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A NOTE ON EXTENSIONS OF PRINCIPALLY QUASI-BAER RINGS

Yuwen Cheng and Feng-Kuo Huang

Abstract. Let R be a ring with unity. It is shown that the formal power series
ring R[[x]] is right p.q.-Baer if and only if R is right p.q.-Baer and every
countable subset of right semicentral idempotents has a generalized countable
join.

1. INTRODUCTION

Throughout this note, R denotes a ring with unity. Recall that R is called a
(quasi-)Baer ring if the right annihilator of every (right ideal) nonempty subset of R
is generated, as a right ideal, by an idempotent of R. Baer rings are introduced by
Kaplansky [18] to abstract various properties of AW ∗-algebras and von Neumann
algebras. Quasi-Baer rings, introduced by Clark [11], are used to characterize when
a finite dimensional algebra over an algebraically closed field is isomorphic to a
twisted matrix units semigroup algebra. The definition of a (quasi-) Baer ring is
left-right symmetric [11, 18].

In [9], Birkenmeier, Kim and Park initiated the study of right principally quasi-
Baer rings. A ring R is called right principally quasi-Baer (or simply right p.q.-
Baer) if the right annihilator of a principal right ideal is generated, as a right ideal, by
an idempotent. Equivalently, R is right p.q.-Baer if R modulo the right annihilator
of any principal right ideal is projective. If R is both right and left p.q.-Baer, then
it is called p.q.-Baer. The class of p.q.-Baer rings include all biregular rings, all
quasi-Baer rings and all abelian PP rings. See [9] for more details.

Ore extensions or polynomial extensions of (quasi-)Baer rings and their gener-
alizations are extensively studied recently ([4-10] and [14-17]). It is proved in [8,
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Theorem 1.8] that a ring R is quasi-Baer if and only if R[[X ]] is quasi-Baer, where
X is an arbitrary nonempty set of not necessarily commuting indeterminates. In
[7, Theorem 2.1], it is shown that R is right p.q.-Baer if and only if R[x] is right
p.q.-Baer. But it is not equivalent to that R[[x]] is right p.q.-Baer. In fact, there
exists a commutative von Neumann regular ring R (hence p.q.-Baer) such that the
ring R[[x]] is not p.q.-Baer [7, Example 2.6]. In [20, Theorem 3], a necessary and
sufficient condition for semiprime ring under which the ring R[[x]] is right p.q.-Baer
are given. It is shown that R[[x]] is right p.q.-Baer if and only if R is right p.q.-Baer
and any countable family of idempotents in R has a generalized join when all left
semicentral idempotents are central. Indeed, for a right p.q.-Baer ring, asking the
set of left semicentral idempotents S�(R) equals to the set of central idempotents
B(R) is equivalent to assume R is semiprime [9, Proposition 1.17]. In this note,
the condition requiring all left semicentral idempotents being central is shown to
be redundant. We show that: The ring R[[x]] is right p.q.-Baer if and only if R is
p.q.-Baer and every countable subset of right semicentral idempotents has a gen-
eralized countable join. This theorem properly generalizes Fraser and Nicholson’s
result in the class of reduced PP rings [12, Theorem 3] and Liu’s result in the class
of semiprime p.q.-Baer rings [20, Theorem 3]. For simplicity of notations, denote
N = {0, 1, 2, · · · } be the set of natural numbers.

2. ANNIHILATORS AND LEFT SEMICENTRAL IDEMPOTENTS

Lemma 1. Let f(x) =
∑∞

i=0 fix
i, g(x) =

∑∞
j=0 gjx

j ∈ R[[x]]. Then the
following are equivalent.

(1) f(x)R[[x]]g(x) = 0;
(2) f(x)Rg(x) = 0;
(3)

∑
i+j=k fiagj = 0 for all k ∈ N, a ∈ R.

Proof. Let h(x) =
∑∞

k=0 hkxk ∈ R[[x]] and assume f(x)R[[x]]g(x) = 0.
Then 0 = f(x)h(x)g(x) =

∑∞
k=0(f(x)hkg(x))xk and thus f(x)Rg(x) = 0 if and

only if f(x)R[[x]]g(x) = 0. Now, let a ∈ R be arbitrary. Observe that

f(x)ag(x) =
∞∑

k=0


 ∑

i+j=k

fiagj


xk.

Thus (2) is equivalent to (3).

