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RECURRENT DIMENSIONS AND EXTENDED COMMON MULTIPLES
OF QUASI-PERIODIC ORBITS GIVEN BY SOLUTIONS OF SECOND
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Koichiro Naito
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Abstract. In our previous paper we introduced the sequence of Extended
Common Multiples (abr. ECM) and the ECM condition for a pair of rationally
independent irrational numbers to estimate the recurrent dimensions of quasi-
periodic orbits. In this paper first we define the quasi-periodic properties
for the functions, which have recurrent properties related with some ECM
sequences. Next we study a second order nonlinear evolution equation with a
quasi-periodic perturbation term, which gives an ECM sequence, and we show
the existence of solutions, which have the quasi-periodic properties induced
by this ECM sequence. Furthermore, we estimate the recurrent dimensions
of the discrete orbits given by this solution for the case where the irrational
frequencies of the q.p. pertubations satisfy the ECM condition.

1. INTRODUCTION

Recurrent properties of quasi-periodic orbits depend on rationally approximable
properties of their irrational frequencies. In our previous paper [7] we introduced the
sequence of Extended Common Multiples (abr. ECM) and the ECM condition for a
pair of rationally independent irrational numbers to estimate the recurrent dimensions
of quasi-periodic orbits. In this paper we define the quasi-periodic properties for
the functions, which have recurrent properties related with some ECM sequences.
Next we study a second order nonlinear evolution equation with a quasi-periodic
perturbation term, which gives an ECM sequence, and we show the existence of
solutions, which have the quasi-periodic properties induced by this ECM sequence.
Furthermore, we estimate the recurrent dimensions of discrete orbits given by the
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solutions of the second order nonlinear evolution equation with the quasi-periodic
perturbation term, the irrational frequencies of which satisfy the ECM condition.

In this section we introduce the notations and definitions given in [7].
First we introduce the definitions of recurrent dimensions.
Let T be a nonlinear operator on a Banach space X . For an element x ∈ X we

consider a discrete dynamical system given by

xn = T nx, n ∈ N0 := N ∪ {0}

and its orbit is denoted by

Σx = {T nx : n ∈ N0}.

For a small ε > 0, define upper and lower first ε-recurrent times by

M ε = sup
n∈N0

min{m : Tm+nx ∈ Vε(T nx), m ∈ N},

M ε = inf
n∈N0

min{m : Tm+nx ∈ Vε(T nx), m ∈ N},

respectively, where Vε(z) = {y ∈ X : ‖y − z‖ < ε}. Then upper and lower
recurrent dimensions are defined as follows:

Dr(Σx) = lim sup
ε→0

log M ε

− log ε
, dr(Σx) = lim sup

ε→0

logM ε

− log ε
,

dr(Σx) = lim inf
ε→0

logM ε

− log ε
, Dr(Σx) = lim inf

ε→0

log M ε

− log ε
.

Instead of considering the whole orbit we can treat a local point in the orbit, say,
T n0x, n0 ∈ N. Define the first ε-recurrent time by

Mε(n0) = min{m ∈ N : Tm+n0x ∈ Vε(T n0x)}

and the upper and lower recurrent dimensions by

Dr(n0) = lim sup
ε→0

log Mε(n0)
− log ε

,

Dr(n0) = lim inf
ε→0

log Mε(n0)
− log ε

.

It follows from the definitions that we have

Dr(Σx) ≥ Dr(n0) ≥ dr(Σx),

dr(Σx) ≥ Dr(n0) ≥ Dr(Σx).
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Here we treat discrete 2-frequencies quasi-periodic orbits. Let a function g from
[0, +∞) × [0, +∞) to X be 1-periodic with respect to each variable:

g(t, s) = g(t + 1, s) = g(t, s + 1), ∀t, s ∈ [0, +∞)

and consider the following Hölder condition.

(H1) There exist constants σ1, σ
′
1 : 0 < σ1, σ

′
1 ≤ 1 and L1, L

′
1 > 0, which satisfy

‖g(t, s)− g(t′, s′)‖ ≤ L1|t − t′|σ1 + L′
1|s − s′|σ′

1,

t, t′, s, s′ ≥ 0 : |t − t′| < ε0, |s − s′| < ε0

for a small constant ε0 > 0.
Let τ1, τ2 be irrational numbers, which have the Diophantine approximations

{nj/mj}, {rj/lj}, respectively. Then we consider the quasi-periodic orbit defined
by

ϕ(n) = g(τ1n, τ2n), Σ = {ϕ(n) ∈ X : n ∈ N0}.
Hereafter we consider the case where τ1, τ2 are (KL) class numbers;

(1.1) Ck
1 ≤ mk ≤ Ck

2 , ∀k ∈ N : k ≥ k0,

(1.2) Ds
1 ≤ ls ≤ Ds

2, ∀s ∈ N : s ≥ s0

for some large k0, s0 ∈ N and C2 > C1 > 1, D2 > D1 > 1.

