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ITERATIVE SOLUTIONS FOR SOME FOURTH-ORDER
PERIODIC BOUNDARY VALUE PROBLEMS

Zhanbing Bai

Abstract. In this paper, by using a new maximum principle and the Fredholm
alternative, the monotone method in the presence of lower and upper solutions
for the periodic problem

u(iv)(x) = f(x, u(x), u′′(x)), 0 < x < 2π,

u(i)(0) = u(i)(2π), i = 0, 1, 2, 3

is developed, where f : [0, 2π]× R2 −→ R is a Caratheodory function.

1. INTRODUCTION

In this paper, we shall employ the method of upper and lower solutions to study
the existence of solutions of the fourth-order boundary value problem with periodic
boundary condition

(1.1) u(iv)(x) = f(x, u(x), u′′(x)), 0 < x < 2π,

(1.2) u(i)(0) = u(i)(2π), i = 0, 1, 2, 3,

where f : [0, 1]× R2 −→ R is a Caratheodory function.
The method of upper and lower solutions is extensively developed for lower-

order equations with various kinds of boundary conditions. In general, there are two
fundamental ways in the application. One is coupled with some growth restrictions
on the nonlinearity such as Nagumo condition, see [5, 11]; the other is coupled with
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the monotone method, see [14, 6, 10, 12, 13]. While the former just can give the
range of solutions, the later could get iterative sequences which converge uniformly
to the extremal solutions of the problem considered. The later method has been
very useful in the study of BVPs for higher-order functional equations. The reader
can refer to [7] for an elegant exposition of the method. Recently, Bai[2], Ehme
et al. [5], Ma et al. [10], and Pao [12] applied the monotone method to some
fourth-order problems with non-periodic boundary conditions, and some excellent
existence results were obtained.

However, to my best knowledge, only a few authors have studied fourth-order
periodic boundary value problems (see [3, 6, 8, 9]). When f = f(t, u), Cabada
[3] has studied the problem by the method of upper and lower solutions and the
monotone iterative technique. The method used in [8, 9] is a fixed-point theorem in
a cone. In [6], Jiang et al. have studied Problem (1.1), (1.2) by transforming the
fourth-order problem into the equivalent second-order problem and using Banach
constriction principle. In this paper, we directly deal with the fourth-order prob-
lem by the use of a new maximum principle of the fourth-order equation and the
Fredholm alternative. The method used here is different from [3, 6, 8, 9].

2. DEFINITIONS AND MAXIMUM PRINCIPLE

Definition 1.1. A function f : [0, 2π]× R2 → R is said to be a Caratheodory
function if it possesses the following properties:

(1) For all (u, v) ∈ R2, the function x → f(x, u, v) is measurable on [0, 2π].

(2) For almost all x ∈ [0, 2π], the function (u, v) → f(x, u, v) is continuous on
R2.

(3) For any given N > 0, there exists gN(x), a Lebesgue integrable function
defined on [0, 2π] such that

|f(x, u, v)| ≤ gN (x) for a.e. x ∈ [0, 2π],

whenever |u|, |v| ≤ N.

Definition 1.2. Letting α ∈ W 4,1[0, 2π], we say α is an upper solution for the
problem (1.1), (1.2) if α satisfies

(2.1)




α(iv)(x) ≥ f(x, α(x), α′′(x)), for x ∈ (0, 2π),

α(0) = α(2π), α′(0) ≤ α′(2π),

α′′(0) = α′′(2π), α′′′(0) ≥ α′′′(2π).
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Definition 1.3. Letting β ∈ W 4,1[0, 2π], we say β is a lower solution for the
problem (1.1), (1.2) if β satisfies

(2.2)




β(iv)(x) ≤ f(x, β(x), β′′(x)), for x ∈ (0, 2π),

β(0) = β(2π), β′(0) ≥ β′(2π),

β′′(0) = β′′(2π), β′′′(0) ≤ β′′′(2π).