Recall that an idempotent e ∈ R is called left (resp. right) semicentral [3] if
re = ere (resp. er = ere) for all r ∈ R. Equivalently, e = e2 ∈ R is left (resp.
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right) semicentral if eR (resp. Re) is an ideal of R. Since the right annihilator of a
right ideal is an ideal, we see that the right annihilator of a right ideal is generated
by a left semicentral idempotents in a right p.q.-Baer ring. The set of left (resp.
right) semicentral idempotents of R is denoted S�(R) (resp. Sr(R)). The following
result is used frequently later in this note.

Lemma 2. [9, Lemma 1.1] Let e be an idempotent in a ring R with unity.
Then the following conditions are equivalent.

(1) e ∈ S�(R);
(2) 1 − e ∈ Sr(R) ;
(3) (1 − e)Re = 0;
(4) eR is an ideal of R;
(5) R(1− e) is an ideal of R.

To prove the main result, we first characterize the left semicentral idempotents
in R[[x]].

Proposition 3. Let ε(x) =
∑∞

i=0 εix
i ∈ R[[x]]. Then ε(x) ∈ S�(R[[x]]) if and

only if

(1) ε0 ∈ S�(R);
(2) ε0rεi = rεi and εirε0 = 0 for all r ∈ R, i = 1, 2, · · · ;
(3)

∑
i+j=k
i,j�1

εirεj = 0 for all r ∈ R and k � 2.

Proof. Assume ε(x) =
∑∞

i=0 εix
i ∈ S�(R[[x]]) and r ∈ R. Then ε(x)rε(x) =

rε(x), or
∞∑

k=0


 ∑

i+j=k

εirεj


 xk =

∞∑
k=0

rεkx
k.

By comparing the coefficient of each terms xk in the above expansion, we have a
system of equations

E(k) :
∑

i+j=k

εirεj = rεk, for all k � 0.

From E(0), we have
ε0rε0 = rε0

and thus ε0 ∈ S�(R) since R has unity. Consider E(1): ε0rε1 + ε1rε0 = rε1, and
multiply E(1) by ε0 from right yields

ε0rε1ε0 + ε1rε
2
0 = rε1ε0.
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Since ε0 ∈ S�(R), ε0rε1ε0 = rε1ε0 and consequently ε1rε0 = ε1rε
2
0 = 0. Thus

ε0rε1 = rε1 from E(1). Multiply E(2): ε0rε2 + ε1rε1 + ε2rε0 = rε2 by ε0 from
right yields

ε0rε2ε0 + ε1rε1ε0 + ε2rε0 = rε2ε0.

Since ε0 ∈ S�(R), we have ε0rε2ε0 = rε2ε0, and also that ε1rε1ε0 = ε1r(ε0ε1ε0) =
(ε1rε0)ε1ε0 = 0. It follows that ε2rε0 = 0. Assume that εirε0 = 0 for i =
1, 2, · · · , k − 1. Inductively, multiply E(k) by ε0 from right yields

ε0rεkε0 +




∑
i+j=k
i,j�1

εirεjε0


 + εkrε0 = rεkε0.

Observe that ε0rεkε0 = rεkε0 since ε0 ∈ S�(R), and

εirεjε0 = εir(ε0εjε0) = (εirε0)εjε0 = 0

for 1 � i � k − 1 by induction hypothesis. Consequently εkrε0 = 0. Thus
εirε0 = 0 for all r ∈ R, i � 1 by induction.

Now the system of equations E(k) becomes

E ′(k) : ε0rεk +
∑

i+j=k
i,j�1

εirεj = rεk for k � 2.

Multiply the equation E ′(2) by ε0 from left yields

ε0rε2 + ε0ε1rε1 = ε0rε2,

and thus ε0ε1rε1 = 0. Recall that ε0rε1 = rε1 from E(1). It follows that

ε1rε1 = ε1(ε0rε1) = (ε0ε1ε0)rε1 = ε0ε1(ε0rε1) = ε0ε1rε1 = 0.

Consequently, ε0rε2 = rε2 from E′(2). Again, multiply E′(3) by ε0 from left
yields

ε0rε3 + ε0ε1rε2 + ε0ε2rε1 = ε0rε3,

and thus ε0ε1rε2 + ε0ε2rε1 = 0. It follows that

ε1rε2 + ε2rε1 = ε1(ε0rε2) + ε2(ε0rε1)
= (ε0ε1ε0)rε2 + (ε0ε2ε0)rε1

= ε0ε1(ε0rε2) + ε0ε2(ε0rε1)
= ε0ε1rε2 + ε0ε2rε1

= 0.
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Substitute this result back to the equation E ′(3), we get ε0rε3 = rε3. Assume that
ε0rεi = rεi for i = 1, 2, · · · , k − 1, and multiply E′(k) by ε0 from left yields

ε0rεk + ε0




∑
i+j=k
i,j�1

εirεj


 = ε0rεk.

