mathbb{R}^d)$. We write

(1)
$$\left| \int_{R^d} f_n(x) \, k(x) \, dx \right| \le \|k\|_{\infty} \, \|f_n\|_{L^1} \le \|k\|_{\infty} \, \|f_n\|_{w,\omega}^p \, .$$

Hence by (1) the sequence $(f_n)_{n \in N}$ converges to zero in vague topology.

Theorem 3. Let w, ω, v be Beurling weight functions on \mathbb{R}^d . If $v \preccurlyeq w$ and $\frac{v(x)}{w(x)}$ doesn't tend to zero in \mathbb{R}^d as $x \to \infty$ then the embedding of the space $A_{w,\omega}^p(\mathbb{R}^d)$ into $L_v^1(\mathbb{R}^d)$ is never compact.

Proof. Firstly we assume that $w(x) \to \infty$ as $x \to \infty$. Since $v \preccurlyeq w$, there exists $C_1 > 0$ such that $v(x) \le C_1 w(x)$. This implies $A_{w,\omega}^p(R^d) \subset L_v^1(R^d)$. Let $(t_n)_{n \in N}$ be a sequence with $t_n \to \infty$ in R^d . Also since $\frac{v(x)}{w(x)}$ doesn't tend to zero as $x \to \infty$ then there exists $\delta > 0$ such that $\frac{v(x)}{w(x)} \ge \delta > 0$ for $x \to \infty$. For the proof of the embedding of the space $A_{w,\omega}^p(R^d)$ into $L_v^1(R^d)$ is never compact, for any fixed $f \in A_{w,\omega}^p(R^d)$ define a sequence of functions $(f_n)_{n \in N}$, where $f_n = w(t_n)^{-1} L_{t_n} f$. This sequence is bounded in $A_{w,\omega}^p(R^d)$. Indeed we write

(2)
$$\|f_n\|_{w,\omega}^p = \left\|w(t_n)^{-1}L_{t_n}f\right\|_{w,\omega}^p = w(t_n)^{-1}\|L_{t_n}f\|_{w,\omega}^p.$$

By Theorem 1.9 in [6] , we know $\|L_x f\|_{w,\omega}^p \approx w(x)$. Hence there exists M > 0 such that $\|L_x f\|_{w,\omega}^p \leq M.w(x)$. By using (2) we write

$$||f_n||_{w,\omega}^p = w(t_n)^{-1} ||L_{t_n}f||_{w,\omega}^p \le M.w(t_n) w(t_n)^{-1} = M.$$

Now we will prove that there wouldn't exist norm convergence of subsequence of $(f_n)_{n \in N}$ in $L_v^1(\mathbb{R}^d)$. The sequence obtained above certainly converges to zero in the vague topology .Indeed for all $k \in C_c(\mathbb{R}^d)$ we write

(3)
$$\begin{aligned} \left| \int_{R^d} f_n(x) \, k(x) \, dx \right| &\leq \frac{1}{w(t_n)} \int_{R^d} |L_{t_n} f(x)| \, |k(x)| \, dx \\ &= \frac{1}{w(t_n)} \, \|k\|_{\infty} \, \|L_{t_n} f\|_{L^1} = \frac{1}{w(t_n)} . \, \|k\|_{\infty} \, \|f\|_{L^1} \, . \end{aligned}$$

Since right hand side of (3) tends zero for $n \to \infty$ then we have

$$\int_{R^d} f_n(x) k(x) dx \to 0.$$

Finally by Lemma 2 the only possible limit of (f_n) in $L_v^1(\mathbb{R}^d)$ is zero. It is known by Lemma2.2 in [5] that $||L_x f||_{L_v^1} \approx v(x)$. Hence there exists $C_2 > 0$ and $C_3 > 0$ such that

(4)
$$C_2 v(x) \le \|L_x f\|_{1,v} \le C_3 v(x).$$

From (4) and the equality below

(5)
$$\|f_n\|_{1,v} = \|w(t_n)^{-1} L_{t_n} f\|_{1,v} = w(t_n)^{-1} \|L_{t_n} f\|_{1,v}$$

we obtain

(6)
$$||f_n||_{1,v} = w(t_n)^{-1} ||L_{t_n}f||_{1,v} \ge C_2 w(t_n)^{-1} v(t_n)$$

Since $\frac{v(t_n)}{w(t_n)} \ge \delta > 0$ for all t_n , by using (6) we write

$$\|f_n\|_{1,v} \ge C_2 w (t_n)^{-1} v (t_n) \ge C_2 \delta.$$

It means that there would not be possible to find norm convergent subsequence of $(f_n)_{n \in N}$ in $L_v^1(\mathbb{R}^d)$.