We call a function u ∈ W 4,1[0, 2π] a solution to Problem (1.1), (1.2), if it is
an upper and a lower solution.

In the following, we prove a new maximum principle for the operator

L : F −→ W 4,1[0, 2π]

defined by Lu = u(iv) − (a + b)u′′ + abu. Here a, b ∈ R, a, b > 0 , u ∈ F and

F = {u ∈ W 4,1[0, 2π] | u(0) = u(2π), u′(0) ≤ u′(2π), u′′(0) = u′′(2π),

u′′′(0) ≥ u′′′(2π)}.

Lemma 2.1. [6]. If u ∈ W 2,1[0, 2π] satisfies

u′′(x)− Mu(x) ≥ 0, for a.e. x ∈ [0, 2π],

u(0) = u(2π), u′(0) ≥ u′(2π),

where M > 0, then u(x) ≤ 0 on [0, 2π].

The following maximum principle is fundamental to our main result.

Lemma 2.2. If u ∈ F satisfies Lu ≥ 0, for a.e. x ∈ [0, 2π], then u ≥ 0 in
[0, 2π].

Proof. Set Au = u′′. Because a, b > 0 , we have that

Lu = u(iv) − (a + b)u′′ + abu = (A− b)(A− a)u ≥ 0.

Let y = (A − a)u = u′′ − au, then

(A − b)y ≥ 0,

i.e.,
y′′(x) − by(x) ≥ 0, for a.e. x ∈ [0, 2π].

On the other hand, a, b > 0 and u ∈ F yield that

y(0) = u′′(0)− au(0) = u′′(2π)− au(2π) = y(2π),

y′(0) = u′′′(0) − au′(0) ≥ u′′′(2π)− au′(2π) = y′(2π).
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Therefore, with the use of Lemma 2.1, we have that

y(x) ≤ 0, x ∈ [0, 2π],

i.e.,
u′′(x) − au(x) ≤ 0, x ∈ [0, 2π].

Then, by the use of Lemma 2.1 again and the fact that u(0) = u(2π), u′(0) ≤
u′(2π), one has u(x) ≥ 0 in [0, 2π]. The proof is complete.

The following conclusion about homogeneous two-parameter linear fourth-order
periodic problem follows from Lemma 2.2 immediately.

Lemma 2.3. Given a, b > 0, the problem

(2.3) u(iv)(x) − (a + b)u′′(x) + abu(x) = 0, 0 < x < 2π,

(2.4) u(i)(0) = u(i)(2π), i = 0, 1, 2, 3

has only a trivial solution.

Proof. It is clear that Problem (2.3), (2.4) has a trivial solution. On the other
hand, suppose there are two solutions v1 and v2, then

L(v1 − v2) = 0,

(v1 − v2)(i)(0) = (v1 − v2)(i)(2π), i = 0, 1, 2, 3.

Therefore, with the use of Lemma 2.2, there is

v1(x) ≡ v2(x), for x ∈ [0, 2π].

The proof is complete.

3. THE MONOTONE METHOD

In this section, we develop the monotone method for the fourth-order periodic
boundary value problem (1.1), (1.2).

For given a, b > 0 and f : [0, 2π]× R2 −→ R, let

(3.1) f1(x, u, v) = f(x, u, v)− (a + b)u + abv.

Then (1.1) equal to

(3.2) Lu = f1(x, u, u′′).
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It is clear that if α, β are upper and lower solutions of the problem (1.1), (1.2)
respectively, then α, β are upper and lower solutions of the problem (3.2), (1.2)
respectively, too.

For β ≤ α, β′′ + b(α− β) ≥ α′′, denote

Dβ
α =

{
(u, v) | β ≤ u ≤ α, α′′ − b(α− β) ≤ v ≤ β′′ + b(α − β)

}
.

Theorem 3.1. If there exist α and β, upper and lower solutions, respectively,
for the problem (1.1), (1.2) which satisfy

(3.3) β ≤ α and β ′′ + b(α − β) ≥ α′′.