Remark 1.1. (KL) class number, the abbreviation of Khinchin-Lévy number,
was introduced in [7]. In [2] Khinchin proved that the denominators {m k} of
the Diophantine approximations of almost all irrational numbers satisfy (1.1) and
furthermore, he had shown that there exists a constant γ0, which satisfies

lim
k→∞

(mk)
1
k = γ0

for almost all irrational numbers. By Lévy this constant was estimated:

γ0 = e
π2

12 log 2 ∼ 3.27582...

To simplify our argument we introduce the following constants.

E1 = min{C1, D1}, E2 = max{C2, D2},
σ̄1 = min{σ1, σ

′
1}, L̄1 = max{L1, L

′
1}.
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We define the following sets of positive integers by using {mj}, {lj} as the
bases. Let 0 ≤ α, β < 1 and k, s ∈ N, then we put

[M ]αk := {m ∈ N : m = pkmk + pk−1mk−1 + · · ·+ pumu,

k ≥ u ≥ 1 :
k − u

k
= α, pi ∈ N0, i = u, u + 1, ..., k :

pk, pu ≥ 1, pj <
mj+1

mj
, j = u, u + 1, ..., k},

[L]βs := {l ∈ N : l = qsls + qs−1ls−1 + · · ·+ qtlt,

s ≥ t ≥ 1 :
s − t

s
= β, qi ∈ N0, i = t, t + 1, ..., s :

qs, qt ≥ 1, qj <
lj+1

lj
, j = t, t + 1, ..., s}

and define

[M ]α :=
∞⋃

k=1

[M ]αk , [L]β :=
∞⋃

s=1

[L]βs .

Furthermore, we put

[M ](d)
k := {m ∈ N : m = pkmk + pk−1mk−1 + · · ·+ pdmd,

pi ∈ N, i = d, d + 1, ..., k :

1 ≤ pk <
mk+1

mk
, 0 ≤ pj <

mj+1

mj
, j = d, d + 1, ..., k− 1},

[L](d)
s := {l ∈ N : l = qsls + qs−1ls−1 + · · ·+ qdld,

qi ∈ N, i = d, d + 1, ..., s :

1 ≤ qs <
ls+1

ls
, 0 ≤ qj <

lj+1

lj
, j = d, d + 1, ..., s− 1}

and define

[M ](d) :=
∞⋃

k=1

[M ](d)
k , [L](d) :=

∞⋃
s=1

[L](d)
s

for d = 0, 1, 2, .... Since m0 = l0 = 1, we note that

N = [M ](0) = [L](0).

Since

m1 ≥ 2 if 0 < τ1 <
1
2
and, l1 ≥ 2 if 0 < τ2 <

1
2
,

m1 = 1, m2 ≥ 2 if
1
2

< τ1 < 1 and, l1 = 1, l2 ≥ 2 if
1
2

< τ2 < 1,
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we define [M ](d1) ∩ [L](d2) as follows:

(1.3) di = 1 if 0 < τi <
1
2
and, di = 2 if

1
2

< τi < 1, i = 1, 2.

For our purpose, to estimate recurrent dimensions, we choose a suitable subse-
quence in [M ](d1) ∩ [L](d2) by the following construction method.

(T) For positive integers m, l:

m = pkmk + · · ·+ pu+1mu+1 + pumu,

l = qsls + · · ·+ qt+1lt+1 + qtlt,

define ζ1, ζ2 : N → N by

ζ1(m) = u, ζ2(l) = t.

Define a sequence of positive integers Tj ∈ [M ](d1) ∩ [L](d2) as follows. Let

T1 = min{m : m ∈ [M ](d1) ∩ [L](d2)}

and

T2 = min{m ∈ [M ](d1) ∩ [L](d2) : min{ζ1(m), ζ2(m)} > min{ζ1(T1), ζ2(T1)}}.

Iteratively, let

Tj+1 = min{m ∈ [M ](d1) ∩ [L](d2) : min{ζ1(m), ζ2(m)} > min{ζ1(Tj), ζ2(Tj)}}.

Let ζ1(Tj) = tj , ζ2(Tj) = uj , then we note that the sequence {min{uj, tj}} is
strictly increasing.

[Tj] denotes the sequence {Tj} in [M ](d1)∩ [L](d2), which is constructed by the
method (T) and then we call [Tj] the sequence of extended common multiples (abr.
ECM).

Now we can estimate the upper bounds of the recurrent dimensions for 2-
frequencies discrete quasi-periodic orbits. (For details, see [7].) We give its proof,
since we will use the notations and the argument in the following sections.

Theorem 1.2. ([7]). Under Hypothesis (H1), let τ1, τ2 be (KL) class numbers,
which satisfy (1.1) and (1.2) and for the sequence [T j] of ECM, constructed by the
method (T), such that

Tj = Mkj = Lsj : Mkj ∈ [M ]αj

kj
, Lsj ∈ [L]βj

sj , j = 1, 2, ...,



1566 Koichiro Naito

assume that the pair of sequences of real numbers α j , βj : 0 ≤ αj, βj < 1, j =
1, 2, ..., satisfies

(1.4) δ0 := lim inf
j

max{αj, βj} < 1.

