# A NOTE ON EXTENSIONS OF PRINCIPALLY QUASI-BAER RINGS 

Yuwen Cheng and Feng-Kuo Huang


#### Abstract

Let $R$ be a ring with unity. It is shown that the formal power series ring $R[[x]]$ is right p.q.-Baer if and only if $R$ is right p.q.-Baer and every countable subset of right semicentral idempotents has a generalized countable join.


## 1. Introduction

Throughout this note, $R$ denotes a ring with unity. Recall that $R$ is called a (quasi-)Baer ring if the right annihilator of every (right ideal) nonempty subset of $R$ is generated, as a right ideal, by an idempotent of $R$. Baer rings are introduced by Kaplansky [18] to abstract various properties of $A W^{*}$-algebras and von Neumann algebras. Quasi-Baer rings, introduced by Clark [11], are used to characterize when a finite dimensional algebra over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. The definition of a (quasi-) Baer ring is left-right symmetric [11, 18].

In [9], Birkenmeier, Kim and Park initiated the study of right principally quasiBaer rings. A ring $R$ is called right principally quasi-Baer (or simply right p.q.Baer) if the right annihilator of a principal right ideal is generated, as a right ideal, by an idempotent. Equivalently, $R$ is right p.q.-Baer if $R$ modulo the right annihilator of any principal right ideal is projective. If $R$ is both right and left p.q.-Baer, then it is called p.q.-Baer. The class of p.q.-Baer rings include all biregular rings, all quasi-Baer rings and all abelian PP rings. See [9] for more details.

Ore extensions or polynomial extensions of (quasi-)Baer rings and their generalizations are extensively studied recently ([4-10] and [14-17]). It is proved in [8,

[^0]Theorem 1.8] that a ring $R$ is quasi-Baer if and only if $R[[X]]$ is quasi-Baer, where $X$ is an arbitrary nonempty set of not necessarily commuting indeterminates. In [7, Theorem 2.1], it is shown that $R$ is right p.q.-Baer if and only if $R[x]$ is right p.q.-Baer. But it is not equivalent to that $R[[x]]$ is right p.q.-Baer. In fact, there exists a commutative von Neumann regular ring $R$ (hence p.q.-Baer) such that the ring $R[[x]]$ is not p.q.-Baer [7, Example 2.6]. In [20, Theorem 3], a necessary and sufficient condition for semiprime ring under which the ring $R[[x]]$ is right p.q.-Baer are given. It is shown that $R[[x]]$ is right p.q.-Baer if and only if $R$ is right p.q.-Baer and any countable family of idempotents in $R$ has a generalized join when all left semicentral idempotents are central. Indeed, for a right p.q.-Baer ring, asking the set of left semicentral idempotents $\mathcal{S}_{\ell}(R)$ equals to the set of central idempotents $B(R)$ is equivalent to assume $R$ is semiprime [9, Proposition 1.17]. In this note, the condition requiring all left semicentral idempotents being central is shown to be redundant. We show that: The ring $R[[x]]$ is right p.q.-Baer if and only if $R$ is p.q.-Baer and every countable subset of right semicentral idempotents has a generalized countable join. This theorem properly generalizes Fraser and Nicholson's result in the class of reduced PP rings [12, Theorem 3] and Liu's result in the class of semiprime p.q.-Baer rings [20, Theorem 3]. For simplicity of notations, denote $\mathbb{N}=\{0,1,2, \cdots\}$ be the set of natural numbers.

## 2. Annihilators and Left Semicentral Idempotents

Lemma 1. Let $f(x)=\sum_{i=0}^{\infty} f_{i} x^{i}, g(x)=\sum_{j=0}^{\infty} g_{j} x^{j} \in R[[x]]$. Then the following are equivalent.
(1) $f(x) R[[x]] g(x)=0$;
(2) $f(x) R g(x)=0$;
(3) $\sum_{i+j=k} f_{i} a g_{j}=0$ for all $k \in \mathbb{N}, a \in R$.

Proof. Let $h(x)=\sum_{k=0}^{\infty} h_{k} x^{k} \in R[[x]]$ and assume $f(x) R[[x]] g(x)=0$. Then $0=f(x) h(x) g(x)=\sum_{k=0}^{\infty}\left(f(x) h_{k} g(x)\right) x^{k}$ and thus $f(x) R g(x)=0$ if and only if $f(x) R[[x]] g(x)=0$. Now, let $a \in R$ be arbitrary. Observe that

$$
f(x) a g(x)=\sum_{k=0}^{\infty}\left(\sum_{i+j=k} f_{i} a g_{j}\right) x^{k} .
$$

Thus (2) is equivalent to (3).
Recall that an idempotent $e \in R$ is called left (resp. right) semicentral [3] if $r e=e r e($ resp. er $=e r e)$ for all $r \in R$. Equivalently, $e=e^{2} \in R$ is left (resp.
right) semicentral if $e R$ (resp. $R e$ ) is an ideal of $R$. Since the right annihilator of a right ideal is an ideal, we see that the right annihilator of a right ideal is generated by a left semicentral idempotents in a right p.q.-Baer ring. The set of left (resp. right) semicentral idempotents of $R$ is denoted $\mathcal{S}_{\ell}(R)$ (resp. $\mathcal{S}_{r}(R)$ ). The following result is used frequently later in this note.