If f : [0, 2π]× R2 −→ R is a Caratheodory function and satisfies

(3.4) f(x, u2, v)− f(x, u1, v) ≥ −(a + b)(u2 − u1)

on Dβ
α, for a.e. x ∈ [0, 2π], u1 ≤ u2;

(3.5) f(x, u, v2) − f(x, u, v1) ≤ ab(v2 − v1)

on D
β
α, for a.e. x ∈ [0, 2π], v2 + b(α − β) ≥ v1, where a ≥ b > 0, then there

exist two monotone sequences {αn} and {βn}, non-increasing and non-decreasing
respectively, with α0 = α and β0 = β, which converge uniformly to the extremal
solutions in [β, α] of the problem (1.1), (1.2).

Proof. Consider the problem

(3.6) u(iv)(x)−(a+b)u′′(x)+abu(x)=f1(x, η(x), η′′(x)), for x∈(0, 2π),

(3.7) u(i)(0) = u(i)(2π), i = 0, 1, 2, 3

with η ∈ W 2,1[0, 2π].
Since a ≥ b > 0, with Lemma 2.3 Problem (2.3), (2.4) has only a trivial solu-

tion. By Fredholm alternative, L : F → L1[0, 2π] is invertible, namely the problem
(3.6), (3.7) has a unique solution u. Define T : W 2,1[0, 2π] −→ W 4,1[0, 2π] by

(3.8) Tη = u.

Now, we divide the proof into three steps.

Step 1. We show

(3.9) TC ⊆ C.
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Here, C = {η ∈ W 2,1[0, 2π] | β ≤ η ≤ α, α′′ − b(α− β) ≤ η′′ ≤ β′′ + b(α− β)}
is a nonempty bounded closed subset in W 2,1[0, 2π].

In fact, for ζ ∈ C, set ω = Tζ. By the definition of α, β and C, combining
(3.1), (3.4),and (3.5), we have that for a.e. x ∈ [0, 2π]

(3.10)

(α − ω)(iv)(x)−(a + b)(α−ω)′′(x)+ab(α−ω)(x)

≥ f1(x, α(x), α′′(x))−f1(x, ζ(x), ζ ′′(x))

= f(x, α(x), α′′(x))−f(x, ζ(x), ζ ′′(x))

−(a+b)(α−ζ)′′(x)+ab(α−ζ)(x)

≥ 0,

(3.11) (α − ω)(0) = (α − ω)(2π), (α − ω)′(0) ≤ (α − ω)′(2π),

(3.12) (α − ω)′′(0) = (α − ω)′′(2π), (α− ω)′′′(0) ≥ (α − ω)′′′(2π).

With the use of Lemma 2.2, we obtain that α ≥ ω. Analogously, there holds ω ≥ β.
By the proof of Lemma 2.2, combining (3.10) and (3.12), we have that

(α − ω)′′(x) − b(α − ω)(x) ≤ 0, x ∈ [0, 2π],

hence, for x ∈ [0, 2π],

ω′′(x) + b(α − β)(x) ≥ ω′′(x) + b(α− ω)(x) ≥ α′′(x),

i.e.,
ω′′(x) ≥ α′′(x) − b(α − β)(x), for x ∈ [0, 2π].

Analogously,

ω′′(x) ≤ β′′(x) + b(α− β)(x), for x ∈ [0, 2π].

Thus, (3.9) holds.

Step 2. Let u1 = Tη1, u2 = Tη2, where η1, η2 ∈ C satisfy η1 ≤ η2 and
η′′
1 + b(α − β) ≥ η′′

2 . We show

(3.13) u1 ≤ u2, u′′
1 + b(α − β) ≥ u′′

2.

In fact, by (3.4), (3.5), and the definition of u1, u2,

L(u2 − u1)(x) = f1(x, η2(x), η′′
2(x))− f1(x, η1(x), η′′

1(x)) ≥ 0,

(u2 − u1)(0) = (u2 − u1)(2π) = 0,

(u2 − u1)′′(0) = (u2 − u1)′′(2π) = 0.
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With the use of Lemma 2.2, we get that u1 ≤ u2. Similar to Step 1, we can easily
prove u′′1 + b(α− β) ≥ u′′

2 . Thus, (3.13) holds.

