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COMPACT EMBEDDINGS OF THE SPACES A
p
w,ω

(
Rd

)

A. Turan Gürkanll

Abstract. For 1 ≤ p ≤ ∞, Ap
w,ω

(
Rd

)
denotes the space (Banach space) of all

functions in L1
w

(
Rd

)
a weighted L1−space (Beurling algebra) with Fourier

transforms
∧
f in Lp

ω

(
Rd

)
which is equipped with the sum norm

‖f‖p
w,ω = ‖f‖1,w +

∥∥∥∥
∧
f

∥∥∥∥
p,ω

,

where w and ω are Beurling weights on Rd.This space was defined in [5] and
generalized in [6] .

The present paper is a sequal to these works.In this paper we are going to
discuss compact embeddings between the spaces Ap

w,ω

(
Rd

)
.

0.1. nOTATION

In this paper we will work on Rd with Lebesgue measure dx. We denote by
Cc

(
Rd

)
the spaces of complex-valued, continuous functions with compact support.

Also the translation and modulation operators Ly, Mt are given by Lyf (x) =
f (x − y) and Mtf (x) = e2πitxf (x) for all x, y, t ∈ Rd. In this paper we will
also use the Beurling’s weight functions, i.e real valued, measurable and locally
bounded functions w on Rd which satisfy

w (x) ≥ 1,w (x + y) ≤ w (x) .w (y) for all x, y ∈ Rd.

For 1 ≤ p < ∞, we set

Lp
w

(
Rd

)
=

{
f : fw ∈ Lp

(
Rd

)}
.
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It is known that Lp
w

(
Rd

)
is a Banach space under the norm ‖f‖p,w = ‖fw‖p .

Particularly
(
L1

w

(
Rd

)
, ‖f‖1,w

)
is a Banach convolution algebra.It is called as

Beurling algebra.For two weight functions w1 and w2 we write w1 � w2 if there
exists C > 0 such that w1 (x) ≤ Cw2 (x) for all x ∈ Rd. We write w1 ≈ w2

if and only if w1 � w2 and w2 � w1.The main tool in this work is the Fourier
transform denoted by the symbol

(
Λ.
)
. One can find more informations about these

notations in [11, 12] .
We will denote by Ap

(
Rd

)
the vector spaces of all functions in L1

(
Rd

)
whose

Fourier transforms
∧
f belong to Lp

(
Rd

)
. Ap

(
Rd

)
is a Banach convolution algebra

with the norm

‖f‖p = ‖f‖1 +
∥∥∥∥
∧
f

∥∥∥∥
p

.

Research on Ap
(
Rd

)
was initiated by Larsen, Liu and Wang [10] and a number

of authors such as Martin and Yap [13] , Gürkanll [8] worked on these spaces.Later
some generalization to the weighted case was given by Feichtinger and Gürkanll
[5] , Fisher, Gürkanll and Liu [6] .

2. MAIN RESULTS

Definition 1. Let w, ω be Beurling weights on Rd.For 1 ≤ p ≤ ∞, we set

Ap
w,ω

(
Rd

)
=

{
f ∈ L1

w

(
Rd

)
:

∧
f ∈ Lp

ω

(
Rd

)}

and equip it with the norm

‖f‖p
w,ω = ‖f‖1,w +

∥∥∥∥
∧
f

∥∥∥∥
p,ω

.

This space is a Banach space under this norm see [5] , [6] . In the mentioned papers
some properties of this space has been discussed.

Lemma 2. Let (fn)n∈N be a sequence in Ap
w,ω

(
Rd

)
. If (fn)n∈N converges

to zero in Ap
w,ω

(
Rd

)
, then (fn)n∈N also converges to zero in the vague topology(

which means that ∫
Rd

fn (x) k (x) dx → 0,

for n → ∞ for all k ∈ Cc

(
Rd

)
. See [2]).
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Proof. Let k ∈ Cc

(
Rd

)
. We write

(1)
∣∣∣∣
∫

Rd
fn (x) k (x) dx

∣∣∣∣ ≤ ‖k‖∞ ‖fn‖L1 ≤ ‖k‖∞ ‖fn‖p
w,ω .

Hence by (1) the sequence (fn)n∈N converges to zero in vague topology.

Theorem 3. Let w, ω, v be Beurling weight functions onRd.If v � w and v(x)
w(x)

doesn’t tend to zero in Rd as x → ∞ then the embedding of the space Ap
w,ω

(
Rd

)
into L1

v

(
Rd

)
is never compact.