A similar argument used above will show that
∑

i+j=k
i,j�1

εirεj = 0 by induction
hypothesis and thus ε0rεk = rεk for k � 2.

Conversely, let ε(x) =
∑∞

i=0 εix
i ∈ R[[x]] such that conditions (1), (2), (3)

hold. To show ε(x) ∈ S�(R[[x]]), it suffices to show that (ε(x) − 1)rε(x) = 0 or
ε(x)rε(x) = rε(x) for all r ∈ R by Lemma 2 and Lemma 1. Observe that

∑
i+j=k

εirεj = ε0rεk +




∑
i+j=k
i,j�1

εirεj


 + εkrε0 = rεk, for k � 1,

and thus

ε(x)rε(x) =
∞∑

k=0


 ∑

i+j=k

εirεj


xk =

∞∑
k=0

rεkxk = rε(x).

Consequently, ε(x) ∈ S�(R[[x]]).

Corollary 4. [4, Proposition 2.4(iv)] Let R be a ring with unity and ε(x) =∑∞
i=0 εix

i ∈ S�(R[[x]]). Then ε(x)R[[x]] = ε0R[[x]].

Proof. Observe that

ε0 · ε(x) =
∞∑
i=0

ε0εix
i =

∞∑
i=0

εix
i = ε(x) and

ε(x) · ε0 =
∞∑
i=0

εiε0x
i = ε0,

by Proposition 3. Thus ε(x)f(x) = ε0(ε(x)f(x)) and ε0f(x) = ε(x)ε0f(x) for all
f(x) ∈ R[[x]]. Consequently, ε(x)R[[x]] = ε0R[[x]].

3. GENERALIZED COUNTABLE JOIN

Let R be a ring with unity and E = {e0, e1, e2, · · · } a countable subset of
Sr(R). We say E has a generalized countable join e if, given a ∈ R, there exists
e ∈ Sr(R) such that
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(1) eie = ei for all i ∈ N;
(2) if eia = ei for all i ∈ N, then ea = e.

Note that if there exists an element e ∈ R satisfies conditions (1) and (2) above,
then e ∈ Sr(R). Indeed, the condition (1): eie = ei for all i ∈ N implies ee = e
by (2) and so e is an idempotent. Further, let a ∈ R be arbitrary. Then the element
d = e − ea + eae is an idempotent in R and eid = ei for all i ∈ N. Thus ed = e
by (2). Note that ed = e(e − ea + eae) = d. Consequently, e = d = e − ea + eae

or ea = eae. Thus e ∈ Sr(R).
Note that a generalized countable join e, if it exists, is indeed a join if Sr(R) is

a lattice. Recall that when R is an abelian ring (i.e., every idempotent is central),
then the set B(R) = Sr(R) of all idempotents in R is a Boolean algebra where
e � d means ed = e. Let e be a join of E = {e0, e1, e2, · · · } in B(R) where
R is a reduced PP ring. That is e satisfies (1) eie = ei for all i ∈ N; (2′) if
eid = ei for all i ∈ N and any d ∈ B(R), then ed = e. Given an arbitrary a ∈ R,
then 1 − a = pu for some central idempotent p ∈ R and some u ∈ R such that
rAnnR(u) = 0 = �AnnR(u) [12, Proposition 2]. Observe that if eia = ei for all
i ∈ N, then ei(1 − a) = eipu = 0. It follows that eip = 0 for all i ∈ N since
�AnnR(u) = 0. Thus ep = 0 or e(1 − a) = epu = 0. Therefore ea = e and e is a
generalized countable join of E . In other words, a generalized countable join is a
join and vice versa in the class of reduced PP rings.

Be aware that (Sr(R), �) is not partially ordered by defining d � e when de = d
in an arbitrary ring R. This relation is reflexive, transitive but not antisymmetric.
However, let a, b ∈ Sr(R) and define a ∼ b if a = ab and b = ba. Then ∼ is an
equivalence relation on Sr(R) and (Sr(R)/ ∼, �) is a partially ordered set. In the
case when (Sr(R)/ ∼, �) is a complete lattice, then a generalized countable join
exists for any subset of Sr(R). In particular when R is a Boolean ring or a reduced
PP ring, then the generalized countable join is indeed a join in R.