Lemma 2. [9, Lemma 1.1] Let $e$ be an idempotent in a ring $R$ with unity. Then the following conditions are equivalent.
(1) $e \in \mathcal{S}_{\ell}(R)$;
(2) $1-e \in \mathcal{S}_{r}(R)$;
(3) $(1-e) R e=0$;
(4) $e R$ is an ideal of $R$;
(5) $R(1-e)$ is an ideal of $R$.

To prove the main result, we first characterize the left semicentral idempotents in $R[[x]]$.

Proposition 3. Let $\varepsilon(x)=\sum_{i=0}^{\infty} \varepsilon_{i} x^{i} \in R[[x]]$. Then $\varepsilon(x) \in \mathcal{S}_{\ell}(R[[x]])$ if and only if
(1) $\varepsilon_{0} \in \mathcal{S}_{\ell}(R)$;
(2) $\varepsilon_{0} r \varepsilon_{i}=r \varepsilon_{i}$ and $\varepsilon_{i} r \varepsilon_{0}=0$ for all $r \in R, i=1,2, \cdots$;
(3) $\sum_{\substack{i+j=k \\ i, j \geqslant 1}} \varepsilon_{i} r \varepsilon_{j}=0$ for all $r \in R$ and $k \geqslant 2$.

Proof. Assume $\varepsilon(x)=\sum_{i=0}^{\infty} \varepsilon_{i} x^{i} \in \mathcal{S}_{\ell}(R[[x]])$ and $r \in R$. Then $\varepsilon(x) r \varepsilon(x)=$ $r \varepsilon(x)$, or

$$
\sum_{k=0}^{\infty}\left(\sum_{i+j=k} \varepsilon_{i} r \varepsilon_{j}\right) x^{k}=\sum_{k=0}^{\infty} r \varepsilon_{k} x^{k}
$$

By comparing the coefficient of each terms $x^{k}$ in the above expansion, we have a system of equations

$$
E(k): \quad \sum_{i+j=k} \varepsilon_{i} r \varepsilon_{j}=r \varepsilon_{k}, \quad \text { for all } k \geqslant 0
$$

From $E(0)$, we have

$$
\varepsilon_{0} r \varepsilon_{0}=r \varepsilon_{0}
$$

and thus $\varepsilon_{0} \in \mathcal{S}_{\ell}(R)$ since $R$ has unity. Consider $E(1): \varepsilon_{0} r \varepsilon_{1}+\varepsilon_{1} r \varepsilon_{0}=r \varepsilon_{1}$, and multiply $E(1)$ by $\varepsilon_{0}$ from right yields

$$
\varepsilon_{0} r \varepsilon_{1} \varepsilon_{0}+\varepsilon_{1} r \varepsilon_{0}^{2}=r \varepsilon_{1} \varepsilon_{0}
$$

Since $\varepsilon_{0} \in \mathcal{S}_{\ell}(R), \varepsilon_{0} r \varepsilon_{1} \varepsilon_{0}=r \varepsilon_{1} \varepsilon_{0}$ and consequently $\varepsilon_{1} r \varepsilon_{0}=\varepsilon_{1} r \varepsilon_{0}^{2}=0$. Thus $\varepsilon_{0} r \varepsilon_{1}=r \varepsilon_{1}$ from $E(1)$. Multiply $E(2): \varepsilon_{0} r \varepsilon_{2}+\varepsilon_{1} r \varepsilon_{1}+\varepsilon_{2} r \varepsilon_{0}=r \varepsilon_{2}$ by $\varepsilon_{0}$ from right yields

$$
\varepsilon_{0} r \varepsilon_{2} \varepsilon_{0}+\varepsilon_{1} r \varepsilon_{1} \varepsilon_{0}+\varepsilon_{2} r \varepsilon_{0}=r \varepsilon_{2} \varepsilon_{0}
$$