Now we assume that w is a constant or a bounded weight function. Since $v \preccurlyeq w$ then $\frac{v(x)}{w(x)}$ is also constant or bounded and doesn't tend to zero as $x \to \infty$. We take a function $f \in A^p_{w,\omega}(R^d)$ with compactly support and define the sequence $(f_n)_{n \in N}$ as in (2). Thus $(f_n)_{n \in N} \subset A^p_{w,\omega}(R^d)$. It is easy to show as in (2) that $(f_n)_{n \in N}$ is bounded in $A^p_{w,\omega}(R^d)$ and converges to zero in the vague topology. Then there would not be possible to find norm convergent subsequence of $(f_n)_{n \in N}$ in $L^1_v(R^d)$. This implies that the embedding $A^p_{w,\omega}(R^d) \hookrightarrow L^1_v(R^d)$ is never compact.

Theorem 4. Let w_1, w_2 and ω_1, ω_2 be Beurling weight functions on \mathbb{R}^d . If $w_2 \preccurlyeq w_1, \omega_2 \preccurlyeq \omega_1$ and $\frac{w_2(x)}{w_1(x)}$ or $\frac{\omega_2(x)}{\omega_1(x)}$ don't tend to zero in \mathbb{R}^d then the embedding $i: A^p_{w_1,\omega_1}(\mathbb{R}^d) \hookrightarrow A^p_{w_2,\omega_2}(\mathbb{R}^d)$ is never compact.

Proof. Firstly we assume that $w_1(x) \to \infty, \omega_1(x) \to \infty$ as $x \to \infty$. Since $w_2 \preccurlyeq w_1$ and $\omega_2 \preccurlyeq \omega_1$ then $A_{w_1,\omega_1}^p(R^d) \subset A_{w_2,\omega_2}^p(R^d)$ by Theorem 1.19 in [6]. It is also known by Lemma 1.18 in [6] that the unit map from $A_{w_1,\omega_1}^p(R^d)$ into $A_{w_2,\omega_2}^p(R^d)$ is continuous. Assume that $\frac{w_2(x)}{w_1(x)}$ doesn't tend to zero. We are going to show that the unit map from $A_{w_1,\omega_1}^p(R^d)$ into $A_{w_2,\omega_2}^p(R^d)$ is never compact. Take any bounded sequence $(f_n)_{n\in N}$ in $A_{w_1,\omega_1}^p(R^d)$. If there exists norm convergent subsequence of $(f_n)_{n\in N}$ in $A_{w_2,\omega_2}^p(R^d)$, this subsequence also converges in $L_{w_2}^1(R^d)$. But this is a not possible by Theorem 3 because the embedding of the space $A_{w_1,\omega_1}^p(R^d)$ into $L_{w_2}^1(R^d)$ is never compact. Now assume that $\frac{\omega_2(x)}{\omega_1(x)}$ doesn't tend to zero. Let $(t_n)_{n\in N}$ be a sequence with $t_n \to \infty$ in R^d . For any fixed $f \in A_{w_1,\omega_1}^p(R^d)$ define a sequence of functions $(f_n)_{n\in N}$, where $f_n = \omega_1(t_n)^{-1} M_{t_n}f$. This sequence is bounded in $A_{w,\omega}^p(R^d)$. Indeed we write

(7)
$$\|f_n\|_{w_1,\omega_1}^p = \left\|\omega_1(t_n)^{-1}M_{t_n}f\right\|_{w_1,\omega_1}^p = \omega_1(t_n)^{-1}\|M_{t_n}f\|_{w_1,\omega_1}^p.$$