Proof. Firstly we assume that w (x) → ∞ as x → ∞ . Since v � w, there
exists C1 > 0 such that v (x) ≤ C1w (x).This implies Ap

w,ω

(
Rd

) ⊂ L1
v

(
Rd

)
. Let

(tn)n∈N be a sequence with tn → ∞ in Rd. Also since v(x)
w(x) doesn’t tend to zero

as x→∞ then there exists δ>0 such that v(x)
w(x) ≥δ>0 for x→∞. For the proof of

the embedding of the space Ap
w,ω

(
Rd

)
into L1

v

(
Rd

)
is never compact, for any fixed

f ∈ Ap
w,ω

(
Rd

)
define a sequence of functions (fn)n∈N , where fn = w (tn)−1 Ltnf.

This sequence is bounded in Ap
w,ω

(
Rd

)
. Indeed we write

(2) ‖fn‖p
w,ω =

∥∥∥w (tn)−1 Ltnf
∥∥∥p

w,ω
= w (tn)−1 ‖Ltnf‖p

w,ω .

By Theorem 1.9 in [6] ,we know ‖Lxf‖p
w,ω ≈ w (x) . Hence there exists M > 0

such that ‖Lxf‖p
w,ω ≤ M.w (x) . By using (2) we write

‖fn‖p
w,ω = w (tn)−1 ‖Ltnf‖p

w,ω ≤ M.w (tn)w (tn)−1 = M.

Now we will prove that there wouldn’t exist norm convergence of subsequence of
(fn)n∈N in L1

v

(
Rd

)
. The sequence obtained above certainly converges to zero in

the vague topology .Indeed for all k ∈ Cc

(
Rd

)
we write

(3)

∣∣∣∣
∫

Rd

fn (x) k (x) dx

∣∣∣∣ ≤ 1
w (tn)

∫
Rd

|Ltnf (x)| |k (x)| dx

=
1

w (tn)
‖k‖∞ ‖Ltnf‖L1 =

1
w (tn)

. ‖k‖∞ ‖f‖L1 .

Since right hand side of (3) tends zero for n → ∞ then we have∫
Rd

fn (x) k (x) dx → 0.

Finally by Lemma 2 the only possible limit of (fn) in L1
v

(
Rd

)
is zero. It is known

by Lemma2.2 in [5] that ‖Lxf‖L1
v

≈ v (x) . Hence there exists C2 > 0 and C3 > 0
such that

(4) C2v (x) ≤ ‖Lxf‖1,v ≤ C3v (x) .
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From (4) and the equality below

(5) ‖fn‖1,v =
∥∥∥w (tn)−1 Ltnf

∥∥∥
1,v

= w (tn)−1 ‖Ltnf‖1,v

we obtain

(6) ‖fn‖1,v = w (tn)−1 ‖Ltnf‖1,v ≥ C2w (tn)−1 v (tn) .

Since v(tn)
w(tn)

≥ δ > 0 for all tn, by using (6) we write

‖fn‖1,v ≥ C2w (tn)−1 v (tn) ≥ C2δ.

It means that there would not be possible to find norm convergent subsequence of
(fn)n∈N in L1

v

(
Rd

)
.

Now we assume that w is a constant or a bounded weight function.Since v�w

then v(x)
w(x) is also constant or bounded and doesn’t tend to zero asx→∞. We take a

function f ∈ Ap
w,ω

(
Rd

)
with compactly support and define the sequence (fn)n∈N

as in (2).Thus (fn)n∈N ⊂ Ap
w,ω

(
Rd

)
. It is easy to show as in (2) that (fn)n∈N

is bounded in Ap
w,ω

(
Rd

)
and converges to zero in the vague topology.Then there

would not be possible to find norm convergent subsequence of (fn)n∈N in L1
v

(
Rd

)
.

This implies that the embedding Ap
w,ω

(
Rd

)
↪→L1

v

(
Rd

)
is never compact.

Theorem 4. Let w1,w2 and ω1, ω2 be Beurling weight functions on R d. If
w2 � w1, ω2 � ω1 and w2(x)

w1(x) or
ω2(x)
ω1(x) don’t tend to zero in Rd then the embedding

i : Ap
w1,ω1

(
Rd

)
↪→ Ap

w2,ω2

(
Rd

)
is never compact.