Since $\varepsilon_{0} \in \mathcal{S}_{\ell}(R)$, we have $\varepsilon_{0} r \varepsilon_{2} \varepsilon_{0}=r \varepsilon_{2} \varepsilon_{0}$, and also that $\varepsilon_{1} r \varepsilon_{1} \varepsilon_{0}=\varepsilon_{1} r\left(\varepsilon_{0} \varepsilon_{1} \varepsilon_{0}\right)=$ $\left(\varepsilon_{1} r \varepsilon_{0}\right) \varepsilon_{1} \varepsilon_{0}=0$. It follows that $\varepsilon_{2} r \varepsilon_{0}=0$. Assume that $\varepsilon_{i} r \varepsilon_{0}=0$ for $i=$ $1,2, \cdots, k-1$. Inductively, multiply $E(k)$ by $\varepsilon_{0}$ from right yields

$$
\varepsilon_{0} r \varepsilon_{k} \varepsilon_{0}+\left(\sum_{\substack{i+j=k \\ i, j \geqslant 1}} \varepsilon_{i} r \varepsilon_{j} \varepsilon_{0}\right)+\varepsilon_{k} r \varepsilon_{0}=r \varepsilon_{k} \varepsilon_{0}
$$

Observe that $\varepsilon_{0} r \varepsilon_{k} \varepsilon_{0}=r \varepsilon_{k} \varepsilon_{0}$ since $\varepsilon_{0} \in \mathcal{S}_{\ell}(R)$, and

$$
\varepsilon_{i} r \varepsilon_{j} \varepsilon_{0}=\varepsilon_{i} r\left(\varepsilon_{0} \varepsilon_{j} \varepsilon_{0}\right)=\left(\varepsilon_{i} r \varepsilon_{0}\right) \varepsilon_{j} \varepsilon_{0}=0
$$

for $1 \leqslant i \leqslant k-1$ by induction hypothesis. Consequently $\varepsilon_{k} r \varepsilon_{0}=0$. Thus $\varepsilon_{i} r \varepsilon_{0}=0$ for all $r \in R, i \geqslant 1$ by induction.

Now the system of equations $E(k)$ becomes

$$
E^{\prime}(k): \varepsilon_{0} r \varepsilon_{k}+\sum_{\substack{i+j=k \\ i, j \geqslant 1}} \varepsilon_{i} r \varepsilon_{j}=r \varepsilon_{k} \quad \text { for } k \geqslant 2
$$

Multiply the equation $E^{\prime}(2)$ by $\varepsilon_{0}$ from left yields

$$
\varepsilon_{0} r \varepsilon_{2}+\varepsilon_{0} \varepsilon_{1} r \varepsilon_{1}=\varepsilon_{0} r \varepsilon_{2}
$$

and thus $\varepsilon_{0} \varepsilon_{1} r \varepsilon_{1}=0$. Recall that $\varepsilon_{0} r \varepsilon_{1}=r \varepsilon_{1}$ from $E(1)$. It follows that

$$
\varepsilon_{1} r \varepsilon_{1}=\varepsilon_{1}\left(\varepsilon_{0} r \varepsilon_{1}\right)=\left(\varepsilon_{0} \varepsilon_{1} \varepsilon_{0}\right) r \varepsilon_{1}=\varepsilon_{0} \varepsilon_{1}\left(\varepsilon_{0} r \varepsilon_{1}\right)=\varepsilon_{0} \varepsilon_{1} r \varepsilon_{1}=0
$$

Consequently, $\varepsilon_{0} r \varepsilon_{2}=r \varepsilon_{2}$ from $E^{\prime}(2)$. Again, multiply $E^{\prime}(3)$ by $\varepsilon_{0}$ from left yields

$$
\varepsilon_{0} r \varepsilon_{3}+\varepsilon_{0} \varepsilon_{1} r \varepsilon_{2}+\varepsilon_{0} \varepsilon_{2} r \varepsilon_{1}=\varepsilon_{0} r \varepsilon_{3}
$$

and thus $\varepsilon_{0} \varepsilon_{1} r \varepsilon_{2}+\varepsilon_{0} \varepsilon_{2} r \varepsilon_{1}=0$. It follows that

$$
\begin{aligned}
\varepsilon_{1} r \varepsilon_{2}+\varepsilon_{2} r \varepsilon_{1} & =\varepsilon_{1}\left(\varepsilon_{0} r \varepsilon_{2}\right)+\varepsilon_{2}\left(\varepsilon_{0} r \varepsilon_{1}\right) \\
& =\left(\varepsilon_{0} \varepsilon_{1} \varepsilon_{0}\right) r \varepsilon_{2}+\left(\varepsilon_{0} \varepsilon_{2} \varepsilon_{0}\right) r \varepsilon_{1} \\
& =\varepsilon_{0} \varepsilon_{1}\left(\varepsilon_{0} r \varepsilon_{2}\right)+\varepsilon_{0} \varepsilon_{2}\left(\varepsilon_{0} r \varepsilon_{1}\right) \\
& =\varepsilon_{0} \varepsilon_{1} r \varepsilon_{2}+\varepsilon_{0} \varepsilon_{2} r \varepsilon_{1} \\
& =0
\end{aligned}
$$