Since by Theorem 1.9 in [6], $||M_{t_n}f||_{w_1,\omega_1}^p \approx \omega_1(t_n)$ hence there exists C > 0 such that $||M_{t_n}f||_{w_1,\omega_1}^p \leq C.\omega_1(t_n)$. Then we write

$$\|f_n\|_{w_1,\omega_1}^p = \left\|\omega_1 (t_n)^{-1} M_{t_n} f\right\|_{w_1,\omega_1}^p = \omega_1 (t_n)^{-1} \|M_{t_n} f\|_{w_1,\omega_1}^p$$

$$\leq C.\omega_1 (t_n) \omega_1 (t_n)^{-1} = C.$$

Now we will prove that there wouldn't exist norm convergent subsequence of $(f_n)_{n \in N}$ in $A^p_{w_2, \omega_2}(\mathbb{R}^d)$. Above sequence certainly converges to zero in the vague topology. Indeed for all $k \in C_c(\mathbb{R}^d)$ we write

(8)
$$\begin{aligned} \left| \int_{R^{d}} f_{n}(x) k(x) dx \right| &\leq \frac{1}{\omega_{1}(t_{n})} \int_{R^{d}} |M_{t_{n}}f| |k(x)| dx \leq \frac{\|k\|_{\infty}}{\omega_{1}(t_{n})} \cdot \|f\|_{L^{1}} \\ &\leq \frac{\|k\|_{\infty}}{\omega_{1}(t_{n})} \cdot \|f\|_{w_{2},\omega_{2}}^{p} \cdot \end{aligned}$$

Since right hand side of (8) tends zero for $n \to \infty$, then we have

$$\int_{R^{d}} f_{n}(x) k(x) dx \to 0.$$

Finally the only possible limit in $A_{w_2,\omega_2}^p(R^d)$ is zero. It is known by Theorem 1.19 in [6] that $||M_x f||_{w_2,\omega_2}^p \approx \omega_2(x)$. Hence there exists $C_1 > 0$ and $C_2 > 0$ such that

(9)
$$C_1\omega_2(x) \le \|M_x f\|_{w_2,\omega_2}^p \le C_2\omega_2(x).$$

From (9) and the inequality

(10)
$$||f_n||_{w_2,\omega_2}^p = \left\|\omega_1 (t_n)^{-1} M_{t_n} f\right\|_{w_2,\omega_2}^p = \omega_1 (t_n)^{-1} ||M_{t_n} f||_{w_2,\omega_2}^p$$

we obtain

(11)
$$\|f_n\|_{w_2,\omega_2}^p = \omega_1 (t_n)^{-1} \|M_{t_n}f\|_{w_2,\omega_2}^p \ge C_1 \omega_1 (t_n)^{-1} \omega_2 (t_n).$$

Since $\frac{\omega_2(x)}{\omega_1(x)}$ doesn't tend to zero then there exists $\delta > 0$ such that $\frac{\omega_2(x)}{\omega_1(x)} \ge \delta > 0$. Thus we write

(12)
$$\|f_n\|_{w_2,\omega_2}^p = \omega_1 (t_n)^{-1} \|M_{t_n}f\|_{w_2,\omega_2}^p \ge C_1 \omega_1 (t_n)^{-1} \omega_2 (t_n) \ge C_1 \delta.$$

That means there would not be possible to find norm convergent subsequence of $(f_n)_{n \in N}$ in $A^p_{w_2, \omega_2}(\mathbb{R}^d)$ This completes the proof.

Now we assume that $w_1(x)$ or $\omega_1(x)$ is constant or bounded. Since $w_2 \preccurlyeq w_1$, $\omega_2 \preccurlyeq \omega_1$ then $\frac{w_2(x)}{w_1(x)}$ or $\frac{\omega_2(x)}{\omega_1(x)}$ is constant or bounded and hence $\frac{w_2(x)}{w_1(x)}$ or $\frac{\omega_2(x)}{\omega_1(x)}$