In [20, Definition 2], Liu defined the notion of generalized join for a countable
set of idempotents. Explicitely, let {e0, e1, · · · } be a countable family of idempotents
of R. The set {e0, e1, · · · } is said to have a generalized join e if there exists e = e2

such that

(i) eiR(1− e) = 0;
(ii) if d is an idempotent and eiR(1 − d) = 0 then eR(1− d) = 0.

Observe that
eir(1− e) = eirei(1 − e) = eir(ei − eie),

when ei ∈ Sr(R). Thus ei = eie if and only if eir(1 − e) = 0 for all r ∈ R
when ei ∈ Sr(R) for all i ∈ N. Now, let E = {e0, e1, e2, · · · } ⊆ Sr(R) and e a
generalized countable join of E . To show e is a generalized join (in the sense of
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Liu), it remains to show condition (ii) holds. Let f be an idempotent in R such that
eiR(1−f) = 0. Then, in particular, ei(1−f) = 0 for all i ∈ N. Thus e(1−f) = 0
by hypothesis. It follows that er(1−f) = ere(1−f) = 0 and thus eR(1−f) = 0.
Therefore, e is a generalized join of E . Thus, in the content of right semicentral
idempotents, a generalized countable join is a generalized join in the sense of Liu.

Conversely, let e ∈ Sr(R) be a generalized join (in the sense of Liu) of the set
E = {e0, e1, e2, · · · } ⊆ Sr(R). Observe that condition (ii) is equivalent to

(ii′) if d is an idempotent and eid = ei then ed = e.
Let a ∈ R be arbitrary such that eia = ei for all i ∈ N. Then condition (ii’) and
a similar argument used in the case of reduced PP rings implies that ea = e. Thus
e is a generalized countable join. Therefore, in the content of right semicentral
idempotents, Liu’s generalized join is equivalent to generalized countable join.

4. MAIN RESULT

If X is a nonempty subset of R, then denote the right annihilator of X in R as
rAnnR(X) = {a ∈ R | Xa = 0} and the left annihilator �AnnR(X) = {a ∈ R |
aX = 0}. In the proof of next result, it is often to deal with the right annihilator
in the ring R or in the ring R[[x]]. To simplify the notation, rAnnR[[x]](X) will be
denoted rAnn(X) and the subscript R will be kept for rAnnR(X).

Theorem 5. Let R be a ring with unity. Then R[[x]] is right p.q.-Baer if and
only if R is right p.q.-Baer and every countable subset of S r(R) has a generalized
countable join.

Proof. If R[[x]] is right p.q.-Baer then R is right p.q.-Baer by [7, Proposition
2.5]. It remains to show that every countable subset of Sr(R) has a generalized
countable join.

Let E = {e0, e1, e2, · · · } ⊆ Sr(R) and ε(x) =
∑∞

i=0 eix
i ∈ R[[x]]. Since

R[[x]] is right p.q.-Baer, there exists η(x) =
∑∞

j=0 ηix
i ∈ S�(R[[x]]) such that

rAnn(ε(x)R[[x]]) = η(x)R[[x]] = η0R[[x]]

by Corollary 4. Since rAnn(ε(x)R[[x]]) = rAnn(ε(x)R) by Lemma 1, we have

0 = ε(x)rη0 =
∞∑
i=0

(eirη0)xi, for any r ∈ R.

Thus eirη0 = 0 for all i ∈ N, r ∈ R. We will show that 1 − η0 is a generalized
countable join for E . Since η(x) ∈ S�(R[[x]]), it follows that 1 − η0 ∈ Sr(R) by
Proposition 3 and Lemma 2. Furthermore, eirη0 = 0 for all i ∈ N, r ∈ R implies
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that eiη0 = 0 or ei(1 − η0) = ei for all i ∈ N. Now let a ∈ R such that eia = ei

for all i ∈ N. Then ei(1− a) = 0 for all i ∈ N. Since ei ∈ Sr(R), it follows that

eir(1− a) = eirei(1 − a) = 0

and so ε(x)r(1− a) = 0 for all r ∈ R. Thus 1− a ∈ rAnn(ε(x)R) = η0R[[x]]. In
particular η0(1− a) = 1 − a. Consequently, (1 − η0)a = 1 − η0. Thus 1 − η0 is a
generalized countable join of E .