Substitute this result back to the equation $E^{\prime}(3)$, we get $\varepsilon_{0} r \varepsilon_{3}=r \varepsilon_{3}$. Assume that $\varepsilon_{0} r \varepsilon_{i}=r \varepsilon_{i}$ for $i=1,2, \cdots, k-1$, and multiply $E^{\prime}(k)$ by $\varepsilon_{0}$ from left yields

$$
\varepsilon_{0} r \varepsilon_{k}+\varepsilon_{0}\left(\sum_{\substack{i+j=k \\ i, j \geqslant 1}} \varepsilon_{i} r \varepsilon_{j}\right)=\varepsilon_{0} r \varepsilon_{k}
$$

A similar argument used above will show that $\sum_{\substack{i+j=k \\ i, j \geqslant 1}} \varepsilon_{i} r \varepsilon_{j}=0$ by induction hypothesis and thus $\varepsilon_{0} r \varepsilon_{k}=r \varepsilon_{k}$ for $k \geqslant 2$.

Conversely, let $\varepsilon(x)=\sum_{i=0}^{\infty} \varepsilon_{i} x^{i} \in R[[x]]$ such that conditions (1), (2), (3) hold. To show $\varepsilon(x) \in \mathcal{S}_{\ell}(R[[x]])$, it suffices to show that $(\varepsilon(x)-1) r \varepsilon(x)=0$ or $\varepsilon(x) r \varepsilon(x)=r \varepsilon(x)$ for all $r \in R$ by Lemma 2 and Lemma 1. Observe that

$$
\sum_{i+j=k} \varepsilon_{i} r \varepsilon_{j}=\varepsilon_{0} r \varepsilon_{k}+\left(\sum_{\substack{i+j=k \\ i, j \geqslant 1}} \varepsilon_{i} r \varepsilon_{j}\right)+\varepsilon_{k} r \varepsilon_{0}=r \varepsilon_{k}, \quad \text { for } k \geqslant 1
$$

and thus

$$
\varepsilon(x) r \varepsilon(x)=\sum_{k=0}^{\infty}\left(\sum_{i+j=k} \varepsilon_{i} r \varepsilon_{j}\right) x^{k}=\sum_{k=0}^{\infty} r \varepsilon_{k} x^{k}=r \varepsilon(x)
$$

Consequently, $\varepsilon(x) \in \mathcal{S}_{\ell}(R[[x]])$.
Corollary 4. [4, Proposition 2.4(iv)] Let $R$ be a ring with unity and $\varepsilon(x)=$ $\sum_{i=0}^{\infty} \varepsilon_{i} x^{i} \in \mathcal{S}_{\ell}(R[[x]])$. Then $\varepsilon(x) R[[x]]=\varepsilon_{0} R[[x]]$.

Proof. Observe that

$$
\begin{aligned}
& \varepsilon_{0} \cdot \varepsilon(x)=\sum_{i=0}^{\infty} \varepsilon_{0} \varepsilon_{i} x^{i}=\sum_{i=0}^{\infty} \varepsilon_{i} x^{i}=\varepsilon(x) \text { and } \\
& \varepsilon(x) \cdot \varepsilon_{0}=\sum_{i=0}^{\infty} \varepsilon_{i} \varepsilon_{0} x^{i}=\varepsilon_{0}
\end{aligned}
$$

by Proposition 3. Thus $\varepsilon(x) f(x)=\varepsilon_{0}(\varepsilon(x) f(x))$ and $\varepsilon_{0} f(x)=\varepsilon(x) \varepsilon_{0} f(x)$ for all $f(x) \in R[[x]]$. Consequently, $\varepsilon(x) R[[x]]=\varepsilon_{0} R[[x]]$.

## 3. Generalized Countable Join

Let $R$ be a ring with unity and $E=\left\{e_{0}, e_{1}, e_{2}, \cdots\right\}$ a countable subset of $\mathcal{S}_{r}(R)$. We say $E$ has a generalized countable join $e$ if, given $a \in R$, there exists $e \in \mathcal{S}_{r}(R)$ such that
(1) $e_{i} e=e_{i}$ for all $i \in \mathbb{N}$;
(2) if $e_{i} a=e_{i}$ for all $i \in \mathbb{N}$, then $e a=e$.

Note that if there exists an element $e \in R$ satisfies conditions (1) and (2) above, then $e \in \mathcal{S}_{r}(R)$. Indeed, the condition (1): $e_{i} e=e_{i}$ for all $i \in \mathbb{N}$ implies $e e=e$ by (2) and so $e$ is an idempotent. Further, let $a \in R$ be arbitrary. Then the element $d=e-e a+e a e$ is an idempotent in $R$ and $e_{i} d=e_{i}$ for all $i \in \mathbb{N}$. Thus $e d=e$ by (2). Note that $e d=e(e-e a+e a e)=d$. Consequently, $e=d=e-e a+e a e$ or $e a=e a e$. Thus $e \in \mathcal{S}_{r}(R)$.