don't tend to zero in \mathbb{R}^d . Let $w_1(x)$ is constant or bounded. Take a fixed function $f \in A^p_{w_1,\omega_1}(\mathbb{R}^d)$ with compactly support and define the sequence $(f_n)_{n \in N}$ as in Theorem 3. Thus $(f_n)_{n \in N} \subset A^p_{w_1,\omega_1}(\mathbb{R}^d)$. It is easy to show that $(f_n)_{n \in N}$ is bounded in $A^p_{w_1,\omega_1}(\mathbb{R}^d)$ and converges to zero in the vague topology. Then there would not be possible to find norm convergent subsequence of $(f_n)_{n \in N}$ in $L^1_{w_2}(\mathbb{R}^d)$ by Theorem 3. Then there would not be possible to find norm convergent subsequence of $(f_n)_{n \in N}$ in $A^p_{w_1,\omega_1}(\mathbb{R}^d) \to A^p_{w_2,\omega_2}(\mathbb{R}^d)$ is never compact. Now let $\omega_1(x)$ be constant or bounded. Again take a fixed function $f \in A^p_{w_1,\omega_1}(\mathbb{R}^d)$ with compactly support and define the sequence $(f_n)_{n \in N} \subset A^p_{w_1,\omega_1}(\mathbb{R}^d)$ as in (7). The sequence $(f_n)_{n \in N}$ is bounded in $A^p_{w_1,\omega_1}(\mathbb{R}^d)$ and converges to zero in the vague topology. But it is not possible to find norm convergent subsequence of $(f_n)_{n \in N} \subset A^p_{w_1,\omega_1}(\mathbb{R}^d)$ as in (7). The sequence $(f_n)_{n \in N}$ is bounded in $A^p_{w_1,\omega_1}(\mathbb{R}^d)$ and converges to zero in the vague topology. But it is not possible to find norm convergent subsequence of $(f_n)_{n \in N}$ in $A^p_{w_2,\omega_2}(\mathbb{R}^d)$ from (11) and (12). Hence the unite map $i: A^p_{w_1,\omega_1}(\mathbb{R}^d) \to A^p_{w_2,\omega_2}(\mathbb{R}^d)$ is never compact. This completes the proof.

Definition 5. Let w, ω be Beurling weights on \mathbb{R}^d . For $1 \leq p \leq \infty$, we set

$$\Lambda_{w,\omega}^{p}\left(R^{d}\right) = \left\{f \in L_{w}^{1}\left(R^{n}\right): \stackrel{\wedge}{f} \in L_{\omega}^{1}\left(R^{n}\right) \cap L_{\omega}^{p}\left(R^{d}\right)\right\}$$

and equip it with the norm

$$\|f\|_{\Lambda^p_{w,\omega}\left(R^d\right)} = \|f\|_{1,w} + \left\|\stackrel{\wedge}{f}\right\|_{1,\omega} + \left\|\stackrel{\wedge}{f}\right\|_{p,\omega}$$

It is easy to prove that $\Lambda_{w,\omega}^{p}(R^{d})$ is a Banach space under this norm. It is a subspace of $A_{w,\omega}^{p}(R^{d})$.

Lemma 6. Let $w_1, w_2, \omega_1, \omega_2$ be Beurling's weight functions on \mathbb{R}^d . Then the embedding $i : \Lambda^p_{w_1,\omega_1}(\mathbb{R}^d) \hookrightarrow \Lambda^p_{w_2,\omega_2}(\mathbb{R}^d)$ is continuous if and only if $w_2 \preccurlyeq w_1$, $\omega_2 \preccurlyeq \omega_1$.

Proof. Assume that $w_2 \preccurlyeq w_1$ and $\omega_2 \preccurlyeq \omega_1$. Then it is obvious that $L^1_{w_1}(\mathbb{R}^d) \hookrightarrow L^1_{w_2}(\mathbb{R}^d)$. Also it is known by Theorem 3.3 in [5] that $A^1_{w_1,\omega_1}(\mathbb{R}^d) \hookrightarrow A^1_{w_2,\omega_2}(\mathbb{R}^d)$. Hence $\Lambda^p_{w_1,\omega_1}(\mathbb{R}^d) \hookrightarrow \Lambda^p_{w_2,\omega_2}(\mathbb{R}^d)$.

