TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 6, pp. 1591-1595, September 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

CONTINUITY OF DISTANCE RELATED TO INCOME COMPARISONS

Hidetoshi Komiya

Dedicated to Professor Wataru Takahashi on the occasion of his 65th birthday

Abstract. The author proposed a distance on \mathbb{R}^n in [1] which measures improvement of social welfare. Continuity of the distance with respect to the Euclidean metric of \mathbb{R}^n is proved in this note, and conversely, the Euclidean metric is continuous with respect to our distance on some subset of \mathbb{R}^n .

1. INTRODUCTION

The author defined in [1] a distance on \mathbb{R}^n related to Lorenz dominance which is one of the important concepts of inequality of income distributions in the research of social welfare theory in economics (see, for example, [3]). The distance is defined as follows: for any two elements x and y of \mathbb{R}^n , we define a kind of zero-sum two-person games and we assign the value $\delta(x, y)$ of the game to the two elements x and y. The associated minimax equation of the game is

$$\delta(x,y) = \max_{\lambda \in \Delta_N} \min_{\pi \in \Pi} \langle \lambda, \pi x - y \rangle = \min_{D \in \Delta_\Pi} \max_{i \in N} (xD - y)_i.$$

The meaning of the notations in the minimax equation are as follows: We denote by $\langle \cdot, \cdot \rangle$ the standard Euclidean inner product of \mathbb{R}^n , that is, $\langle \lambda, x \rangle = \sum_{i=1}^n \lambda_i x_i$ for any elements λ and x of \mathbb{R}^n . The set N is all coordinates of elements of \mathbb{R}^n , that is, $N = \{1, 2, ..., n\}$ and Δ_N denotes the standard simplex of \mathbb{R}^n , that is, $\Delta_N = \{\lambda \in \mathbb{R}^n : \lambda_i \ge 0, \sum_{i=1}^n \lambda_i = 1\}$. The set Π denotes all permutations of N. For any permutation $\pi \in \Pi$ and any $x \in \mathbb{R}^n$, define $\pi x = (x_{\pi(1)}, ..., x_{\pi(n)})$. Thus, if P is a permutation matrix corresponding to π , we have $\pi x = xP$. The set Δ_{Π} denotes the convex hull of the permutations and we can identify Δ_{Π} as the set of all doubly stochastic matrices by virtue of Birkohff's theorem([2, p. 19]). Thus we obtain a real-valued function δ on $\mathbb{R}^n \times \mathbb{R}^n$ where $\delta(x, y)$ is the value of the

Received April 28, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 15A51, 60E15, 91A05, 91C99.

Key words and phrases: Distance, Continuity, Lorenz dominance.

game. We have shown in [1] that δ satisfies the triangle inequality, and finally we define our distance d(x, y) between x and y as

$$d(x, y) = \delta(x, y) \lor \delta(y, x).$$

The function d is actually almost a distance on \mathbb{R}^n . The word "almost" means d satisfies all the axioms of distances except the axiom that d(x, y) = 0 implies x = y. Our function d satisfies only the property that d(x, y) = 0 implies $x = \pi y$ for some permutation $\pi \in \Pi$.

Our purpose of this note is making clear topological relationship between our distance d and the familiar Euclidean distance $d_E(x, y) = \sqrt{\langle x - y, x - y \rangle} = ||x - y||$.

The topology induced by our distance d on \mathbb{R}^n is not Hausdorff because of the lack of the axiom that d(x, y) = 0 implies x = y. We denote by τ the topology induced by our distance d, and by τ_E the topology induced by the Euclidean distance d_E .

2. Results

The following lemma is proved in [1], but it is a key lemma in this note and we show the proof here again. Let $M = \{\lambda \in \mathbb{R}^n : \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0\}$.

Lemma 1. For any two elements x and y of \mathbb{R}^n , we have

$$\delta(x, y) = \max_{\lambda \in M \cap \Delta_N} \langle \lambda, x^* - y^* \rangle,$$

where x^* denotes the increasing rearrangement of x, that is, $x^* = \pi x$ for some $\pi \in \Pi$ and the inequalities

$$x_{\pi(1)} \le x_{\pi(2)} \le \dots \le x_{\pi(n)}$$

hold.