Note that a generalized countable join $e$, if it exists, is indeed a join if $\mathcal{S}_{r}(R)$ is a lattice. Recall that when $R$ is an abelian ring (i.e., every idempotent is central), then the set $B(R)=\mathcal{S}_{r}(R)$ of all idempotents in $R$ is a Boolean algebra where $e \leqslant d$ means $e d=e$. Let $e$ be a join of $E=\left\{e_{0}, e_{1}, e_{2}, \cdots\right\}$ in $B(R)$ where $R$ is a reduced PP ring. That is $e$ satisfies (1) $e_{i} e=e_{i}$ for all $i \in \mathbb{N}$; (2') if $e_{i} d=e_{i}$ for all $i \in \mathbb{N}$ and any $d \in B(R)$, then $e d=e$. Given an arbitrary $a \in R$, then $1-a=p u$ for some central idempotent $p \in R$ and some $u \in R$ such that $r \operatorname{Ann}_{R}(u)=0=\ell \operatorname{Ann}_{R}(u)$ [12, Proposition 2]. Observe that if $e_{i} a=e_{i}$ for all $i \in \mathbb{N}$, then $e_{i}(1-a)=e_{i} p u=0$. It follows that $e_{i} p=0$ for all $i \in \mathbb{N}$ since $\ell \operatorname{Ann}_{R}(u)=0$. Thus $e p=0$ or $e(1-a)=e p u=0$. Therefore $e a=e$ and $e$ is a generalized countable join of $E$. In other words, a generalized countable join is a join and vice versa in the class of reduced PP rings.

Be aware that $\left(\mathcal{S}_{r}(R), \leqslant\right)$ is not partially ordered by defining $d \leqslant e$ when $d e=d$ in an arbitrary ring $R$. This relation is reflexive, transitive but not antisymmetric. However, let $a, b \in \mathcal{S}_{r}(R)$ and define $a \sim b$ if $a=a b$ and $b=b a$. Then $\sim$ is an equivalence relation on $\mathcal{S}_{r}(R)$ and $\left(\mathcal{S}_{r}(R) / \sim, \leqslant\right)$ is a partially ordered set. In the case when $\left(\mathcal{S}_{r}(R) / \sim, \leqslant\right)$ is a complete lattice, then a generalized countable join exists for any subset of $\mathcal{S}_{r}(R)$. In particular when $R$ is a Boolean ring or a reduced PP ring, then the generalized countable join is indeed a join in $R$.

In [20, Definition 2], Liu defined the notion of generalized join for a countable set of idempotents. Explicitely, let $\left\{e_{0}, e_{1}, \cdots\right\}$ be a countable family of idempotents of $R$. The set $\left\{e_{0}, e_{1}, \cdots\right\}$ is said to have a generalized join $e$ if there exists $e=e^{2}$ such that
(i) $e_{i} R(1-e)=0$;
(ii) if $d$ is an idempotent and $e_{i} R(1-d)=0$ then $e R(1-d)=0$.

Observe that

$$
e_{i} r(1-e)=e_{i} r e_{i}(1-e)=e_{i} r\left(e_{i}-e_{i} e\right),
$$

when $e_{i} \in \mathcal{S}_{r}(R)$. Thus $e_{i}=e_{i} e$ if and only if $e_{i} r(1-e)=0$ for all $r \in R$ when $e_{i} \in \mathcal{S}_{r}(R)$ for all $i \in \mathbb{N}$. Now, let $E=\left\{e_{0}, e_{1}, e_{2}, \cdots\right\} \subseteq \mathcal{S}_{r}(R)$ and $e$ a generalized countable join of $E$. To show $e$ is a generalized join (in the sense of

Liu), it remains to show condition (ii) holds. Let $f$ be an idempotent in $R$ such that $e_{i} R(1-f)=0$. Then, in particular, $e_{i}(1-f)=0$ for all $i \in \mathbb{N}$. Thus $e(1-f)=0$ by hypothesis. It follows that $\operatorname{er}(1-f)=\operatorname{ere}(1-f)=0$ and thus $e R(1-f)=0$. Therefore, $e$ is a generalized join of $E$. Thus, in the content of right semicentral idempotents, a generalized countable join is a generalized join in the sense of Liu.