For the converse implication assume the embedding $\Lambda_{w_1,\omega_1}^p\left(R^d\right) \hookrightarrow \Lambda_{w_2,\omega_2}^p\left(R^d\right)$. One can find C > 0 such that

(13)
$$\|f\|_{\Lambda^{p}_{w_{2},\omega_{2}}(R^{d})} \leq C \|f\|_{\Lambda^{p}_{w_{1},\omega_{1}}(R^{d})}$$

for all $f \in \Lambda_{w_2,\omega_2}^p(R^d)$. By using Lemma 2.2, Lemma 2.3 and Theorem 2.4 in [5] one can prove that the functions $x \to \|L_x f\|_{\Lambda_{w,\omega}^p(R^d)}$ and $y \to \|M_y f\|_{\Lambda_{w,\omega}^p(R^d)}$ are

equivalent to weight functions w(x) and $\omega(y)$ respectively. Hence from the inequality (13) we prove that $w_2 \preccurlyeq w_1$ and $\omega_2 \preccurlyeq \omega_1$.

Theorem 7. Let w_1, w_2 and ω_1, ω_2 be Beurling weight functions on \mathbb{R}^d . Assume that ω_1, ω_2 symmetric (i.e $\omega_1(x) = \omega_1(-x)$ and $\omega_2(x) = \omega_2(-x)$ for all $x \in \mathbb{R}^d$) and $w_2 \preccurlyeq w_1, \omega_2 \preccurlyeq \omega_1$. Then the embedding

$$i: \Lambda^p_{w_1,\omega_1}\left(R^d\right) \hookrightarrow \Lambda^p_{w_2,\omega_2}\left(R^d\right)$$

is compact if and only if $\frac{w_2(x)}{w_1(x)}$ and $\frac{\omega_2(x)}{\omega_1(x)}$ tend to zero.

Proof. Assume that $\frac{w_2(x)}{w_1(x)}$ and $\frac{\omega_2(x)}{\omega_1(x)}$ tend to zero. We will prove that a bounded sequence $\{f_n\}_{n=1}^{\infty}$ in $\Lambda_{w_1,\omega_1}^p(R^d)$ has a convergent subsequence in $\Lambda_{w_2,\omega_2}^p(R^d)$. Since $\{f_n\}_{n=1}^{\infty}$ is bounded in $\Lambda_{w_1,\omega_1}^p(R^d)$ then there exists C > 0 such that $\|f_n\|_{\Lambda_{w_1,\omega_1}^p(R^d)} \leq C$ for all $n \in N$. Also by Lemma 6, the embedding $i: \Lambda_{w_1,\omega_1}^p(R^d) \hookrightarrow \Lambda_{w_2,\omega_2}^1(R^d)$ is continuous. Hence there exists $C_1 > 0$ such that

(14)
$$\|f_n\|_{\Lambda^p_{w_2,\omega_2}(R^d)} \le C_1 \|f_n\|_{\Lambda^p_{w_1,\omega_1}(R^d)}$$

for all $n \in N$. From the hypothesis there are sequences of increasing balls U_k^1 and U_k^2 , (k = 1, 2, ...) centered at origin with radius tending to $+\infty$ as $k \to \infty$ such that

(15)
$$\frac{\omega_2(x)}{\omega_1(x)} \le \frac{1}{k}$$

for $x \in R^d/U_k^1$ and

(16)
$$\frac{w_2(x)}{w_1(x)} \le \frac{1}{k}$$

for $x \in \mathbb{R}^d/U_k^2$. We let $U_k^1 \cup U_k^2 = B_k$. Thus

(17)
$$\frac{\omega_2(x)}{\omega_1(x)} \le \frac{1}{k}, \quad \frac{w_2(x)}{w_1(x)} \le \frac{1}{k}$$

for $x \in \mathbb{R}^d/B_k$. Now let $\{t_n\}_{n=1}^{\infty}$ be any sequence which is dense in B_1 . By using (14) we write

