CONTINUITY OF DISTANCE RELATED TO INCOME COMPARISONS

Hidetoshi Komiya
Dedicated to Professor Wataru Takahashi on the occasion of his 65th birthday

Abstract

The author proposed a distance on R^{n} in [1] which measures improvement of social welfare. Continuity of the distance with respect to the Euclidean metric of R^{n} is proved in this note, and conversely, the Euclidean metric is continuous with respect to our distance on some subset of R^{n}.

1. Introduction

The author defined in [1] a distance on R^{n} related to Lorenz dominance which is one of the important concepts of inequality of income distributions in the research of social welfare theory in economics (see, for example, [3]). The distance is defined as follows: for any two elements x and y of R^{n}, we define a kind of zero-sum two-person games and we assign the value $\delta(x, y)$ of the game to the two elements x and y. The associated minimax equation of the game is

$$
\delta(x, y)=\max _{\lambda \in \Delta_{N}} \min _{\pi \in \Pi}\langle\lambda, \pi x-y\rangle=\min _{D \in \Delta_{\Pi}} \max _{i \in N}(x D-y)_{i} .
$$

The meaning of the notations in the minimax equation are as follows: We denote by $\langle\cdot, \cdot\rangle$ the standard Euclidean inner product of R^{n}, that is, $\langle\lambda, x\rangle=\sum_{i=1}^{n} \lambda_{i} x_{i}$ for any elements λ and x of R^{n}. The set N is all coordinates of elements of R^{n}, that is, $N=\{1,2, \ldots, n\}$ and Δ_{N} denotes the standard simplex of R^{n}, that is, $\Delta_{N}=\left\{\lambda \in R^{n}: \lambda_{i} \geq 0, \sum_{i=1}^{n} \lambda_{i}=1\right\}$. The set Π denotes all permutations of N. For any permutation $\pi \in \Pi$ and any $x \in R^{n}$, define $\pi x=\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$. Thus, if P is a permutation matrix corresponding to π, we have $\pi x=x P$. The set Δ_{Π} denotes the convex hull of the permutations and we can identify Δ_{Π} as the set of all doubly stochastic matrices by virtue of Birkohff's theorem([2, p. 19]). Thus we obtain a real-valued function δ on $R^{n} \times R^{n}$ where $\delta(x, y)$ is the value of the

[^0]game. We have shown in [1] that δ satisfies the triangle inequality, and finally we define our distance $d(x, y)$ between x and y as
$$
d(x, y)=\delta(x, y) \vee \delta(y, x) .
$$

The function d is actually almost a distance on R^{n}. The word "almost" means d satisfies all the axioms of distances except the axiom that $d(x, y)=0$ implies $x=y$. Our function d satisfies only the property that $d(x, y)=0$ implies $x=\pi y$ for some permutation $\pi \in \Pi$.

Our purpose of this note is making clear topological relationship between our distance d and the familiar Euclidean distance $d_{E}(x, y)=\sqrt{\langle x-y, x-y\rangle}=$ $\|x-y\|$.

The topology induced by our distance d on R^{n} is not Hausdorff because of the lack of the axiom that $d(x, y)=0$ implies $x=y$. We denote by τ the topology induced by our distance d, and by τ_{E} the topology induced by the Euclidean distance d_{E}.

2. Results

The following lemma is proved in [1], but it is a key lemma in this note and we show the proof here again. Let $M=\left\{\lambda \in R^{n}: \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0\right\}$.

Lemma 1. For any two elements x and y of R^{n}, we have

$$
\delta(x, y)=\max _{\lambda \in M \cap \Delta_{N}}\left\langle\lambda, x^{*}-y^{*}\right\rangle,
$$

where x^{*} denotes the increasing rearrangement of x, that is, $x^{*}=\pi x$ for some $\pi \in \Pi$ and the inequalities

$$
x_{\pi(1)} \leq x_{\pi(2)} \leq \cdots \leq x_{\pi(n)}
$$

hold.
Proof. Put $\beta=\max _{\lambda \in M \cap \Delta_{N}}\left\langle\lambda, x^{*}-y^{*}\right\rangle$. Firstly we show $\beta \leq \delta(x, y)$. Take $\lambda^{\prime} \in M \cap \Delta_{N}$ such that $\beta=\left\langle\lambda^{\prime}, x^{*}-y^{*}\right\rangle=\left\langle\lambda^{\prime}, x^{*}\right\rangle-\left\langle\lambda^{\prime}, y^{*}\right\rangle$. Take $\pi^{\prime} \in \Pi$ such that $\pi^{\prime} y^{*}=y$, then we have $\beta=\left\langle\lambda^{\prime}, x^{*}\right\rangle-\left\langle\pi^{\prime} \lambda^{\prime}, y\right\rangle$. Since $\left\langle\lambda^{\prime}, \pi x\right\rangle \geq\left\langle\lambda^{\prime}, x^{*}\right\rangle$ for all $\pi \in \Pi$ ([2, p. 141]), we have

$$
\begin{aligned}
\beta & \leq\left\langle\lambda^{\prime}, \pi x\right\rangle-\left\langle\pi^{\prime} \lambda^{\prime}, y\right\rangle \\
& =\left\langle\pi^{\prime} \lambda^{\prime},\left(\pi^{\prime} \circ \pi\right) x\right\rangle-\left\langle\pi^{\prime} \lambda^{\prime}, y\right\rangle \\
& =\left\langle\pi^{\prime} \lambda^{\prime},\left(\pi^{\prime} \circ \pi\right) x-y\right\rangle .
\end{aligned}
$$