Proof. Firstly we assume that w1 (x) → ∞, ω1 (x) → ∞ as x → ∞. Since
w2 � w1 and ω2 � ω1 then Ap

w1,ω1

(
Rd

) ⊂ Ap
w2,ω2

(
Rd

)
by Theorem 1.19 in

[6] . It is also known by Lemma 1.18 in [6] that the unit map from Ap
w1,ω1

(
Rd

)
into Ap

w2,ω2

(
Rd

)
is continuous. Assume that w2(x)

w1(x) doesn’t tend to zero. We
are going to show that the unit map from Ap

w1,ω1

(
Rd

)
into Ap

w2,ω2

(
Rd

)
is never

compact.Take any bounded sequence (fn)n∈N in Ap
w1,ω1

(
Rd

)
. If there exists norm

convergent subsequence of (fn)n∈N inAp
w2,ω2

(
Rd

)
,this subsequence also converges

in L1
w2

(
Rd

)
. But this is a not possible by Theorem 3 because the embedding of the

space Ap
w1,ω1

(
Rd

)
into L1

w2

(
Rd

)
is never compact. Now assume that ω2(x)

ω1(x) doesn’t
tend to zero. Let (tn)n∈N be a sequence with tn → ∞ in Rd.For any fixed f ∈
Ap

w1,ω1

(
Rd

)
define a sequence of functions (fn)n∈N , where fn = ω1 (tn)−1 Mtnf.

This sequence is bounded in Ap
w,ω

(
Rd

)
. Indeed we write

(7) ‖fn‖p
w1,ω1

=
∥∥∥ω1 (tn)−1 Mtnf

∥∥∥p

w1,ω1

= ω1 (tn)−1 ‖Mtnf‖p
w1,ω1

.
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Since by Theorem 1.9 in [6], ‖Mtnf‖p
w1,ω1

≈ ω1 (tn) hence there exists C > 0 such
that ‖Mtnf‖p

w1,ω1
≤ C.ω1 (tn) . Then we write

‖fn‖p
w1,ω1

=
∥∥∥ω1 (tn)−1 Mtnf

∥∥∥p

w1,ω1

= ω1 (tn)−1 ‖Mtnf‖p
w1,ω1

≤ C.ω1 (tn) ω1 (tn)−1 = C.

Now we will prove that there wouldn’t exist norm convergent subsequence of
(fn)n∈N in Ap

w2,ω2

(
Rd

)
. Above sequence certainly converges to zero in the vague

topology. Indeed for all k ∈ Cc

(
Rd

)
we write

(8)

∣∣∫
Rd fn (x) k (x) dx

∣∣ ≤ 1
ω1 (tn)

∫
Rd

|Mtnf | |k (x)| dx ≤ ‖k‖∞
ω1 (tn)

. ‖f‖L1

≤ ‖k‖∞
ω1 (tn)

. ‖f‖p
w2,ω2

.

Since right hand side of (8) tends zero for n → ∞, then we have
∫

Rd
fn (x) k (x) dx → 0.

Finally the only possible limit in Ap
w2,ω2

(
Rd

)
is zero. It is known by Theorem 1.19

in [6] that ‖Mxf‖p
w2,ω2

≈ ω2 (x) . Hence there exists C1 > 0 and C2 > 0 such that

(9) C1ω2 (x) ≤ ‖Mxf‖p
w2,ω2

≤ C2ω2 (x) .

From (9) and the inequality

(10) ‖fn‖p
w2,ω2

=
∥∥∥ω1 (tn)−1 Mtnf

∥∥∥p

w2,ω2

= ω1 (tn)−1 ‖Mtnf‖p
w2,ω2

we obtain

(11) ‖fn‖p
w2,ω2

= ω1 (tn)−1 ‖Mtnf‖p
w2,ω2

≥ C1ω1 (tn)−1 ω2 (tn) .

Since ω2(x)
ω1(x)

doesn’t tend to zero then there exists δ > 0 such that ω2(x)
ω1(x)

≥ δ > 0.

Thus we write

(12) ‖fn‖p
w2,ω2

= ω1 (tn)−1 ‖Mtnf‖p
w2,ω2

≥ C1ω1 (tn)−1 ω2 (tn) ≥ C1δ.

That means there would not be possible to find norm convergent subsequence of
(fn)n∈N in Ap

w2,ω2

(
Rd

)
This completes the proof.