(18)
$$\left\| f_n \right\|_{\infty} \le \|f_n\|_{1,\omega_2} \le \|f_n\|_{\Lambda^p_{w_2,\omega_2}(\mathbb{R}^d)} \le C.C_1 = C_0,$$

for all $n \in N$. Hence there exists a subsequence $\{f_{n_i}\}_{i=1}^{\infty}$ of $\{f_n\}_{n=1}^{\infty}$ such that the sequence $\left\{f_{n_i}^{\wedge}(t_1)\right\}_{i=1}^{\infty}$ converges in the complex plane. By extracting a subsequence from $\{f_{n_i}\}_{i=1}^{\infty}$ we find a subsequence $\left\{f_{n_{i_j}}\right\}_{j=1}^{\infty}$ such that $\left\{f_{n_{i_j}}^{\wedge}(t_2)\right\}_{j=1}^{\infty}$ converges. By this process and choosing a suitable diagonal sequence we can find a subsequence $\{g_n\}_{n=1}^{\infty}$ of $\{f_n\}_{n=1}^{\infty}$ such that $\left\{g_n^{\wedge}\right\}_{n=1}^{\infty}$ converges on whole B_1 . By extracting a subsequence from $\{g_n\}_{n=1}^{\infty}$ we find a subsequence $\{u_n\}_{n=1}^{\infty}$ of $\{g_n\}_{n=1}^{\infty}$ converges on whole B_2 . Repeating this process we obtain a subsequence $\{h_n\}_{n=1}^{\infty}$ of $\{f_n\}_{n=1}^{\infty}$ such that $\left\{h_n^{\wedge}\right\}_{n=1}^{\infty}$ converges on all B_k and hence on \mathbb{R}^d . Also by (14) and (18) we have $h_n \in L^1_{\omega_2}(\mathbb{R}^d)$ and

(19)
$$\|h_n\|_{\infty} = \left\| \stackrel{\wedge}{\underset{n}{\sim}} \right\|_{\infty} \leq \left\| \stackrel{\wedge}{\underset{n}{\sim}} \right\|_{1} = \left\| \stackrel{\wedge}{\underset{n}{\sim}} \right\|_{1} \leq \left\| \stackrel{\wedge}{\underset{n}{\sim}} \right\|_{1,\omega_{2}} \leq \|h_n\|_{\Lambda^{p}_{w_{2},\omega_{2}}\left(R^{d}\right)} \leq C_{1} \|h_n\|_{\Lambda^{p}_{w_{1},\omega_{1}}\left(R^{d}\right)} \leq C_{1}C = C_{0}$$

for all $n \in N$. That means $\{h_n\}_{n=1}^{\infty}$ is bounded. Again as in the proof of first part we obtain a subsequence $\{s_n\}_{n=1}^{\infty}$ of $\{h_n\}_{n=1}^{\infty}$ such that this sequence converges on all balls B_k . To complete the proof it is enough to show that $\{s_n\}_{n=1}^{\infty}$ is a Cauhy sequence in $\Lambda_{w_2,\omega_2}^p(R^d)$. From (14) we write

$$\begin{aligned} \|s_{n} - s_{m}\|_{\Lambda_{w_{2},\omega_{2}}^{p}(R^{d})} \\ &= \|s_{n} - s_{m}\|_{1,w_{2}} + \left\|\hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge}\right\|_{1,\omega_{2}} + \left\|\hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge}\right\|_{p,\omega_{2}} \\ &= \|s_{n} - s_{m}\|B_{k}\|_{1,w_{2}} + \left\|s_{n} - s_{m}\|R^{d} - B_{k}\right\|_{1,w_{2}} \\ &+ \left\|\hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge}\|B_{k}\right\|_{1,\omega_{2}} + \left\|\hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge}\|R^{d} - B_{k}\right\|_{1,\omega_{2}} \\ &+ \left\|\hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge}\|B_{k}\right\|_{p,\omega_{2}} + \left\|\hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge}\|R^{d} - B_{k}\right\|_{p,\omega_{2}} \\ &\leq \|s_{n} - s_{m}\|B_{k}\|_{1,w_{2}} + \frac{1}{k}\left\|s_{n} - s_{m}\|R^{d} - B_{k}\right\|_{1,w_{1}} \\ &+ \left\|\hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge}\|B_{k}\right\|_{1,\omega_{2}} + \frac{1}{k}\left\|\hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge}\|R^{d} - B_{k}\right\|_{1,\omega_{1}} \end{aligned}$$