Proof. Put $\beta = \max_{\lambda \in M \cap \Delta_N} \langle \lambda, x^* - y^* \rangle$. Firstly we show $\beta \leq \delta(x, y)$. Take $\lambda' \in M \cap \Delta_N$ such that $\beta = \langle \lambda', x^* - y^* \rangle = \langle \lambda', x^* \rangle - \langle \lambda', y^* \rangle$. Take $\pi' \in \Pi$ such that $\pi'y^* = y$, then we have $\beta = \langle \lambda', x^* \rangle - \langle \pi'\lambda', y \rangle$. Since $\langle \lambda', \pi x \rangle \geq \langle \lambda', x^* \rangle$ for all $\pi \in \Pi$ ([2, p. 141]), we have

$$\begin{split} \beta &\leq \langle \lambda', \pi x \rangle - \langle \pi' \lambda', y \rangle \\ &= \langle \pi' \lambda', (\pi' \circ \pi) x \rangle - \langle \pi' \lambda', y \rangle \\ &= \langle \pi' \lambda', (\pi' \circ \pi) x - y \rangle. \end{split}$$

Thus we have $\beta \leq \min_{\pi \in \Pi} \langle \pi' \lambda', (\pi' \circ \pi) x - y \rangle$ because π is arbitrary, and hence $\beta \leq \min_{\pi \in \Pi} \langle \pi' \lambda', \pi x - y \rangle$. Since $\pi' \lambda' \in \Delta_N$, we have

$$\beta \leq \max_{\lambda \in \Delta_N} \min_{\pi \in \Pi} \langle \lambda, \pi x - y \rangle = \delta(x, y)$$

Next we show the reverse inequality $\delta(x, y) \leq \beta$. Take $\lambda' \in \Delta_N$ such that $\delta(x, y) = \min_{\pi \in \Pi} \langle \lambda', \pi x - y \rangle = \min_{\pi \in \Pi} \langle \lambda', \pi x \rangle - \langle \lambda', y \rangle$. Take $\pi' \in \Pi$ such that $\pi'\lambda'$ belongs to M, then $\langle \pi'\lambda', y^* \rangle \leq \langle \lambda', y \rangle$, and hence we have $\delta(x, y) \leq \min_{\pi \in \Pi} \langle \lambda', \pi x \rangle - \langle \pi'\lambda', y^* \rangle$. Let $\pi'' \in \Pi$ be the permutation such that $\pi''x^* = x$. Then we have the following series of inequalities:

$$\begin{split} \delta(x,y) &\leq \min_{\pi \in \Pi} \langle \lambda', (\pi \circ \pi'') x^* \rangle - \langle \pi' \lambda', y^* \rangle \\ &= \min_{\pi \in \Pi} \langle (\pi \circ \pi'')^{-1} \lambda', x^* \rangle - \langle \pi' \lambda', y^* \rangle \\ &\leq \langle \pi' \lambda', x^* \rangle - \langle \pi' \lambda', y^* \rangle \\ &= \langle \pi' \lambda', x^* - y^* \rangle \\ &\leq \max_{\lambda \in M \cap \Delta_N} \langle \lambda, x^* - y^* \rangle \\ &= \beta. \end{split}$$

Firstly, we show the continuity of our distance d with respect to τ_E .

Proposition 1. The distance $d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is continuous when \mathbb{R}^n is equipped with τ_E .

Proof. At first, we show the continuity of the mapping $x \mapsto x^*$ with respect to τ_E . Take a sequence $\{x_m\}$ and an element x such that $d_E(x_m, x)$ converges to 0. Take a permutation matrix P with $x^* = xP$. If x^* has components with the same value, then they appear contiguously and let the sets of the contiguous indices be E_1, \ldots, E_p and the sets be ordered such that if $i \in E_k$, $j \in E_l$ and k < l, then $x_i^* < x_j^*$. Put $x'_m = x_m P$. Then x'_m converges to x^* . On the other hand, fix an arbitrary $\varepsilon > 0$. For sufficiently large m, for all $i \notin \bigcup_{k=1}^p E_k$, we have $x'_{mi} = x_{mi}^*$. Thus we have $|x_{mi}^* - x_i^*| = |x'_{mi} - x_i^*| < \varepsilon$. Next, fix a k and consider the set E_k . For any $i \in E_k$, there is $j \in E_k$ such that $|x_i^* - x_{mi}^*| = |x_j^* - x'_{mj}| < \varepsilon$ for sufficiently large m. Thus, it follows that $d_E(x_m^*, x^*)$ converges to 0.

