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IN ASPLUND SPACES, APPROXIMATELY CONVEX FUNCTIONS
AND REGULAR FUNCTIONS ARE GENERICALLY DIFFERENTIABLE

Huynh Van Ngai and Jean-Paul Penot
Dedicated to Professor Wataru Takahashi on the occasion of his 65th birthday

Abstract. We prove that an approximately convex function on an open subset
of an Asplund space is generically Fréchet differentiable, as are genuine convex
functions. Thus, we give a positive answer to a question raised by S. Rolewicz.
We also prove a more general result of that type for regular functions on an
open subset of an Asplund space.

1. INTRODUCTION

It is a deep and famous result of Preiss [21] that any locally Lipschitzian real-
valued function on an Asplund space is Fréchet differentiable at the points of a dense
subset. However, it is known that such a set does not always contain a Gδ subset,
i.e. a countable intersection of open subsets (we are indebted to Prof. D. Preiss for
the information that a full description of such sets is given in [33] and that such a
fact was known much before that paper). Thus it is not possible to conclude for
instance that given two Lipschitzian functions they have a common point of Fréchet
differentiability. It is the purpose of the present article to give a positive answer to
such a genericity problem by restricting our attention to well established classes of
functions.

The main class of functions we have in view is the class of regular functions
in the sense of Clarke ([4, Def. 2.3.4]). For such a class, the main concepts of
nonsmooth analysis coincide and better calculus rules are available than for general
locally Lipschitzian functions. For that reason, such a class is popular.

The proof of our main result being somewhat involved, we first present a simple
proof for the more restricted class of approximately convex functions which has been
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recently introduced in [12, Prop. 3.1]. Such a class has obtained a great interest
in view of its simplicity and of its generality ([1, 7, 13, 15, 27). It contains the
class of paraconvex functions which has been thoroughly studied by S. Rolewicz
([24, 25, 30, 31]) who gave a positive answer to the genericity problem for such a
class. It also contains the class of continuously differentiable functions. As recalled
in Proposition 2 below, this class satisfies desirable stability properties which make
the class large enough. This class retains part of the properties of convex functions,
but also of continuously differentiable functions, so that our separate treatment is
justified. Moreover, in doing so, we give a positive answer to a question raised by
S. Rolewicz in [27] Question 8.

2. PRELIMINARIES

Approximate convexity is defined as follows.

Definition 1. Given ε > 0 and a convex subset C of a Banach space X, a
function f : C → R is said to be ε-convex if for every x, y ∈ C and any t ∈ [0, 1]
one has

(1) f(tx + (1− t)y) ≤ tf(x) + (1 − t)f(y) + εt(1 − t) ‖x − y‖ .

A function f : U → R defined on an open subsetU ofX is said to be approximately
convex at x0 ∈ U if for any ε > 0 there exists δ > 0 such that f is ε-convex on
the ball B(x0, δ). It is approximately convex around x0 ∈ U if it is approximately
convex at any point of some neighborhood of x0.

The terminology we use here is slightly different from the one used in [12, Prop.
3.1] and [13] (but coincides with the one of [5]) since we stress the difference
between the pointwise property (at x0) and the local property (around x0). As
mentioned above, the class of approximately convex functions on U (i.e. at each
point of U ) contains the class of paraconvex functions on U which plays an important
role in various fields (Hamilton-Jacobi equations and optimal control [3], duality
[19], regularization [10]...). The class of approximately convex functions has been
characterized in finite dimensions by a lower C1 property in the sense of [23], [32],
i.e. as suprema of families of C1 functions. This characterization is extended in
[13] (see also [7], [17] for variants). Another characterization uses a subdifferential
of the function and an approximate monotonicity property; the locally Lipschitz case
is given in [1] and the case of a lower semicontinuous function is presented in [13].

The class of approximately convex functions has interesting stability properties;
see for instance [12, Prop. 3.1], [6, Section 6], [1].
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Proposition 2. The set of functions f : U → R which are approximately
convex at x0 ∈ X is a convex cone containing the functions which are strictly
differentiable at x0. It is stable under finite suprema. Moreover, if f = h◦g, where
g : U → Y is strictly differentiable at x 0 and h : Y → R is approximately convex
at g(x0), then f is approximately convex at x0.