Now we assume that w1 (x) or ω1 (x) is constant or bounded. Since w2 � w1,
ω2 � ω1 then w2(x)

w1(x) or
ω2(x)
ω1(x) is constant or bounded and hence

w2(x)
w1(x) or

ω2(x)
ω1(x)
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don’t tend to zero in Rd. Let w1 (x) is constant or bounded. Take a fixed function
f ∈ Ap

w1,ω1

(
Rd

)
with compactly support and define the sequence (fn)n∈N as

in Theorem 3. Thus (fn)n∈N ⊂ Ap
w1,ω1

(
Rd

)
. It is easy to show that (fn)n∈N

is bounded in Ap
w1,ω1

(
Rd

)
and converges to zero in the vague topology. Then

there would not be possible to find norm convergent subsequence of (fn)n∈N in
L1

w2

(
Rd

)
by Theorem 3. Then there would not be possible to find norm con-

vergent subsequence of (fn)n∈N in Ap
w2,ω2

(
Rd

)
. This implies that the unite map

i : A
p
w1,ω1

(
Rd

) → A
p
w2,ω2

(
Rd

)
is never compact. Now let ω1 (x) be constant or

bounded. Again take a fixed function f ∈ Ap
w1,ω1

(
Rd

)
with compactly support and

define the sequence (fn)n∈N ⊂ A
p
w1,ω1

(
Rd

)
as in (7). The sequence (fn)n∈N

is bounded in Ap
w1,ω1

(
Rd

)
and converges to zero in the vague topology. But it

is not possible to find norm convergent subsequence of (fn)n∈N in Ap
w2,ω2

(
Rd

)
from (11) and (12) . Hence the unite map i : Ap

w1,ω1

(
Rd

) → Ap
w2,ω2

(
Rd

)
is never

compact. This completes the proof.

Definition 5. Let w, ω be Beurling weights on Rd. For 1 ≤ p ≤ ∞, we set

Λp
w,ω

(
Rd

)
=

{
f ∈ L1

w (Rn) :
∧
f ∈ L1

ω (Rn) ∩ Lp
ω

(
Rd

)}

and equip it with the norm

‖f‖Λp
w,ω(Rd) = ‖f‖1,w +

∥∥∥∥
∧
f

∥∥∥∥
1,ω

+
∥∥∥∥
∧
f

∥∥∥∥
p,ω

.

It is easy to prove that Λp
w,ω

(
Rd

)
is a Banach space under this norm. It is a

subspace of Ap
w,ω

(
Rd

)
.

Lemma 6. Let w1,w2, ω1, ω2 be Beurling’s weight functions on R d. Then the
embedding i : Λp

w1,ω1

(
Rd

)
↪→ Λp

w2,ω2

(
Rd

)
is continuous if and only if w 2 � w1,

ω2 � ω1.

Proof. Assume that w2 � w1 and ω2 � ω1. Then it is obvious that L1
w1

(
Rd

)
↪→

L1
w2

(
Rd

)
.Also it is known by Theorem 3.3 in [5] thatA1

w1,ω1

(
Rd

)
↪→ A1

w2,ω2

(
Rd

)
.

Hence Λp
w1,ω1

(
Rd

)
↪→ Λp

w2,ω2

(
Rd

)
.

For the converse implication assume the embeddingΛp
w1,ω1

(
Rd

)
↪→ Λp

w2,ω2

(
Rd

)
.

One can find C > 0 such that

(13) ‖f‖Λp
w2,ω2 (Rd) ≤ C ‖f‖Λp

w1,ω1 (Rd)

for all f ∈ Λp
w2,ω2

(
Rd

)
. By using Lemma 2.2, Lemma 2.3 and Theorem 2.4 in [5]

one can prove that the functions x → ‖Lxf‖Λp
w,ω(Rd) and y → ‖Myf‖Λp

w,ω(Rd) are
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equivalent to weight functionsw (x) and ω (y) respectively. Hence from the inequal-
ity (13) we prove that w2 � w1 and ω2 � ω1.

Theorem 7. Let w1,w2 and ω1, ω2 be Beurling weight functions on R d.
Assume that ω1, ω2 symmetric ( i.e ω1 (x) = ω1 (−x) and ω2 (x) = ω2 (−x) for
all x ∈ Rd) and w2 � w1, ω2 � ω1.Then the embedding

i : Λp
w1,ω1

(
Rd

)
↪→ Λp

w2,ω2

(
Rd

)

is compact if and only if w2(x)
w1(x) and

ω2(x)
ω1(x) tend to zero.