Step 3. The sequences {αn} and {βn} are obtained by recurrence:
α0 = α, β0 = β, αn = Tαn−1, βn = Tβn−1, n = 1, 2, . . . .

From the results of Step 1 and Step 2, we have that

(3.14) β = β0 ≤ β1 ≤ · · · ≤ βn ≤ · · · ≤ αn ≤ · · · ≤ α1 ≤ α0 = α,

(3.15) β′′ = β′′
0 , α′′ = α′′

0, α
′′ − b(α− β) ≤ α′′

n, β′′
n ≤ β′′ + b(α− β).

Moreover, from the definition of T (see (3.8)), we get

α(iv)
n (x) − (a + b)α′′

n(x) + abαn(x) = f1(x, αn−1(x), α′′
n−1(x)).

i.e.,

(3.16)

α
(iv)
n (x) = f1(x, αn−1(x), α′′

n−1(x)) + (a + b)α′′
n(x) − abαn(x)

≤ f1(x, αn−1(x), α′′
n−1(x))

+(a + b)
[
β′′(x) + b(α(x)− β(x))

]− abβ(x),

(3.17) α(i)
n (0) = α(i)

n (2π), i = 0, 1, 2, 3.

Analogously,

(3.18)

β
(iv)
n (x) = f1(x, βn−1(x), β′′

n−1(x)) + (a + b)β′′
n(x) − abβn(x)

≤ f1(x, βn−1(x), β′′
n−1(x))

+(a + b)
[
β′′(x) + b(α(x)− β(x))

]− abβ(x),

(3.19) β(i)
n (0) = β(i)

n (2π) i = 0, 1, 2, 3.

From (3.14), (3.15), we have that there exists C1 > 0 depending only on α and β

(but not on n or x) such that

|αn(x)| ≤ C1, |α′′
n(x)| ≤ C1.

Which together with (3.16) and the fact that f(t, u, v) is a Caratheodory function
yields there exists a Lebesgue integrable function gC1(x) defined on [0, 2π] such
that

(3.20) |α(iv)
n (x)| ≤ gC1(x), for a.e. x ∈ [0, 2π].
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On the other hand, α′′
n(0) = α′′

n(1) yields there are xn ∈ (0, 2π) such that α′′′
n (xn) =

0, thus there exists C2 > 0 such that

|α′′′
n (x)| ≤ C2.

Therefore, {αn(x)} is bounded in C. Similarly, {βn(x)} is bounded in C, too.
It then follows by a standard argument (see e.g. [7]) that

lim
n→∞βn(t) := β∗(t) and lim

n→∞αn(t) := α∗(t)

uniformly and monotonically on [0, 2π]. And α∗(t), β∗(t) are maximal and minimal
fixed points in the segment [β, α] to T , then, α∗(t), β∗(t) are both solutions to
Problem (1.1), (1.2).

An Example. As an application of the main result, we study the existence of
periodic solutions of the fourth-order equations

(3.21) u(iv) − pu′′ − a(x)u + b(x)u3 = 0, x ∈ R

and

(3.22) u(iv) − pu′′ + a(x)u− b(x)u3 = 0, x ∈ R

where p is a positive constant, and a(x) and b(x) are continuous positive 2π-periodic
functions on R. Equations of this type are known as extended Fisher-Kolmogorov
equations which have been proposed as a model for phase transitions and other
bistable phenomena [14]. We assume that there are positive constants a1, a2, b1 and
b2 such that

0 < a1 ≤ a(x) ≤ a2, 0 < b1 ≤ b(x) ≤ b2.

Consider the following boundary value problem

(3.23) u(iv) − pu′′ − a(x)u + b(x)u3 = 0, x ∈ [0, 2π]

(3.24) u(i)(0) = u(i)(2π), i = 0, 1, 2, 3.