Then we have

(1.5) Dr(Σ) ≤ dr(Σ) ≤ logE2

(1 − δ0)σ̄1 logE1
.

Proof. Put

Mkj = pkj mkj + pkj−1mkj−1 + · · ·+ pujmuj ,

Nkj = pkj nkj + pkj−1nkj−1 + · · ·+ puj nuj :

kj − uj

kj
= αj , pkj , puj ≥ 1, pk <

mk+1

mk
, k = uj , ..., kj,

Lsj = qsj lsj + qsj−1lsj−1 + · · ·+ qtj ltj ,

Rsj = qsj rsj + qsj−1rsj−1 + · · ·+ qtj rtj :

sj − tj
sj

= βj, qsj , qtj ≥ 1, 0 ≤ qs <
ls+1

ls
, s = tj , ..., sj.

Then, since Mkj = Lsj , it follows from Hypothesis (H1) that we have

‖ϕ(Mkj + n) − ϕ(n)‖
= ‖g(τ1(Mkj + n), τ2(Lsj + n)) − g(τ1n + Nkj , τ2n + Rsj))‖

≤ L1|τ1Mkj − Nkj |σ1 + L′
1|τ2Lsj − Rsj |σ

′
1

≤ L1{pkj |τ1mkj − nkj | + · · ·+ puj |τ1muj − nuj |}σ1

+L′
1{qsj |τ2lsj − rsj |+ · · ·+ qtj |τ2ltj − rtj |}σ′

1.

Using the above estimate and the conditions of (KL), we can estimate

‖ϕ(Mkj + n) − ϕ(n)‖

≤ L1

{
mkj+1

mkj

· 1
mkj+1

+ · · ·+ muj+1

muj

· 1
muj+1

}σ1

+L′
1

{
lsj+1

lsj

· 1
lsj+1

+ · · ·+ ltj+1

ltj
· 1
ltj+1

}σ′
1
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≤ L1

{
1

C
kj

1

(
C

kj−uj+1
1 − 1
C1 − 1

)}σ1

+ L′
1

{
1

D
sj

1

(
D

sj−tj+1
1 − 1
D1 − 1

)}σ′
1

≤ cE
−min{uj ,tj}σ̄1

1 := εj , ∀j ≥ j1

for a sufficiently large j1 such that k0 ≤ uj1 , s0 ≤ tj1 . For the εj -recurrent time
we can estimate

Mkj = pkjmkj + pkj−1mkj−1 + · · ·+ puj muj

≤ (
mkj+1

mkj

)mkj + · · ·+ (
muj+1

muj

)muj

≤ C
uj+1
2 · C

kj−uj+1
2 − 1

C2 − 1
≤ c′Ckj

2 .

It follows from Hypothesis that we have

inf
0<ε≤εj

logM ε

− log ε
=

logM εj

− log εj
≤ logMkj

− log εj

=
log c′ + kj log E2

log c−1 + min{kj, sj}(1− max{αj, βj})σ̄1 logE1
.

Similarly, we have

inf
0<ε≤εj

log M ε

− log ε
≤ log c′′ + sj logE2

log c−1 + min{kj, sj}(1 − max{αj, βj})σ̄1 logE1
.

It follows that

inf
0<ε≤εj

log M ε

− log ε
≤ log max{c′, c′′} + min{kj, sj} logE2

log c−1 + min{kj, sj}(1 − max{αj, βj})σ̄1 logE1
.

Taking the limit infimum as j → ∞ of the both sides above, we obtain the conclu-
sion.

Remark 1.3. If a pair of irrational numbers {τ1, τ2} satisfies the condition (1.4),
we say that the pair {τ1, τ2} satisfies δ0-ECM condition. In [7] we have shown
some equivalence relations between δ0-ECM condition and d0-(D) condition, which
was also defined as the parametrized Diophantine condition for a pair of irrational
numbers and we also have shown that δ0 = 1/2 for almost all irrational pairs.
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2. NONLINEAR EVOLUTION EQUATION

Let Ω ⊂ RN be a bounded domain and we consider the class of flexible systems
that can be described by the following second-order damped evolution equation in
Y = L2(Ω) with a nonlinear forcing term under a quasi-periodic perturbation:

(2.1)
d2u(t)

dt2
+ 2αA

du(t)
dt

+ Au(t) = F (u(t)) + w(t), t > 0,

(2.2) u(0) = u0, ut(0) = u1

where w(t) is a quasi-periodic function from R to Y and we assume that A is a
self-adjoint positive definite operator with dense domainD(A) in Y , and A−1 exists
and compact. It is well known that there exist eigenvalues λi and corresponding
eigenfunctions ϕi,j(x) of the operator A satisfying the following conditions:

0 < λ1 < λ2 < · · · < λi < · · · , lim
i→∞

λi = ∞,

Aϕi,j = λiϕi,j, j = 1, ..., mi, i = 1, 2, ...,

{ϕi,j(·)} forms a complete orthnormal system in Y.