It is sufficient to show the continuity of δ with respect to τ_E . By Lemma 1, we have $\delta(x, y) = \max_{\lambda \in M \cap \Delta_N} \langle \lambda, x^* - y^* \rangle$. Since we have shown the continuity of the map $x \mapsto x^*$, it is sufficient to prove the function defined by $f(x) = \max_{\lambda \in M \cap \Delta_N} \langle \lambda, x \rangle$ is continuous with respect to τ_E . By the definition of f, it is lower semicontinuous, and hence we need to show it is upper semicontinuous. Suppose a sequence $\{x_m\}$ converges to an element x in τ_E , and fix $\varepsilon > 0$ arbitrarily. Hidetoshi Komiya

Take $\lambda_m \in M \cap \Delta_N$ with $f(x_m) = \langle \lambda_m, x_m \rangle$. Since $\lambda_m \in M \cap \Delta_N$, we have $\|\lambda_m\| \leq 1$. Thus we have $\langle \lambda_m, x_m \rangle - \langle \lambda_m, x \rangle \leq \|\lambda_m\| \|x_m - x\| \leq \|x_m - x\|$. Therefore, for sufficiently large m, we have

$$f(x_m) = \langle \lambda_m, x_m \rangle < \langle \lambda_m, x \rangle + \varepsilon \le f(x) + \varepsilon,$$

which means f is upper semicontinuous at x with respect to τ_E .

Next we investigate the continuity of d_E with respect to τ . For almost all $x \in \mathbb{R}^n$, $d_E(x, \pi x) > 0$ holds if π is not the identity mapping, but we have $d(x, \pi x) = 0$ for all permutations π . Thus d_E is not continuous with respect to τ on \mathbb{R}^n . However, if we restrict the space \mathbb{R}^n to the subspace

 $M = \{ x \in \mathbb{R}^n : x_1 \ge x_2 \ge \dots \ge x_n \ge 0 \},\$

then the situation changes. Note that d becomes accurately a distance on the set M.

Proposition 2. The distance $d_E : M \times M \to R$ is continuous when the set M is equipped with τ .

Proof. Suppose a sequence $\{x_m\}$ in M converges to an element x in M with respect to τ . Since $d(x, y) = \delta(x, y) \lor \delta(y, x)$, for any $\lambda \in M \cap \Delta_N$, $\langle \lambda, x_m^* \rangle$ converges to $\langle \lambda, x^* \rangle$. For each $i = 1, \ldots, n$, let e_i be the element of R^n whose components are all 0 except for the *i*th component whose value is 1. If we take $\lambda = e_1$, then we have x_{m1}^* converges to x_1^* . If we take $\lambda = (e_1 + e_2)/2$, then we have $(x_{m1}^* + x_{m2}^*)/2$ converges to $(x_1^* + x_2^*)/2$. Since x_{m1}^* converges to x_1^* , it is easily seen x_{m2}^* converges to x_2^* . Similarly we have x_{mi}^* converges to x_i^* for all $i = 1, \ldots, n$. This means $d_E(x_m, x)$ converges to 0. Since any distance is continuous with respect to the topology induced by the distance, it follows that d_E is continuous with respect to τ on M.

Combining Proposition 1 and Proposition 2, we have the following corollary.

Corollary 1. The distances d and d_E are topologically equivalent on the set M.

REFERENCES

- 1. H. Komiya, A distance and a binary relation related to income comparisons, *Adv. Math. Econ.* **11** (2008), 77-93.
- 2. A. W. Marshall, I. Olkin, *Inequalities: Theory of Majorization and Its Applications*, Academic Press, New York, 1979.
- 3. A. F. Shorrocks, Ranking Income Distributions, Economica 50 (1983), 3-17.

Hidetoshi Komiya Faculty of Business and Commerce, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan E-mail: hkomiya@fbc.keio.ac.jp