Conversely, assume the ring R is right p.q.-Baer and every countable subset of
Sr(R) has a generalized countable join. Let f(x) =

∑∞
i=0 fix

i ∈ R[[x]]. Since R is
right p.q.-Baer, there exists ei ∈ S�(R) for all i ∈ N such that rAnnR(fiR) = eiR.
Thus 1 − ei ∈ Sr(R) by Lemma 2. By hypothesis, the set {1 − ei | i ∈ N} has a
generalized countable join e ∈ Sr(R). It follows that

(1− ei)e = 1 − ei or ei(1− e) = 1 − e for all i ∈ N.

Let a ∈ R be arbitrary. Then

f(x)a(1− e) =
∞∑
i=0

fia(1− e)xi.

Since 1− e = ei(1− e) ∈ S�(R) for all i ∈ N, the coefficient of each terms in the
expansion of f(x)a(1− e) becomes

fia(1− e) = fiaei(1− e) ∈ fiReiR = 0.

Thus f(x)a(1−e) = 0 for all a ∈ R. Consequently, (1−e)R[[x]]⊆rAnn(f(x)R[[x]])
by Lemma 1.

On the other hand, let g(x) =
∑∞

j=0 gjx
j ∈ rAnn(f(x)R[[x]]). Then f(x)Rg(x)

= 0 for all r ∈ R. Thus we have a system of equations

E(k) :
∑

i+j=k

firgj = 0 for all k ∈ N, r ∈ R

by Lemma 1. From equation E(0): f0rg0 = 0, it follows that g0 ∈ rAnnR(f0R) =
e0R and thus e0g0 = g0. Since r is arbitrary, we may replace r as se0 for arbitrary
s ∈ R into the equation E(1): f0rg1 + f1rg0 = 0 and get

f0se0g1 + f1se0g0 = 0.

Observe that f0se0g1 ∈ f0Re0R = 0 and thus f1sg0 = f1se0g0 = 0. It follows
that g0 ∈ rAnnR(f1R) = e1R. Consequently, e1g0 = g0 and f0rg1 = 0 from
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equation E(1). Thus g1 ∈ rAnnR(f0R) = e0R and e0g1 = g1. Inductively, assume
eigj = gj for 0 � i + j � k − 1. Observe that

fise0e1 · · ·ek−1gj = fiseie0e1 · · ·ek−1gj ∈ fiReiR = 0

for 0 � i � k − 1 and that

fkse0e1 · · ·ek−1g0 = fksg0

by induction hypothesis. If we replace r by se0e1 · · ·ek−1 in E(k) for arbitrary
s ∈ R, then

0 =
∑

i+j=k

fise0e1 · · ·ek−1gj = fksg0.

Thus g0 ∈ rAnnR(fkR) = ekR or ekg0 = g0. Consequently, the equation E(k)
becomes

E ′(k) :
k−1∑
i=0

firgk−j = 0 for all k ∈ N, r ∈ R.

Replace r as se0e1 · · ·ek−2 into E ′(k), we get

0 =
k−1∑
i=0

fise0e1 · · ·ek−2gk−j = fk−1sg1.

Therefore g1 ∈ rAnnR(fk−1R) = ek−1R or ek−1g1 = g1. Continue this process,
we get eigj = gj when i + j = k. Thus eigj = gj for i + j ∈ N by induction.

Consequently, (1 − ei)gj = 0 or (1 − ei)(1 − gj) = 1 − ei for all i, j ∈ N.
Thus e(1 − gj) = e or (1 − e)gj = gj , for all j ∈ N by hypothesis. It follows
that g(x) =

∑∞
j=0 gjx

j =
∑∞

j=0(1 − e)gjx
j = (1 − e)g(x) ∈ (1 − e)R[[x]]. Thus

rAnn(f(x)R[[x]]) ⊆ (1 − e)R[[x]], and R[[x]] is right p.q.-Baer.

Since Liu’s generalized join is equivalent to generalized countable join in the set
of right semicentral idempotents Sr(R). The following result is immediated from
Theorem 5.

Corollary 6. [20, Theorem 3]. Let R be a ring such that S �(R) ⊆ B(R). Then
R[[x]] is right p.q.-Baer if and only if R is right p.q.-Baer and any countable family
of idempotents in R has a generalized join.

Corollary 7. [12, Theorem 3]. If R is a ring then R[[x]] is a reduced PP ring
if and only if R is a reduced PP ring and any countable family of idempotents in
R has a join in B(R).
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Proof. Since R is a reduced PP ring if and only if R is a reduced p.q.-Baer ring
[9, Proposition 1.14(iii)] and a join in B(R) is equivalent to a generalized countable
join in B(R) when R is a reduced PP ring, the assertion follows immediately from
Theorem 5.
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