Conversely, let $e \in \mathcal{S}_{r}(R)$ be a generalized join (in the sense of Liu) of the set $E=\left\{e_{0}, e_{1}, e_{2}, \cdots\right\} \subseteq \mathcal{S}_{r}(R)$. Observe that condition (ii) is equivalent to
( $i i^{\prime}$ ) if $d$ is an idempotent and $e_{i} d=e_{i}$ then $e d=e$.
Let $a \in R$ be arbitrary such that $e_{i} a=e_{i}$ for all $i \in \mathbb{N}$. Then condition (ii') and a similar argument used in the case of reduced PP rings implies that $e a=e$. Thus $e$ is a generalized countable join. Therefore, in the content of right semicentral idempotents, Liu's generalized join is equivalent to generalized countable join.

## 4. Main Result

If $X$ is a nonempty subset of $R$, then denote the right annihilator of $X$ in $R$ as $r \operatorname{Ann}_{R}(X)=\{a \in R \mid X a=0\}$ and the left annihilator $\ell \operatorname{Ann}_{R}(X)=\{a \in R \mid$ $a X=0\}$. In the proof of next result, it is often to deal with the right annihilator in the ring $R$ or in the ring $R[[x]]$. To simplify the notation, $r \operatorname{Ann}_{R[[x]]}(X)$ will be denoted $r \operatorname{Ann}(X)$ and the subscript $R$ will be kept for $r \operatorname{Ann}_{R}(X)$.

Theorem 5. Let $R$ be a ring with unity. Then $R[[x]]$ is right p.q.-Baer if and only if $R$ is right p.q.-Baer and every countable subset of $\mathcal{S}_{r}(R)$ has a generalized countable join.

Proof. If $R[[x]]$ is right p.q.-Baer then $R$ is right p.q.-Baer by [7, Proposition 2.5]. It remains to show that every countable subset of $\mathcal{S}_{r}(R)$ has a generalized countable join.

Let $E=\left\{e_{0}, e_{1}, e_{2}, \cdots\right\} \subseteq \mathcal{S}_{r}(R)$ and $\varepsilon(x)=\sum_{i=0}^{\infty} e_{i} x^{i} \in R[[x]]$. Since $R[[x]]$ is right p.q.-Baer, there exists $\eta(x)=\sum_{j=0}^{\infty} \eta_{i} x^{i} \in \mathcal{S}_{\ell}(R[[x]])$ such that

$$
r \operatorname{Ann}(\varepsilon(x) R[[x]])=\eta(x) R[[x]]=\eta_{0} R[[x]]
$$

by Corollary 4. Since $r \operatorname{Ann}(\varepsilon(x) R[[x]])=r \operatorname{Ann}(\varepsilon(x) R)$ by Lemma 1, we have

$$
0=\varepsilon(x) r \eta_{0}=\sum_{i=0}^{\infty}\left(e_{i} r \eta_{0}\right) x^{i}, \quad \text { for any } r \in R
$$

Thus $e_{i} r \eta_{0}=0$ for all $i \in \mathbb{N}, r \in R$. We will show that $1-\eta_{0}$ is a generalized countable join for $E$. Since $\eta(x) \in \mathcal{S}_{\ell}(R[[x]])$, it follows that $1-\eta_{0} \in \mathcal{S}_{r}(R)$ by Proposition 3 and Lemma 2. Furthermore, $e_{i} r \eta_{0}=0$ for all $i \in \mathbb{N}, r \in R$ implies
that $e_{i} \eta_{0}=0$ or $e_{i}\left(1-\eta_{0}\right)=e_{i}$ for all $i \in \mathbb{N}$. Now let $a \in R$ such that $e_{i} a=e_{i}$ for all $i \in \mathbb{N}$. Then $e_{i}(1-a)=0$ for all $i \in \mathbb{N}$. Since $e_{i} \in \mathcal{S}_{r}(R)$, it follows that

$$
e_{i} r(1-a)=e_{i} r e_{i}(1-a)=0
$$

and so $\varepsilon(x) r(1-a)=0$ for all $r \in R$. Thus $1-a \in r \operatorname{Ann}(\varepsilon(x) R)=\eta_{0} R[[x]]$. In particular $\eta_{0}(1-a)=1-a$. Consequently, $\left(1-\eta_{0}\right) a=1-\eta_{0}$. Thus $1-\eta_{0}$ is a generalized countable join of $E$.

Conversely, assume the ring $R$ is right p.q.-Baer and every countable subset of $\mathcal{S}_{r}(R)$ has a generalized countable join. Let $f(x)=\sum_{i=0}^{\infty} f_{i} x^{i} \in R[[x]]$. Since $R$ is right p.q.-Baer, there exists $e_{i} \in \mathcal{S}_{\ell}(R)$ for all $i \in \mathbb{N}$ such that $r \operatorname{Ann}_{R}\left(f_{i} R\right)=e_{i} R$. Thus $1-e_{i} \in \mathcal{S}_{r}(R)$ by Lemma 2. By hypothesis, the set $\left\{1-e_{i} \mid i \in \mathbb{N}\right\}$ has a generalized countable join $e \in \mathcal{S}_{r}(R)$. It follows that

$$
\left(1-e_{i}\right) e=1-e_{i} \text { or } e_{i}(1-e)=1-e \text { for all } i \in \mathbb{N} .
$$