Thus we have $\beta \leq \min _{\pi \in \Pi}\left\langle\pi^{\prime} \lambda^{\prime},\left(\pi^{\prime} \circ \pi\right) x-y\right\rangle$ because π is arbitrary, and hence $\beta \leq \min _{\pi \in \Pi}\left\langle\pi^{\prime} \lambda^{\prime}, \pi x-y\right\rangle$. Since $\pi^{\prime} \lambda^{\prime} \in \Delta_{N}$, we have

$$
\beta \leq \max _{\lambda \in \Delta_{N}} \min _{\pi \in \Pi}\langle\lambda, \pi x-y\rangle=\delta(x, y)
$$

Next we show the reverse inequality $\delta(x, y) \leq \beta$. Take $\lambda^{\prime} \in \Delta_{N}$ such that $\delta(x, y)=\min _{\pi \in \Pi}\left\langle\lambda^{\prime}, \pi x-y\right\rangle=\min _{\pi \in \Pi}\left\langle\lambda^{\prime}, \pi x\right\rangle-\left\langle\lambda^{\prime}, y\right\rangle$. Take $\pi^{\prime} \in \Pi$ such that $\pi^{\prime} \lambda^{\prime}$ belongs to M, then $\left\langle\pi^{\prime} \lambda^{\prime}, y^{*}\right\rangle \leq\left\langle\lambda^{\prime}, y\right\rangle$, and hence we have $\delta(x, y) \leq$ $\min _{\pi \in \Pi}\left\langle\lambda^{\prime}, \pi x\right\rangle-\left\langle\pi^{\prime} \lambda^{\prime}, y^{*}\right\rangle$. Let $\pi^{\prime \prime} \in \Pi$ be the permutation such that $\pi^{\prime \prime} x^{*}=x$. Then we have the following series of inequalities:

$$
\begin{aligned}
\delta(x, y) & \leq \min _{\pi \in \Pi}\left\langle\lambda^{\prime},\left(\pi \circ \pi^{\prime \prime}\right) x^{*}\right\rangle-\left\langle\pi^{\prime} \lambda^{\prime}, y^{*}\right\rangle \\
& =\min _{\pi \in \Pi}\left\langle\left(\pi \circ \pi^{\prime \prime}\right)^{-1} \lambda^{\prime}, x^{*}\right\rangle-\left\langle\pi^{\prime} \lambda^{\prime}, y^{*}\right\rangle \\
& \leq\left\langle\pi^{\prime} \lambda^{\prime}, x^{*}\right\rangle-\left\langle\pi^{\prime} \lambda^{\prime}, y^{*}\right\rangle \\
& =\left\langle\pi^{\prime} \lambda^{\prime}, x^{*}-y^{*}\right\rangle \\
& \leq \max _{\lambda \in M \cap \Delta_{N}}\left\langle\lambda, x^{*}-y^{*}\right\rangle \\
& =\beta
\end{aligned}
$$

Firstly, we show the continuity of our distance d with respect to τ_{E}.
Proposition 1. The distance $d: R^{n} \times R^{n} \rightarrow R$ is continuous when R^{n} is equipped with τ_{E}.

Proof. At first, we show the continuity of the mapping $x \mapsto x^{*}$ with respect to τ_{E}. Take a sequence $\left\{x_{m}\right\}$ and an element x such that $d_{E}\left(x_{m}, x\right)$ converges to 0 . Take a permutation matrix P with $x^{*}=x P$. If x^{*} has components with the same value, then they appear contiguously and let the sets of the contiguous indices be E_{1}, \ldots, E_{p} and the sets be ordered such that if $i \in E_{k}, j \in E_{l}$ and $k<l$, then $x_{i}^{*}<x_{j}^{*}$. Put $x_{m}^{\prime}=x_{m} P$. Then x_{m}^{\prime} converges to x^{*}. On the other hand, fix an arbitrary $\varepsilon>0$. For sufficiently large m, for all $i \notin \cup_{k=1}^{p} E_{k}$, we have $x_{m i}^{\prime}=x_{m i}^{*}$. Thus we have $\left|x_{m i}^{*}-x_{i}^{*}\right|=\left|x_{m i}^{\prime}-x_{i}^{*}\right|<\varepsilon$. Next, fix a k and consider the set E_{k}. For any $i \in E_{k}$, there is $j \in E_{k}$ such that $\left|x_{i}^{*}-x_{m i}^{*}\right|=\left|x_{j}^{*}-x_{m j}^{\prime}\right|<\varepsilon$ for sufficiently large m. Thus, it follows that $d_{E}\left(x_{m}^{*}, x^{*}\right)$ converges to 0 .