As mentioned above, approximately convex functions retain some of the nice
properties of convex functions. In particular they are continuous on segments con-
tained in their domains ([12, Cor. 3.3]) and locally Lipschitzian on the interiors of
their domains. Moreover, they have radial derivatives ([12, Cor. 3.5]). Furthermore,
the subdifferentials of approximately convex functions all coincide provided they are
between the Fréchet subdifferential ∂ F and the Clarke-Rockafellar subdifferential
∂C . Recall that

x∗∈∂F f(x)⇔∀ε>0 ∃δ > 0 : ∀u ∈ B(x, δ) f(u)−f(x)−〈x∗, u−x〉 ≥−ε ‖u−x‖

and that, for a continuous function f,

x∗ ∈ ∂Cf(x) ⇔ ∀u ∈ X 〈x∗, u〉 ≤ fC(x, u),

where fC(x, ·) is the Clarke-Rockafellar derivative given by

fC(x, u) := sup
ε>0

lim sup
(t,w)→(0+,x)

inf
v∈B(u,ε)

1
t

(f(w + tv)− f(w)) .

Here a subdifferential is a map ∂ : R
X × X → P(X∗), where R

X is the set of
extended-real valued functions on X , X∗ is the dual space of X and P(X ∗) the
space of subsets of X∗, such that ∂f(x) := ∂(f, x) is empty if f is not finite at x.

Recall that an Asplund space is a Banach space X such that the dual of every
separable closed subspace of X is separable. Such spaces have been introduced
for their characteristic property: a convex continuous function on a nonempty open
convex subset U of an Asplund space X is generically Fréchet differentiable, i.e.
Fréchet differentiable on a dense Gδ-subset of U. Here a subset D is said to be a
Gδ-subset of U if it is the intersection of a countable family of open subsets. It
has also been shown by D. Preiss ([21]) that any locally Lipschitz function f on
an open subset U of an Asplund space is Fréchet differentiable on a dense subset.
Here we make the supplementary assumption that f is approximately convex and
we get generic differentiability, i.e. differentiability on a dense Gδ-subset of U.

Recall that by a weak* slice of a nonempty set A ⊂ X∗ one means a subset of
A of the form

S(x, A, α) = {x∗ ∈ A : 〈x∗, x〉 > σA(x)− α},
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where x ∈ X\{0}, α > 0 and

σA(x) = sup{〈x∗, x〉 : x∗ ∈ A}.
The following important characterization of Asplund spaces is well known. It will
be used in the proof of the main result below.

Lemma 3. ([20]). A Banach spaceX is an Asplund space if and only if its dual
space X∗ has the Radon-Nikodým property, i.e. every nonempty bounded subset A
of X∗ admits weak* slices of arbitrary small diameter.

Let us note the following results.

Lemma 4. Let U be an open subset of an Asplund space X and let f : U → R

be a lower semicontinuous function. Let ∂f : U ⇒ X ∗ be a subdifferential such
that ∂F f(u) ⊂ ∂f(u) ⊂ ∂Cf(u) for all u ∈ U . Let x ∈ U be such that ∂f(x) is
nonempty and such that for any ε > 0 there exists some δ > 0 for which B δ :=
B(x, δ) ⊂ U and diam(∂f(Bδ)) < ε. Then f is (strictly) Fréchet differentiable
at x : for every ε > 0 there exists δ > 0 such that B(x, δ) ⊂ U and for every
u, v ∈ B(x, δ) one has

|f(v)− f(u) − 〈x∗, v − u〉| ≤ ε ‖v − u‖ .

Proof. Clearly, ∂f(x) is a singleton {x∗}. Now, given ε > 0, let δ > 0 be such
that Bδ := B(x, δ) ⊂ U and diam(∂f(Bδ)) < ε. Given u, v ∈ B(x, δ), the Mean
Value Theorem ([11], [18]) ensures that there exist w, z ∈ [u, v] and sequences
(wn) → w, (zn) → z, (w∗

n), (z∗n) such that w∗
n ∈ ∂f(wn), z∗n ∈ ∂f(zn) for all

n ∈ N and

f(v) − f(u) − 〈x∗, v − u〉 ≤ lim infn〈w∗
n − x∗, v − u〉 ≤ ε ‖v − u‖ ,

f(u) − f(v)− 〈x∗, u− v〉 ≤ lim infn〈z∗n − x∗, u − v〉 ≤ ε ‖v − u‖ ,

so that f is strictly Fréchet differentiable at x.

Proposition 5. Let U be an open subset of a normed vector space X. The set
of points at which a function f : U → R is approximately convex is a G δ-set.

Proof. Let A ⊂ U be the set of points at which the function f is approximately
convex. For n ∈ N\{0}, let An be the set of points x for which there exists
some δ > 0 such that f is 1/n-convex on B(x, δ). Obviously, An is open and
∩∞

n=1An = A.

The conclusion of the preceding proposition entail that if f is densely approx-
imately convex on U (i.e. approximately convex at all points of a dense subset of
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U ), then the set of points of U at which f is approximately convex is a generic
subset of U, i.e. it is a dense Gδ subset of U . Let us note the following criterion
ensuring that the set of points at which f is approximately convex is a generic
subset of U. Here we say that a locally Lipschitzian function is Clarke regular if it
is directionally differentiable at each point, its directional derivative being equal to
its Clarke-Rockafellar derivative.