Compact Embeddings of the Spaces $A_{w,\omega}^p\left(R^d\right)$

$$+ \left\| \hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge} \mid B_{k} \right\|_{p,\omega_{2}} + \frac{1}{k} \left\| \hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge} \mid R^{d} - B_{k} \right\|_{p,\omega_{1}}$$

$$\le \|s_{n} - s_{m} \mid B_{k}\|_{1,w_{2}} + \frac{2C}{k} + \left\| \hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge} \mid B_{k} \right\|_{1,\omega_{2}} + \frac{2C}{k}$$

$$+ \left\| \hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge} \mid B_{k} \right\|_{p,\omega_{2}} + \frac{2C}{k}$$

$$= \|s_{n} - s_{m} \mid B_{k}\|_{1,w_{2}} + \left\| \hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge} \mid B_{k} \right\|_{1,\omega_{2}}$$

$$+ \left\| \hat{s}_{n}^{\wedge} - \hat{s}_{m}^{\wedge} \mid B_{k} \right\|_{p,\omega_{2}} + \frac{6C}{k}.$$

Let $\varepsilon > 0$ be given. We can choose k large enough such that $\frac{6C}{k} < \frac{\varepsilon}{4}$. Since the sequences $\{s_n\}_{n=1}^{\infty}$ and $\{s_n\}_{n=1}^{\infty}$ converge on the compact set B_k , then by Lebesgue's convergence theorem there exists $n_0 \in N$ such that

(21)
$$\|s_n - s_m | B_k\|_{1,w_2} < \frac{\varepsilon}{4}, \ \left\| \hat{s}_n - \hat{s}_m | B_k \right\|_{1,\omega_2} < \frac{\varepsilon}{4} \text{ and} \\ \left\| \hat{s}_n - \hat{s}_m | B_k \right\|_{p,\omega_2} < \frac{\varepsilon}{4}$$

for all $m, n \ge n_0$, where B_k is the closure of B_k . Finally from (20) and (21) we have

(22)
$$\|s_n - s_m\|_{\Lambda^p_{w_2,\omega_2}(R^d)} \leq \|s_n - s_m \mid B_k\|_{1,w_2} + \left\|\hat{s}_n - \hat{s}_m \mid B_k\right\|_{1,\omega_2} + \left\|\hat{s}_n - \hat{s}_m \mid B_k\right\|_{p,\omega_2} + \frac{6C}{k} < \varepsilon$$

for all $m, n \ge n_0$. Hence $\{s_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $\Lambda_{w_2,\omega_2}^p(R^d)$. Conversely assume that $\frac{w_2(x)}{w_1(x)}$ or $\frac{\omega_2(x)}{\omega_1(x)}$ don't tend to zero. If the embedding $\Lambda_{w_1,\omega_1}^p(R^d) \hookrightarrow \Lambda_{w_2,\omega_2}^p(R^d)$ is compact then every bounded sequence $\{f_n\}_{n=1}^{\infty} \subset \Lambda_{w_1,\omega_1}^p(R^d)$ has a convergent subsequence $\{f_{n_k}\}_{n=1}^{\infty}$ in $\Lambda_{w_2,\omega_2}^p(R^d)$. Since $\Lambda_{w_1,\omega_1}^p(R^d) \subset A_{w_1,\omega_1}^p(R^d)$, then the norm $\|f\|_{\Lambda_{w_1,\omega_1}^p(R^d)}$ in $\Lambda_{w_1,\omega_1}^p(R^d)$ is finer than the norm $\|f\|_{w_1,\omega_1}^p$ in $A_{w_1,\omega_1}^p(R^d)$ is finer than the norm $\|f\|_{w_1,\omega_1}^p$ in $A_{w_1,\omega_1}^p(R^d)$. Thus $\{f_n\}_{n=1}^{\infty}$ is also bounded in $A_{w_1,\omega_1}^p(R^d)$. Also since $\{f_{n_k}\}_{n=1}^{\infty}$ converges in $\Lambda_{w_2,\omega_2}^p(R^d)$ and $\Lambda_{w_2,\omega_2}^p(R^d) \subset A_{w_2,\omega_2}^p(R^d)$, then $\{f_{n_k}\}_{n=1}^{\infty}$ also converges in $A_{w_2,\omega_2}^p(R^d)$. This implies

(23)
$$i: A^p_{w_1,\omega_1}\left(R^d\right) \to A^p_{w_2,\omega_2}\left(R^d\right)$$

is compact. But this is a contradiction because the Theorem 4. This completes the proof.