Proof. Assume that w2(x)
w1(x)

and ω2(x)
ω1(x)

tend to zero. We will prove that
a bounded sequence {fn}∞n=1 in Λp

w1,ω1

(
Rd

)
has a convergent subsequence in

Λp
w2,ω2

(
Rd

)
. Since {fn}∞n=1 is bounded in Λp

w1,ω1

(
Rd

)
then there exists C > 0

such that ‖fn‖Λp
w1,ω1(Rd) ≤ C for all n ∈ N. Also by Lemma 6, the embedding

i : Λp
w1,ω1

(
Rd

)
↪→ Λ1

w2,ω2

(
Rd

)
is continuous. Hence there exists C1 > 0 such that

(14) ‖fn‖Λ
p
w2,ω2 (Rd) ≤ C1 ‖fn‖Λ

p
w1,ω1 (Rd)

for all n ∈ N. From the hypothesis there are sequences of increasing balls U1
k and

U2
k , (k = 1, 2, ...) centered at origin with radius tending to +∞ as k → ∞ such
that

(15)
ω2 (x)
ω1 (x)

≤ 1
k

for x ∈ Rd/U1
k and

(16)
w2 (x)
w1 (x)

≤ 1
k

for x ∈ Rd/U2
k . We let U 1

k ∪ U2
k = Bk. Thus

(17)
ω2 (x)
ω1 (x)

≤ 1
k
,

w2 (x)
w1 (x)

≤ 1
k

for x ∈ Rd/Bk. Now let {tn}∞n=1 be any sequence which is dense in B1. By using
(14) we write

(18)
∥∥∥∥

∧
fn

∥∥∥∥
∞

≤ ‖fn‖1,ω2
≤ ‖fn‖Λp

w2,ω2(Rd) ≤ C.C1 = C0,
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for all n ∈ N. Hence there exists a subsequence {fni}∞i=1 of {fn}∞n=1 such that

the sequence
{ ∧

fni (t1)
}∞

i=1

converges in the complex plane. By extracting a subse-

quence from {fni}∞i=1 we find a subsequence
{
fnij

}∞
j=1

such that
{ ∧

fnij
(t2)

}∞

j=1

converges. By this process and choosing a suitable diagonal sequence we can find
a subsequence {gn}∞n=1 of {fn}∞n=1 such that

{ ∧
gn

}∞
n=1

converges on whole B1.

By extracting a subsequence from {gn}∞n=1 we find a subsequence {un}∞n=1 of
{gn}∞n=1such that

{ ∧
un

}∞
n=1

converges on whole B2. Repeating this process we ob-

tain a subsequence {hn}∞n=1 of {fn}∞n=1 such that
{ ∧

hn

}∞

n=1

converges on all Bk

and hence on Rd. Also by (14) and (18) we have
∧
hn ∈ L1

ω2

(
Rd

)
and

(19)
‖hn‖∞ =

∥∥∥∥∥∥∥∥

∧
∼

∧
hn

∥∥∥∥∥∥∥∥
∞

≤
∥∥∥∥∥∥

∼

∧
hn

∥∥∥∥∥∥
1

=
∥∥∥∥

∧
hn

∥∥∥∥
1

≤
∥∥∥∥

∧
hn

∥∥∥∥
1,ω2

≤ ‖hn‖Λ
p
w2,ω2(Rd) ≤ C1 ‖hn‖Λ

p
w1,ω1 (Rd) ≤ C1C = C0

for all n ∈ N . That means {hn}∞n=1 is bounded. Again as in the proof of first part
we obtain a subsequence {sn}∞n=1 of {hn}∞n=1 such that this sequence converges
on all balls Bk. To complete the proof it is enough to show that {sn}∞n=1 is a
Cauhy sequence in Λp

w2,ω2

(
Rd

)
. From (14) we write

(20)

‖sn − sm‖Λp
w2,ω2(Rd)