For each constant 0 ≤ σ ≤ 1, the domain D(Aσ) of the fractional power Aσ,
denoted by Yσ, is topologized by the norm

|x|2σ := |Aσx|20 =
∞∑
i=1

mi∑
j=1

λ2σ
i |(x, ϕi,j)|2, x ∈ Yσ

where | · |0 denotes the norm of Y . We also assume that the perturbation function w

is continuous and uniformly bounded and we denote its usual supremum norm by

|w|∞ = sup{|w(t)|0 : t ∈ R}.
We consider the following condition on the nonlinear function F for a given

fixed constant β : 0 < β < 1. F is locally Lipschitz continuous from Yβ to Y :
there exits a constant k(c) such that

(2.3) |F (x)− F (y)|0 ≤ k(c)|x− y|β for |x|β, |y|β ≤ c

and has the linear growth rate: there exists a positive constant K0 such that

(2.4) |F (x)|0 ≤ K0(1 + |x|β), x ∈ Yβ .

The formulation (2.1) includes vibrations in mechanichally flexible systems such
as flexible arms or antennas of industrial machinery structures; robots, space air-
crafts,... (cf. [9] for linear systems: f ≡ 0). Here we treat the case with nonlinear
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forcing, which is determined not only by the displacement u(x, t), but also by the
bending force uxx(x, t). In our previous paper [3], giving some inequality rela-
tions between system parameters, such as the eigenvalues of the linear term and the
growth rate or the (locally) Lipschitz constant of the nonlinear term, we have studied
the periodic stability of this system. If the values λ1, λh+1 − (1/α2), (1/α2) − λh

are sufficiently large where

0 < λ1 < · · · < λh <
1
α2

< λh+1 < · · · ,

we have shown periodicity and asymptotic periodicity of solutions under periodic
perturbations.

Here under the quasi-periodic perturbations and the same (inequality) Hypothe-
ses as those of the periodic case we show quasi-periodic properties of solutions and
estimate recurrent dimensions of the discrete orbits given by these solutions.

Following the formulation in [3], we assume that

α2λ2
i − λi 
= 0, i = 1, 2, ...

and that α > 0 is so small that

(2.5) αλ1 <
1
2α

.

Define a complex-valued function b by

b(λ) =
√

α2λ2 − λ.

Then, since A is self-adjoint, we can define an operator b(A) by

b(A)u =
∞∑
i=1

mi∑
j=1

b(λi)(ui, ϕi,j)ϕi,j,

D(b(A)) = {u ∈ Y :
∞∑
i=1

mi∑
j=1

|b(λi)(ui, ϕi,j)|2 < ∞}.

Note that D(b(A)) = D(A) and define the following two operators by

A+ := αA − b(A), A− := αA + b(A).

Then for each u ∈ D(A),

A±u =
∞∑
i=1

mi∑
j=1

(αλi ∓ b(λi))(ui, ϕi,j)ϕi,j
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and the eigenvalues and the eigenfunctions of A± are given by

νi = αλi − b(λi), µi = αλi + b(λi),

A+u = νiϕi,j, A−u = µiϕi,j, j = 1, ..., mi, i = 1, 2, ....

It follows from (2.5) that there is an integer h ≥ 1 such that

α2λ2
h − λh < 0, α2λ2

h+1 − λh+1 > 0.

Since the operators −A+,−A− generate analytic semigroups S1(t), S2(t), re-
spectively, and since A+ is a bounded operator, we can consider the following
systems of the semilinear equations:

(2.6) ξ̇ + A+ξ(t) = b−1(A)[F (
ξ + η

2
) + w(t)],

(2.7) η̇ + A−η(t) = −b−1(A)[F (
ξ + η

2
) + w(t)]

where b−1(A) is the inverse operator of b(A), that is,

b−1(A)u =
∞∑
i=1

mi∑
j=1

(b(λi))−1(ui, ϕi,j)ϕi,j.

Also, their mild forms are described as follows:

(2.8) ξ(t) = S1(t)ξ0 +
∫ t

0
S1(t − s)b−1(A)[F (

ξ + η

2
(s)) + w(s)]ds,

(2.9) η(t) = S2(t)η0 −
∫ t

0
S2(t − s)b−1(A)[F (

ξ + η

2
(s)) + w(s)]ds.

Under the conditions (2.3), (2.4) for a fixed constant 0 < β < 1, we can admit the
(classical) solution

(2.10)
[ξ(t), η(t)] ∈ C([0, +∞) : D(Aβ)× D(Aβ))

∩C1([0, +∞) : L2(Ω) × L2(Ω))

for each initial data [ξ0, η0] ∈ D(Aβ)× D(Aβ).
Furthermore, we can estimate the regularity of the solutions as follows: if

[ξ0, η0] ∈ D(A) × D(A1+s) for some constant s : 0 < β ≤ s < 1, then by
multiplying λ2

i and λ
2(1+s)
i to the spectral expansions of (2.8), (2.9), respectively,

and applying the direct estimation, we have

(2.11) ξ ∈ C([0, +∞) : D(A)), η ∈ C([0, +∞) : D(A1+s)).
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Then, it follows from (2.6), (2.7) that

(2.12) ξ̇ ∈ C([0, +∞) : D(A)), η̇ ∈ C([0, +∞) : D(As)).