Corollary 8. Let w_1, w_2 and ω_1, ω_2 be Beurling weight functions on \mathbb{R}^d . Assume that ω_1, ω_2 symmetric (i.e $\omega_1(x) = \omega_1(-x)$ and $\omega_2(x) = \omega_2(-x)$ for all $x \in \mathbb{R}^d$) and $w_2 \leq w_1$, $\omega_2 \leq \omega_1$. Then the embedding

$$i: A^1_{w_1,\,\omega_1}\left(R^d\right) \hookrightarrow A^1_{w_2,\,\omega_2}\left(R^d\right)$$

is compact if and only if $\frac{w_2(x)}{w_1(x)}$ and $\frac{\omega_2(x)}{\omega_1(x)}$ tend to zero.

Proof. Since $\Lambda^1_{w_1,\omega_1}(R^d) = A^1_{w_1,\omega_1}(R^d)$ and $\Lambda^1_{w_2,\omega_2}(R^d) = A^1_{w_2,\omega_2}(R^d)$ then the proof is direct by Theorem 7.

ACKNOWLEDGMENT

The author wants to thank to H. G. Feichtinger for his significant suggestions regarding this paper.

REFERENCES

- 1. P. Boggiatto and J. Toft, Embeddings and compactness for generalized Sobolev -Shubin spaces and modulation spaces, *Applicable Analysis*, **84(3)** (2005), 269-282.
- 2. J. Dieudonne, *Treatise on analysis*, Volume 2, Academic Press, New York- San Francisco-London, 1976.
- 3. M. Dogan and A. T. Gürkanlı, Multipliers of the space $S_{\omega}(G)$, *Mathematica Balkanica, New Series*, **15(3-4)** (2001), 200-212.
- M. Dogan and A. T. Gürkanlı, On functions with Fourier transforms in S_w, Bull. Cal. Math. Soc. 92(2) (2000), 111-120.
- 5. H. G. Feichtinger and A. T. Gürkanlı, On a family of Weighted Convolution Algebras, *Internat. J. Math. and Math. Sci.*, **13(3)** (1990), 517-526.
- 6. R. H. Fischer, A. T. Gürkanlı and T. S. Liu, On family of Weighted Spaces, *Math. Slovaca.*, **46(1)** (1996), 71-82.
- G. I.Gaudry, Multipliers of Weighted Lebesgue and Measure Spaces, Proc. Lon. Math. Soc., 19(3) (1969), 327-340.
- A. T. Gürkanlı, Some results in the weighted A_p(ℝⁿ) spaces, Demonstratio Mathematica, XIX, (4) (1986), 825-830.
- A. T. Gürkanlı, Multipliers of some Banach ideals and Wiener-Ditkin sets, *Math. Slovaca.*, 55(2)(2005), 237-248.
- R. Larsen, T. Liu and J. Wang, On functions with Fourier transform in L_p, Michigan Math. Journal., 11 (1964), 369-378.

- 11. H. Reiter, *Classical Harmonic Analysis and Locally Compact Groups*, Oxford University Press, Oxford, 1968.
- 12. W. Rudin, Fourier Analysis on Groups, Interscience Publishers, New York, 1962.
- 13. J. C. Martin and L. Y. H. Yap, The algebra of functions with Fourier transform in L^p , *Proc. Amer. Math. Soc.*, **24** (1970), 217-219.

A. Turan Gürkanlı Ondokuz Mayis University, Faculty of Art and Sciences, Department of Mathematics, 55139, Kurupelit, Samsun, Turkey E-mail: gurkanli@omu.edu.tr