= ‖sn − sm‖1,w2
+

∥∥∥ ∧
sn − ∧

sm

∥∥∥
1,ω2

+
∥∥∥ ∧
sn − ∧

sm

∥∥∥
p,ω2

= ‖sn − sm | Bk‖1,w2
+

∥∥∥sn − sm | Rd − Bk

∥∥∥
1,w2

+
∥∥∥ ∧
sn − ∧

sm | Bk

∥∥∥
1,ω2

+
∥∥∥ ∧
sn − ∧

sm | Rd − Bk

∥∥∥
1,ω2

+
∥∥∥ ∧
sn − ∧

sm | Bk

∥∥∥
p,ω2

+
∥∥∥ ∧
sn − ∧

sm | Rd − Bk

∥∥∥
p,ω2

≤ ‖sn − sm | Bk‖1,w2
+

1
k

∥∥∥sn − sm | Rd − Bk

∥∥∥
1,w1

+
∥∥∥ ∧
sn − ∧

sm | Bk

∥∥∥
1,ω2

+
1
k

∥∥∥ ∧
sn − ∧

sm | Rd − Bk

∥∥∥
1,ω1
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+
∥∥∥ ∧
sn − ∧

sm | Bk

∥∥∥
p,ω2

+
1
k

∥∥∥ ∧
sn − ∧

sm | Rd − Bk

∥∥∥
p,ω1

≤ ‖sn − sm | Bk‖1,w2
+

2C

k
+

∥∥∥ ∧
sn − ∧

sm | Bk

∥∥∥
1,ω2

+
2C

k

+
∥∥∥ ∧
sn − ∧

sm | Bk

∥∥∥
p,ω2

+
2C

k

= ‖sn − sm | Bk‖1,w2
+

∥∥∥ ∧
sn − ∧

sm | Bk

∥∥∥
1,ω2

+
∥∥∥ ∧
sn − ∧

sm | Bk

∥∥∥
p,ω2

+
6C

k
.

Let ε > 0 be given. We can choose k large enough such that 6C
k < ε

4 . Since

the sequences {sn}∞n=1 and
{ ∧
sn

}∞
n=1
converge on the compact set

−
Bk , then by

Lebesgue’s convergence theorem there exists n0 ∈ N such that

(21)
‖sn − sm | Bk‖1,w2

<
ε

4
,

∥∥∥ ∧
sn − ∧

sm | Bk

∥∥∥
1,ω2

<
ε

4
and

∥∥∥ ∧
sn − ∧

sm | Bk

∥∥∥
p,ω2

<
ε

4

for all m, n ≥ n0, where
−
Bk is the closure of Bk. Finally from (20) and (21) we

have

(22)
‖sn − sm‖Λp

w2,ω2 (Rd) ≤ ‖sn − sm | Bk‖1,w2
+

∥∥∥ ∧
sn − ∧

sm | Bk

∥∥∥
1,ω2

+
∥∥∥ ∧
sn − ∧

sm | Bk

∥∥∥
p,ω2

+
6C

k
< ε

for all m, n ≥ n0. Hence {sn}∞n=1 is a Cauchy sequence in Λp
w2,ω2

(
Rd

)
.

Conversely assume that w2(x)
w1(x) or

ω2(x)
ω1(x) don’t tend to zero. If the embedding

Λp
w1, ω1

(
Rd

)
↪→ Λp

w2, ω2

(
Rd

)
is compact then every bounded sequence {fn}∞n=1 ⊂

Λp
w1, ω1

(
Rd

)
has a convergent subsequence {fnk

}∞n=1 inΛp
w2, ω2

(
Rd

)
. Since Λp

w1, ω1(
Rd

) ⊂ Ap
w1, ω1

(
Rd

)
, then the norm ‖f‖Λp

w1, ω1(Rd) in Λp
w1, ω1

(
Rd

)
is finer than the

norm ‖f‖p
w1, ω1

in Ap
w1, ω1

(
Rd

)
. Thus {fn}∞n=1 is also bounded in Ap

w1, ω1

(
Rd

)
.

Also since {fnk
}∞n=1 converges in Λp

w2, ω2

(
Rd

)
and Λp

w2, ω2

(
Rd

) ⊂ Ap
w2, ω2

(
Rd

)
,

then {fnk
}∞n=1 also converges in Ap

w2, ω2

(
Rd

)
. This implies

(23) i : Ap
w1, ω1

(
Rd

)
→ Ap

w2, ω2

(
Rd

)

is compact. But this is a contradiction because the Theorem 4. This completes the
proof.
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Corollary 8. Let w1,w2 and ω1, ω2 be Beurling weight functions on R d.

Assume that ω1, ω2 symmetric (i.e ω1 (x) = ω1 (−x) and ω2 (x) = ω2 (−x) for all
x ∈ Rd) and w2 � w1, ω2 � ω1. Then the embedding

i : A1
w1, ω1

(
Rd

)
↪→ A1

w2, ω2

(
Rd

)

is compact if and only if w2(x)
w1(x) and

ω2(x)
ω1(x) tend to zero.

Proof. Since Λ1
w1, ω1

(
Rd

)
= A1

w1, ω1

(
Rd

)
and Λ1

w2, ω2

(
Rd

)
= A1

w2, ω2

(
Rd

)
then the proof is direct by Theorem 7.
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