Let $a \in R$ be arbitrary. Then

$$
f(x) a(1-e)=\sum_{i=0}^{\infty} f_{i} a(1-e) x^{i}
$$

Since $1-e=e_{i}(1-e) \in \mathcal{S}_{\ell}(R)$ for all $i \in \mathbb{N}$, the coefficient of each terms in the expansion of $f(x) a(1-e)$ becomes

$$
f_{i} a(1-e)=f_{i} a e_{i}(1-e) \in f_{i} R e_{i} R=0
$$

Thus $f(x) a(1-e)=0$ for all $a \in R$. Consequently, $(1-e) R[[x]] \subseteq r \operatorname{Ann}(f(x) R[[x]])$ by Lemma 1.

On the other hand, let $g(x)=\sum_{j=0}^{\infty} g_{j} x^{j} \in r \operatorname{Ann}(f(x) R[[x]])$. Then $f(x) R g(x)$ $=0$ for all $r \in R$. Thus we have a system of equations

$$
E(k): \quad \sum_{i+j=k} f_{i} r g_{j}=0 \text { for all } k \in \mathbb{N}, r \in R
$$

by Lemma 1. From equation $E(0): f_{0} r g_{0}=0$, it follows that $g_{0} \in r \operatorname{Ann}_{R}\left(f_{0} R\right)=$ $e_{0} R$ and thus $e_{0} g_{0}=g_{0}$. Since $r$ is arbitrary, we may replace $r$ as $s e_{0}$ for arbitrary $s \in R$ into the equation $E(1): f_{0} r g_{1}+f_{1} r g_{0}=0$ and get

$$
f_{0} s e_{0} g_{1}+f_{1} s e_{0} g_{0}=0
$$

Observe that $f_{0} s e_{0} g_{1} \in f_{0} R e_{0} R=0$ and thus $f_{1} s g_{0}=f_{1} s e_{0} g_{0}=0$. It follows that $g_{0} \in \operatorname{Ann}_{R}\left(f_{1} R\right)=e_{1} R$. Consequently, $e_{1} g_{0}=g_{0}$ and $f_{0} r g_{1}=0$ from
equation $E(1)$. Thus $g_{1} \in r \operatorname{Ann}_{R}\left(f_{0} R\right)=e_{0} R$ and $e_{0} g_{1}=g_{1}$. Inductively, assume $e_{i} g_{j}=g_{j}$ for $0 \leqslant i+j \leqslant k-1$. Observe that

$$
f_{i} s e_{0} e_{1} \cdots e_{k-1} g_{j}=f_{i} s e_{i} e_{0} e_{1} \cdots e_{k-1} g_{j} \in f_{i} R e_{i} R=0
$$

for $0 \leqslant i \leqslant k-1$ and that

$$
f_{k} s e_{0} e_{1} \cdots e_{k-1} g_{0}=f_{k} s g_{0}
$$

by induction hypothesis. If we replace $r$ by $s e_{0} e_{1} \cdots e_{k-1}$ in $E(k)$ for arbitrary $s \in R$, then

$$
0=\sum_{i+j=k} f_{i} s e_{0} e_{1} \cdots e_{k-1} g_{j}=f_{k} s g_{0}
$$

Thus $g_{0} \in r \operatorname{Ann}_{R}\left(f_{k} R\right)=e_{k} R$ or $e_{k} g_{0}=g_{0}$. Consequently, the equation $E(k)$ becomes

$$
E^{\prime}(k): \quad \sum_{i=0}^{k-1} f_{i} r g_{k-j}=0 \text { for all } k \in \mathbb{N}, r \in R
$$

Replace $r$ as $s e_{0} e_{1} \cdots e_{k-2}$ into $E^{\prime}(k)$, we get

$$
0=\sum_{i=0}^{k-1} f_{i} s e_{0} e_{1} \cdots e_{k-2} g_{k-j}=f_{k-1} s g_{1} .
$$

Therefore $g_{1} \in r \operatorname{Ann}_{R}\left(f_{k-1} R\right)=e_{k-1} R$ or $e_{k-1} g_{1}=g_{1}$. Continue this process, we get $e_{i} g_{j}=g_{j}$ when $i+j=k$. Thus $e_{i} g_{j}=g_{j}$ for $i+j \in \mathbb{N}$ by induction.