Now, define the functions u, v by

(2.13) u =
ξ + η

2
, v =

ξ − η

2
.

Then from (2.11), (2.12) it follows that

u, v ∈ C([0, +∞) : D(A)) ∩ C1([0, +∞) : D(As)).

Hereafter, we consider the case s = β. Thus we have

[u, u̇] ∈ C([0, +∞) : D(A))× C([0, +∞) : D(Aβ)).

We need some notations:

(2.14) λ(β) := min{
√

λ1, λ
1−β
1 }

(2.15) Mh := max{ 1√
1 − α2λh

,

√
α2λh+1

α2λh+1 − 1
+ 1},

(2.16) Ch := max{
√

λh

1 − α2λh
,

√
λh+1

α2λh+1 − 1
}.

Furthermore, for a given constant δ : 0 < δ < αλ1, define

(2.17) Mβ := Mh(λβ
1 +

1
α

)(
β

αλ1 − δ
)βe−β .

By applying the proof of Theorem 2.1 in [3] we obtain the unique existence and
boundednes of solutions.

Theorem 2.1. Under Hypotheses (2.3), (2.4), let [ξ0, η0] ∈ D(A)× D(A1+β)
and assume that system parameters δ, α, β, λ 1, λh, λh+1, K0, satisfy the following
inequality conditions: 0 < δ < αλ1, 0 < β ≤ 1/2, and

(2.18) δ > ϑ := (
MβK0Γ(β̄)

λ(β)
)1/β̄,

where β̄ = 1 − β. Then the estimate

(2.19) |Aξ(t)|0 + |A−η(t)|β ≤ K1(t)(|Aξ0|0 + |A−η0|β) + K2|w|∞ + K3
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holds for some constants K 2, K3, and

(2.20) K1(t) =
e−(δ−ϑ)t

β̄
+ e−αλ1tΓ(β̄).

Consequently, the solution [u(t), u̇(t)], given by u = (ξ + η)/2, has a global
attractor in Y1 × Yβ : {[x, y] ∈ Y1 × Yβ : |x|1 + |y|β ≤ Kp(K2(|w|∞ + K3)} for
some Kp > 0.

Remark 2.2. In case 1/2 < β < 1 the assertion of Theorem 2.1 holds if one
substitutes the constant Γ( β̄) by Γ(β̄)/(sin β̄π)β̄.

For convenience we give the following estimation of the constants:

Kp =
1
2
(1 + max{ 1

αλβ
1

,
1

αλ1−β
1

}),

K2 = Mβ × [δΓ1{ 1
β̄(δ − ϑ)

+
Γ(β̄)

δ
} + (δe)−(1−β)(1 − β)−βΓ(β̄) +

Γ2

β̄
],

K3 = K2K0

where
Γ1 =

∫ ∞

0

s−βe−δsds, Γ2 =
∫ ∞

0

s−βe−ϑsds.

3. QUASI-PERIODIC SOLUTIONS

Next, let w(t) be a quasi-periodic function, defined by

(3.1) w(t) = z(t, τ1t, τ2t)

where z : R × R × R → Y is 1-periodic for each variable and a locally Hölder
continuous function: there exist positive constants κ, σ, which satisfy

(3.2)
|z(t1, t2, t3) − z(t′1, t′2, t′3)|0 ≤ κ{|t1 − t′1|σ + |t2 − t′2|σ + |t3 − t′3|σ},

∀ti, t
′
i : |ti − t′i| ≤ ε0, i = 1, 2, 3

for sufficiently small ε0 > 0. As in Thorem 2.1 we also use the pair of functions
[ξ(t), η(t)] ∈ Y1 × Y1+β . Define the norm ‖[x, y]‖1,β by

‖[x, y]‖1,β = |Ax|0 + |A−y|β
which is equivalent to the Y1×Y1+β norm. Then we can show the quasi-periodicity
of [u(t), u̇(t)] in Y1 × Yβ by estimating ‖[ξ(t), η(t)]‖1,β.
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Here we use the ECM sequence [Tj] of {τ1, τ2}. We say that a function y :
R → Y has a quasi-periodic property (abr. q.p.p.) with its irrational frequencies
(abr. i.f.) {τ1, τ2} if there exists a sequence {εj} : limj→∞ εj = 0, which satisfies

|y(·+ Tj) − y(·)|∞ < εj, ∀j

for the ECM sequence [Tj] of {τ1, τ2}.
We can show that the attractor of system (2.1) has q.p.p. with i.f. {τ1, τ2}.