It is sufficient to show the continuity of δ with respect to τ_{E}. By Lemma 1 , we have $\delta(x, y)=\max _{\lambda \in M \cap \Delta_{N}}\left\langle\lambda, x^{*}-y^{*}\right\rangle$. Since we have shown the continuity of the map $x \mapsto x^{*}$, it is sufficient to prove the function defined by $f(x)=$ $\max _{\lambda \in M \cap \Delta_{N}}\langle\lambda, x\rangle$ is continuous with respect to τ_{E}. By the definition of f, it is lower semicontinuous, and hence we need to show it is upper semicontinuous. Suppose a sequence $\left\{x_{m}\right\}$ converges to an element x in τ_{E}, and fix $\varepsilon>0$ arbitrarily.

Take $\lambda_{m} \in M \cap \Delta_{N}$ with $f\left(x_{m}\right)=\left\langle\lambda_{m}, x_{m}\right\rangle$. Since $\lambda_{m} \in M \cap \Delta_{N}$, we have $\left\|\lambda_{m}\right\| \leq 1$. Thus we have $\left\langle\lambda_{m}, x_{m}\right\rangle-\left\langle\lambda_{m}, x\right\rangle \leq\left\|\lambda_{m}\right\|\left\|x_{m}-x\right\| \leq\left\|x_{m}-x\right\|$. Therefore, for sufficiently large m, we have

$$
f\left(x_{m}\right)=\left\langle\lambda_{m}, x_{m}\right\rangle<\left\langle\lambda_{m}, x\right\rangle+\varepsilon \leq f(x)+\varepsilon,
$$

which means f is upper semicontinuous at x with respect to τ_{E}.
Next we investigate the continuity of d_{E} with respect to τ. For almost all $x \in R^{n}, d_{E}(x, \pi x)>0$ holds if π is not the identity mapping, but we have $d(x, \pi x)=0$ for all permutations π. Thus d_{E} is not continuous with respect to τ on R^{n}. However, if we restrict the space R^{n} to the subspace

$$
M=\left\{x \in R^{n}: x_{1} \geq x_{2} \geq \cdots \geq x_{n} \geq 0\right\}
$$

then the situation changes. Note that d becomes accurately a distance on the set M.
Proposition 2. The distance $d_{E}: M \times M \rightarrow R$ is continuous when the set M is equipped with τ.

Proof. Suppose a sequence $\left\{x_{m}\right\}$ in M converges to an element x in M with respect to τ. Since $d(x, y)=\delta(x, y) \vee \delta(y, x)$, for any $\lambda \in M \cap \Delta_{N},\left\langle\lambda, x_{m}^{*}\right\rangle$ converges to $\left\langle\lambda, x^{*}\right\rangle$. For each $i=1, \ldots, n$, let e_{i} be the element of R^{n} whose components are all 0 except for the i th component whose value is 1 . If we take $\lambda=e_{1}$, then we have $x_{m 1}^{*}$ converges to x_{1}^{*}. If we take $\lambda=\left(e_{1}+e_{2}\right) / 2$, then we have $\left(x_{m 1}^{*}+x_{m 2}^{*}\right) / 2$ converges to $\left(x_{1}^{*}+x_{2}^{*}\right) / 2$. Since $x_{m 1}^{*}$ converges to x_{1}^{*}, it is easily seen $x_{m 2}^{*}$ converges to x_{2}^{*}. Similarly we have $x_{m i}^{*}$ converges to x_{i}^{*} for all $i=1, \ldots, n$. This means $d_{E}\left(x_{m}, x\right)$ converges to 0 . Since any distance is continuous with respect to the topology induced by the distance, it follows that d_{E} is continuous with respect to τ on M.

Combining Proposition 1 and Proposition 2, we have the following corollary.
Corollary 1. The distances d and d_{E} are topologically equivalent on the set M.

References

1. H. Komiya, A distance and a binary relation related to income comparisons, $A d v$. Math. Econ. 11 (2008), 77-93.
2. A. W. Marshall, I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979.
3. A. F. Shorrocks, Ranking Income Distributions, Economica 50 (1983), 3-17.

Hidetoshi Komiya

Faculty of Business and Commerce,
Keio University,
Hiyoshi, Kohoku-ku,
Yokohama 223-8521,
Japan
E-mail: hkomiya@fbc.keio.ac.jp

[^0]: Received April 28, 2008.
 2000 Mathematics Subject Classification: 15A51, 60E15, 91A05, 91C99.
 Key words and phrases: Distance, Continuity, Lorenz dominance.