Given positive constants C1, C2, it is easy to check that α = C1, β = C2 sin x
2 are

upper and lower solutions of (3.23), (3.24), respectively, as well as

(3.25) C2
1 b1 − a2 ≥ 0

and

(3.26) C2
2 b2 − a1 +

1
16

+
p

4
≤ 0.
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And to guarantee the assumption (3.3) of Theorem 3.1 holds, we assume that

(3.27) C2 ≤ C1, bC1 − C2(
1
4

+ b) ≥ 0;

to guarantee the assumption (3.4) of Theorem 3.1 holds, we assume that

(3.28) a1 − 3b2C
2
1 ≥ −(a + b).

Because f(x, u, v) = pv + a(x)u − b(x)u3, let p = ab, one has assumption (3.5)
of Theorem 3.1 holds. To sum up, as well as a1 − 1

16 − p
4 > 0, we can always

choose b > 0 sufficiently small such that there are sufficiently large C1 > 0 and
sufficiently small C2 > 0 such that all assumptions of Theorem 3.1 are fulfilled.
Hence the problem (3.23), (3.24) has two solutions u1, u2, which satisfies

C2 sin
x

2
≤ u1 ≤ u2 ≤ C1.

On the other hand, the previous conclusion, for example, see [3, 6, 8, 9, 14], can’t
be used to the example.

REFERENCES

1. R. P. Agarwal, On fourth-order boundary value problems arising in beam analysis,
Diff. Inte. Eqns., 2 (1989), 91-110.

2. Z. Bai, The method of lower and upper solutions for a bending of an elastic beam
equation, J. Math. Anal. Appl., 248 (2000), 195-202.

3. A. Cabada, The method of lower and upper solutions for second, third, fourth and
higher order boundary value problems, J. Math. Anal. Appl., 185 (1994), 302-320.

4. C. De Coster and L. Sanchez, Upper and lower solutions, Ambrosetti-Prodi problem
and positive solutions for fourth-order O. D. E., Riv. Math. Pura. Appl., 14 (1994),
1129-1138.

5. J. Ehme, P. W. Eloe and J. Henderson, Upper and lower solution methods for fully
nonlinear boundary value problems, J. Differential Equations, 180 (2002), 51-64.

6. D. Jiang, W. Gao and A. Wan, A monotone method for constructing extremal solutions
to fourth-order periodic boundary value problems, Appl. Math. Comp., 132 (2002),
411-421.

7. G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone iterative techniques
for nonlinear differential equations, Pitman, Boston, MA, 1985.

8. Y. Li, Positive solutions of higher order periodic boundary value problems. Comput.
Math. Appl., 48 (2004), 153-161.

9. Y. Li, Positive solutions of fourth-order periodic boundary value problems, Nonl.
Anal. 54 (2003), 1069-1078.



1690 Zhanbing Bai

10. R. Y. Ma, J. H. Zhang and S. M. Fu, The Method of lower and upper solutions for
fourth-order two-point boundary value problems, J. Math. Anal. Appl., 215 (1997),
415-422.

11. M. Nagumo, Uber die differential gleichungen y′′ = f(x, y, y′), Proc. Phys. Math.
Soc. Japan, 19 (1937), 861-866.

12. C. V. Pao, On fourth-order elliptic boundary value problems, Proc. Amer. Math.
Soc., 128 (2000), 1023-1030.

13. J. Schorder, Fourth-order two-point boundary value problems; estimates by two side
bounds, Nonl. Anal., 8 (1984), 107-114.

14. S. Tersian and J. Chaparova, Periodic and homoclinic solutions of extended Fisher-
Kolmogorov equations, J. Math. Anal. Appl., 260 (2001), 490-506.

Zhanbing Bai
Institute of Mathematics,
Shandong University of Science and Technology,
Qingdao 266510,
People’s Republic of China
E-mail: zhanbingbai@163.com