Consequently, $\left(1-e_{i}\right) g_{j}=0$ or $\left(1-e_{i}\right)\left(1-g_{j}\right)=1-e_{i}$ for all $i, j \in \mathbb{N}$. Thus $e\left(1-g_{j}\right)=e$ or $(1-e) g_{j}=g_{j}$, for all $j \in \mathbb{N}$ by hypothesis. It follows that $g(x)=\sum_{j=0}^{\infty} g_{j} x^{j}=\sum_{j=0}^{\infty}(1-e) g_{j} x^{j}=(1-e) g(x) \in(1-e) R[[x]]$. Thus $r \operatorname{Ann}(f(x) R[[x]]) \subseteq(1-e) R[[x]]$, and $R[[x]]$ is right p.q.-Baer.

Since Liu's generalized join is equivalent to generalized countable join in the set of right semicentral idempotents $\mathcal{S}_{r}(R)$. The following result is immediated from Theorem 5.

Corollary 6. [20, Theorem 3]. Let $R$ be a ring such that $\mathcal{S}_{\ell}(R) \subseteq B(R)$. Then $R[[x]]$ is right p.q.-Baer if and only if $R$ is right p.q.-Baer and any countable family of idempotents in $R$ has a generalized join.

Corollary 7. [12, Theorem 3]. If $R$ is a ring then $R[[x]]$ is a reduced $P P$ ring if and only if $R$ is a reduced PP ring and any countable family of idempotents in $R$ has a join in $B(R)$.

Proof. Since $R$ is a reduced PP ring if and only if $R$ is a reduced p.q.-Baer ring [9, Proposition 1.14(iii)] and a join in $B(R)$ is equivalent to a generalized countable join in $B(R)$ when $R$ is a reduced PP ring, the assertion follows immediately from Theorem 5.

## References

1. E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc., 18 (1974), 470-473.
2. S. K. Berberian, Baer *-rings, Springer Verlag, Berlin, 1972.
3. G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra, 11 (1983), 567-580.
4. G. F. Birkenmeier and F.-K. Huang, Annihilator conditions on polynomials, Comm. Algebra, 29 (2001), 2097-2112.
5. G. F. Birkenmeier and F.-K. Huang, Annihilator conditions on formal power series, Algebra Colloq., 9 (2002), 29-37.
6. G. F. Birkenmeier and F.-K. Huang, Annihilator conditions on polynomials II, Monatsh. Math. 141 (2004), 265-276.
7. G. F. Birkenmeier, J. Y. Kim and J. K. Park, On polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J. 40 (2000), 247-253.
8. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra, 159 (2001), 25-42.
9. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra, 29 (2001), 639-660.
10. G. F. Birkenmeier and J. K. Park, Triangular matrix representations of ring extensions, J. Algebra, 265 (2003), 457-477.
11. W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., 34 (1967), 417-424.
12. J. A. Fraser and W. K. Nicholson, Reduced PP-rings, Math. Japonica, 34 (1989), 715-725.
13. K. R. Goodearl, Von Neumann Regular Rings, Krieger, Malabar, 1991.
14. Y. Hirano, On annihilator ideals of a polynomial ring over a commutative ring, $J$. Pure Appl. Algebra, 168 (2002), 45-52.
15. C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151 (2000), 215-226.
16. F.-K. Huang, On polynomials over Rickart rings and their generalizations I, Monatsh. Math., accepted.
17. C. Huh, H. K. Kim and Y. Lee, p.p.-rings and generalized p.p. rings, J. Pure Appl. Algebra, 167 (2002), 37-52.
18. I. Kaplansky, Rings of Operators, W. A. Benjamin, New York, 1968.
19. Y. Lee and C. Huh, Counterexamples on p.p.-rings, Kyungpook math. J., 38 (1998), 421-427.
20. Z. Liu, A note on principally quasi-Baer rings, Comm. Algebra, 30 (2002), 38853990.
21. A. C. Mewborn, Regular rings and Baer rings, Math. Z., 121 (1971), 211-219.
22. A. Moussavi, H. Haj Seyyed Javadi and E. Hashemi, Generalized quasi-Baer ring, Comm. Algebra, 33 (2005), 2115-2129.
23. C. E. Rickart, Banach algebras with an adjoint operations, Ann. of Math., 47 (1946), 528-550.
24. L. W. Small, Semihereditary rings, Bull. Amer. Math. Soc., 73 (1967), 656-658.

Yuwen Cheng and Feng-Kuo Huang<br>Department of Mathematics,<br>National Taitung University,<br>Taitung 95002, Taiwan<br>E-mail: yucheng@nttu.edu.tw<br>fkhuang@nttu.edu.tw


[^0]:    Received July 23, 2006, accepted May 5, 2007.
    Communicated by Wen-Fong Ke.
    2000 Mathematics Subject Classification: Primary 16S36, 16W60.
    Key words and phrases: Annihilator ideal, Semicentral idempotent, Formal power series, Principally quasi-Baer ring.
    The corresponding author was partially supported by the National Science Council, Taiwan under the grant number NSC 94-2115-M-143-001.