Theorem 3.1. Let w : R → Y be a quasi-periodic function, which satisfies
(3.1) and (3.2) and assume that the same Hypotheses as Theorem 2.1. For a given
constant d > 0:

(3.3) d > K2|w|∞ + K3,

assume that

(3.4) δ > ϑ′ := (
Mβk(d)Γ(β̄)

2λ(β)
)1/β̄

where k(·) is the locally Lipschitz coefficient in (2.3).
Then there exists a unique solution [ξ∞(·), η∞(·)] ∈ BC(R,Y1×Y1+β), which

satisfies

(3.5) ξ∞(t) = S1(t)ξ∞(0) +
∫ t

0
S1(t−s)b−1(A)[F (

ξ∞+η∞
2

(s))+w(s)]ds,

(3.6) η∞(t) = S2(t)η∞(0)−
∫ t

0
S2(t−s)b−1(A)[F (

ξ∞+η∞
2

(s))+w(s)]ds.

Furthermore, the solution [ξ∞(t), η∞(t)] has the same quasi-periodic property
as the q.p. perturbation w in the following sense:

sup
t∈R

‖[ξ∞(t+Tj), η∞(t+Tj)]−[ξ∞(t), η∞(t)]‖1,β ≤ εj , ∀j,

for the ECM sequence [Tj] of {τ1, τ2} and also, for the solution [ξ(t), η(t)] with its
initial deta [ξ0, η0] ∈ Y × Y 1+β we have

‖[ξ(t), η(t)]− [ξ∞(t), η∞(t)]‖1,β → 0 as t → ∞.

Proof. It follows from Theorem 2.1 that there exists a solution [ξ, η] for an
initial condition [ξ0, η0] ∈ Y1 × Y1+β : ‖[ξ(t), η(t)]‖1,β ≤ d, t ≥ 0. Then we
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show that [ξj(t), ηj(t)] := [ξ(t + Tj), η(t+ Tj)] converges to a q.p.p. type solution
[ξ∞(t), η∞(t)] as j → ∞. Considering the estimate

|A(ξ(t + Tj) − ξ(t + Tk))|0 + |A−(η(t + Tj) − η(t + Tk))|β
≤ |A(ξ(t + Tj)− ξ(t + Tj + Tk))|0 + |A(ξ(t + Tj + Tk) − ξ(t + Tk))|0
+|A−(η(t + Tj) − η(t + Tj + Tk))|β + |A−(η(t + Tj + Tk) − η(t + Tk))|β

and using (2.8) and (2.9), we have

|A(ξ(t + Tj) − ξ(t + Tj + Tk))|0 + |A−(η(t + Tj)− η(t + Tj + Tk))|β
≤ |S1(Tj)A(ξ(t)− ξ(t + Tk))|0

+
∫ Tj

0
|AS1(Tj − s)b−1(A)[F (

ξ + η

2
(s + t)) − F (

ξ + η

2
(s + t + Tk))]|0ds

+
∫ Tj

0
|AS1(Tj − s)b−1(A)[w(s + t) − w(s + t + Tk)]|0ds

+|S2(Tj)A−(η(t)− η(t + Tk))|β

+
∫ Tj

0
|A−AβS2(Tj − s)b−1(A)[F (

ξ + η

2
(s + t))

−F (
ξ + η

2
(s + t + Tk))]|0ds

+
∫ Tj

0

|A−AβS2(Tj − s)b−1(A)[w(s + t) − w(s + t + Tk)]|0ds

and

|A(ξ(t + Tj + Tk) − ξ(t + Tk))|0 + |A−(η(t + Tj + Tk) − η(t + Tk))|β
≤ |S1(Tk)A(ξ(t)− ξ(t + Tj))|0

+
∫ Tk

0

|AS1(Tk − s)b−1(A)[F (
ξ + η

2
(s + t)) − F (

ξ + η

2
(s + t + Tj))]|0ds

+
∫ Tk

0
|AS1(Tk − s)b−1(A)[w(s + t) − w(s + t + Tj)]|0ds

+|S2(Tk)A−(η(t)− η(t + Tj))|β
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+
∫ Tk

0

|A−AβS2(Tk − s)b−1(A)[F (
ξ + η

2
(s + t))

−F (
ξ + η

2
(s + t + Tj))]|0ds

+
∫ Tk

0

|A−AβS2(Tk − s)b−1(A)[w(s + t) − w(s + t + Tj)]|0ds.

Thus, applying the argument in [3], we have

|A(ξ(t + Tj) − ξ(t + Tj + Tk))|0 + |A−(η(t + Tj) − η(t + Tj + Tk))|β
≤ e−αλ1Tj(|A(ξ(t)− ξ(t + Tk))|0 + |A−(η(t)− η(t + Tk))|β)

+
∫ Tj

0
Mβ

k(d)
2λ(β)

e−δ(Tj−s)(Tj − s)−β

×{|A(ξ(s + t) − ξ(s + t + Tk))|0 + |A−(η(s + t) − η(s + t + Tk))|β}

+
∫ Tj

0
Mβe−δ(Tj−s)(Tj − s)−β |w(s + t) − w(s + t + Tk)|0ds

and we have

|A(ξ(t + Tj + Tk) − ξ(t + Tk))|0 + |A−(η(t + Tj + Tk) − η(t + Tk))|β
≤ e−αλ1Tk(|A(ξ(t)− ξ(t + Tj))|0 + |A−(η(t)− η(t + Tj))|β)

+
∫ Tk

0
Mβ

k(d)
2λ(β)

e−δ(Tk−s)(Tk − s)−β

×{|A(ξ(s + t) − ξ(s + t + Tj))|0 + |A−(η(s + t) − η(s + t + Tj))|β}

+
∫ Tk

0
Mβe−δ(Tk−s)(Tk − s)−β |w(s + t) − w(s + t + Tj)|0ds.

Note that there exist integers Nj, Nk, Rj, Rk such that these values

|τ1Tj − Nj|, |τ1Tk − Nk|, |τ2Tj − Rj|, |τ2Tk − Rk|
are sufficiently small as in the proof of Theorem 1.2. Thus by using the Gronwall’s
inequality, which was introduced in Appendix of [3], and (3.2) we have

|A(ξ(t + Tj) − ξ(t + Tk))|0 + |A−(η(t + Tj) − η(t + Tk))|β

≤ [
e−(δ−ϑ′)Tj

β̄
+ Γ(β̄)e−αλ1Tj ](|A(ξ(t)− ξ(t + Tk))|0

+|A−(η(t)− η(t + Tk))|β)
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+γ(β)Mβκ[|τ1Tk − Nk|σ + |τ2Tk − Rk|σ]

+[
e−(δ−ϑ′)Tk

β̄
+ Γ(β̄)e−αλ1Tk](|A(ξ(t)− ξ(t + Tj))|0

+|A−(η(t)− η(t + Tj))|β)

+γ(β)Mβκ[|τ1Tj − Nj|σ + |τ2Tj − Rj|σ]

where
γ(β) = δΓ1{ 1

β̄(δ − ϑ)
+

Γ(β̄)
δ

} + (δe)−β̄β̄−βΓ(β̄) +
Γ2

β̄
.

It follows from (2.18) and Theorem 2.1 that the sequence [ξj(t), ηj(t)] is a Cauchy
sequence in BC([0, +∞) : Y1×Y1+β), the space of uniformly bounded, continuous,
and Y1 × Y1+β valued functions. Thus there exists [ξ∞(t), η∞(t)] such that, as
j → ∞,

[ξj, ηj] → [ξ∞, η∞] in BC([0, +∞) : Y1 × Y1+β).

By taking the limit j → ∞ of the mild fomulas:

ξ(t + Tj) = S1(t)ξ(Tj) +
∫ t

0

S1(t − s)b−1(A)[F (
ξ + η

2
(s + Tj)) + w(s + Tj)]ds,

η(t + Tj) = S2(t)η(Tj) −
∫ t

0

S2(t − s)b−1(A)[F (
ξ + η

2
(s + Tj)) + w(s + Tj)]ds

we can show that [ξ∞, η∞] satisfies the mild formulas (3.5), (3.6) with the initial
state [ξ∞(0), η∞(0)].

Furthermore, since we can extend the interval from [0, +∞) to [s, +∞) for every
s ∈ R with showing the uniformly boundedness, not depending on s, of solutions,
we can admit the solution [ξ∞(t), η∞(t)] in BC(R : Y1 × Y1+β). Applying the
same argument and estimate as above, we can easily obtain the uniqueness of the
solution.

Finally, we show the q.p.p. of [ξ∞(t), η∞(t)] in Y1×Y1+β by using the previous
estimate. It follows from (2.8) and (2.9) that we have

|A(ξ∞(t) − ξ∞(t + Tl))|0 + |A−(η∞(t) − η∞(t + Tl))|β
= lim

j→∞
[|A(ξ(t + Tj) − ξ(t + Tl + Tj))|0 + |A−(η(t + Tj) − η(t + Tl + Tj))|β]

≤ lim
j→∞

[|S1(Tj)A(ξ(t)− ξ(t + Tl))|0

+
∫ Tj

0
|AS1(Tj − s)b−1(A)[F (

ξ + η

2
(s + t)) − F (

ξ + η

2
(s + t + Tl))]|0ds
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+
∫ Tj

0
|AS1(Tj − s)b−1(A)|w(s + t) − w(s + t + Tl)|0ds

+|S2(Tj)A−(η(t)− η(t + Tl))|β

+
∫ Tj

0
|A−AβS2(Tj − s)b−1(A)[F (

ξ + η

2
(s + t))

−F (
ξ + η

2
(s + t + Tl))]|0ds

+
∫ Tj

0
|A−AβS2(Tj − s)b−1(A)|w(s + t) − w(s + t + Tl)|0ds].

By applying the pervious argument we can take the integers Nl, Rl, which satisify

|A(ξ∞(t) − ξ∞(t + Tl))|0 + |A−(η∞(t)− η∞(t + Tl))|β

≤ lim
j→∞

[
e−(δ−ϑ′)Tj

β̄
+ Γ(β̄)e−αλ1Tj ](|A(ξ(t)

−ξ(t + Tl))|0 + |A−(η(t)− η(t + Tl))|β)

+γ(β)Mβκ[|τ1Tl − Nl|σ + |τ2Tl − Rl|σ]

≤ γ(β)Mβκ[|τ1Tl − Nl|σ + |τ2Tl − Rl|σ].

Thus we obtain the q.p.p. of [ξ∞(t), η∞(t)].
Next we estimate the recurrent dimensions of the orbit given by

Σ = {[u∞(n), u̇∞(n)] ∈ Y1 × Yβ : n ∈ N0}.

By applying Lemma 3.1-3.3 in [3] we can estimate

|u∞(t) − u∞(t′)|1 ≤ 1
2
(|ξ∞(t) − ξ∞(t′)|1 + |η∞(t) − η∞(t′)|1)

≤ 1
2
(|A(ξ∞(t) − ξ∞(t′))|0 + |A−(η∞(t) − η∞(t′))|β)

and

|u̇∞(t) − u̇∞(t′)|β ≤ 1
2
(|A+(ξ∞(t)− ξ∞(t′))|β + |A−(η∞(t) − η∞(t′))|β)

≤ 1

2αλβ̄
1

|A(ξ∞(t) − ξ∞(t′))|0 +
1
2
|A−(η∞(t) − η∞(t′))|β.
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Thus we can show the q.p.p. of [u∞(t), u̇∞(t)].
By applying the estimate to show the q.p.p. of [ξ∞(t), η∞(t)] we have

|A(ξ∞(n) − ξ∞(n + Tl))|0 + |A−(η∞(n)− η∞(n + Tl))|β
≤ γ(β)Mβκ[|τ1Tl − Nl|σ + |τ2Tl − Rl|σ],

which also gives the similar estimate for [u∞(n), u̇∞(n)]. By applying the argument
in the proof of Theorem 1.2 we obtain the following Theorem.

Theorem 3.2. Under the same Hypotheses as those of Theorem 3.1, let {τ 1, τ2}
be (KL) class irrational numbers and satisfies the δ 0-ECM condition. Then we have

(3.7) Dr(Σ) ≤ dr(Σ) ≤ logE2

(1 − δ0)σ logE1
.

4. FLEXIBLE BEAMS

Following the P.D.E. example in [3], we consider the equation of motion of slen-
der and flexible structures with internal viscous damping and nonlinear forcing, de-
termined by displacement u(x, t) and bending force uxx(x, t),under a quasi-periodic
perturbation:

(4.1)
∂2u(x, t)

∂t2
+ 2α

∂5u(x, t)
∂x4∂t

+
∂4u(x, t)

∂x4
= f(x, u(x, t),

∂2u(x, t)
∂x2

) + w(x, t),

where 0 < x < L. The beam is clamped at one end, x = 0, and at the free end,
x = L, the bending moment and the shearing force vanish. The the boundary and
the initial conditions are given by

u(0, t) = ux(0, t) = 0,

uxx(L, t) + 2αutxx(L, t) = 0,

uxxx(L, t) + 2αutxxx(L, t) = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x).

and the quasi-periodic perturbations w(t) satisfies (3.1), (3.2).
We define an operator A in L2(0, L) by

D(A) = {u ∈ H4(0, L) : u(0) = ux(0) = 0, uxx(L) = uxxx(L) = 0},
Au =

∂4u

∂x4
.
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Let γi be the solutions of
cosh γ cos γ + 1 = 0

such that 0 < γ1 < γ2 < · · · . Then the e.v. of A are given by

λi = (
γi

L
)4, i = 1, 2, ....

We assume that the nonlinear function
f(x, u, v) : R3 → R satisfies the growth condition

|f(x, u, v)| ≤ k0(|u|+ |v|) for some k0 > 0

and the following Lipschitz and locally Lipschitz continuity:
∃k0(c), k > 0 such that

|f(x, u, v)− f(x, u′, v′)| ≤ k0(c)|u− u′| + k|v − v′|
for |u|, |u′| ≤ c, v, v′ ∈ R.

Define F : D(A1/2) → L2(0, L) by

F (u)(x) = f(x, u(x), uxx(x)),

then the condition (2.3) and (2.4) holds for the constant β = 1/2.

Following the argument in [3], we can see that the inequality conditions in
Theorem 2.1 and Theorem 3.1 are satisfied for small α > 0 as follows:

If 1/α2 − λh, λh+1 − 1/α2 � 1/α2, then the stability inequality conditions are
given by

C(
K0

α2
)

2
3 < λ1 <

1
2α2

for some C > 0.

Remark 4.1. As another example for (2.1) we can consider a strongly damped
wave equation:

utt − 2α∆ut − ∆u = f(x, u,∇u) + w(t).
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