Lemma 6. ([5, Prop. 5]). Every Clarke regular function on an Asplund space
is generically approximately convex.

We will use the following subdifferential characterization of approximate con-
vexity.

Proposition 7. ([13, Theorem 10]). Let X be an Asplund space, let f : X → R

be lower semicontinuous, let x0 ∈ dom f, and let ∂ be a subdifferential such that
∂F f ⊂ ∂f ⊂ ∂Cf. Then the following assertions are equivalent:

(a) f is approximately convex at x0;

(b) ∂f : X ⇒ X∗ is approximately monotone at x 0 in the following sense:
for every ε > 0 there exists some ρ > 0 such that for all u, v ∈ B(x 0, ρ),
u∗ ∈ ∂f(u), v∗ ∈ ∂f(v) one has

〈u∗ − v∗, u− v〉 ≥ −ε ‖u − v‖ .

An elementary differentiability result of independent interest will be used in the
last part of the paper.

Proposition 8. Let W and X be normed vector spaces and let f : W × X →
R∪{+∞} be a convex function which is Fréchet (resp. Gâteaux) differentiable at
some point (w, x) ∈ W × X. Let p : W → R be the performance function defined
by p(w) = infx∈X f(w, x). If p(w) = f(w, x), then p is Fréchet (resp. Gâteaux)
differentiable at w.

In particular, if X is a vector subspace of W, if the norm on W is Fr échet
(resp. Gâteaux) differentiable off 0 and if w ∈ W\X has a best approximation in
X, then the distance function dX to X is Fréchet (resp. Gâteaux) differentiable at
w.

Proof. Let r : R+ → R+ be a remainder, i.e. a function such that r(0) = 0
and r(t)/t → 0 as t → 0+ such that

|f(w + w, x + x) − f(w, x) − 〈(w∗, x∗), (w, x)〉| ≤ r(‖(w, x)‖)
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for ‖(w, x)‖ small enough, where (w∗, x∗) is the derivative of f at (w, x). Since
f is continuous at (w, x), p is bounded above on a neighborhood of w, hence is
subdifferentiable at w. Let z ∗ ∈ ∂p(w). Then, for ‖w‖ small enough one has

0 ≤ p(w + w)− p(w) − 〈z∗, w〉
≤ f(w + w, x) − f(w, x) − 〈(w∗, x∗), (w, 0)〉+ 〈w∗ − z∗, w〉
≤ r(‖w‖) + 〈w∗ − z∗, w〉.

This shows that w∗ = z∗ and that p is differentiable at w.

The last assertion is obtained by taking f(w, x) : = ‖w − x‖ for (w, x) ∈
W × X .

3. GENERIC DIFFERENTIABILITY OF APPROXIMATELY CONVEX FUNCTIONS

The main result of the present section will be deduced from the following state-
ment which is not as striking. The interest of the refinement will appear in the last
section.

Proposition 9. Let X be an Asplund space, let U be an open subset of X and
let A be a dense subset of U. Suppose that f : U → R is lower semicontinuous on
U and approximately convex around each point of A. Then f is (strictly) Fr échet
differentiable on a dense Gδ-subset of U .

Proof. The proof is inspired by the one of [9] (see also [20, Thm 2.30]). We
set T = ∂F f. For each n ∈ N, n > 1, we introduce the set

Gn := {x ∈ U : ∃δ > 0, B(x, δ) ⊂ U, diamT (B(x, δ)) <
1
n
}.

Obviously, Gn is open since for all x ∈ Gn we have B(x, δ) ⊂ Gn whenever δ > 0
is such that B(x, δ) ⊂ U, diamT (B(x, δ)) < 1/n. Thus G := ∩∞

n=1Gn is a Gδ-set
and, by Lemma 4, f is Fréchet differentiable at every x ∈ G. Thus, it suffices to
prove that, for each n ∈ N, Gn is dense in U.

Let u ∈ U be given. Given ρ > 0 such that B(u, ρ) ⊂ U, let us show that
Gn∩B(u, ρ) is nonempty. SinceA is dense in U, we can find some a ∈ A∩B(u, ρ).
Let δ ∈ (0, ρ − d(u, a)) be such that f is approximately convex on B(a, δ). Since
an approximately convex function is locally Lipschitzian, shrinking δ if necessary,
we may assume that f is Lipschitzian on B(a, δ). Thus T (B(a, δ)) is bounded and
since ∂F f(u) = ∂Cf(u) for all u ∈ B(a, δ) by [12, Thm 3.6], T has nonempty
values on B(a, δ). We shall show that Gn ∩ B(a, δ) is nonempty, what will imply
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that Gn ∩ B(u, ρ) is nonempty too. According to Lemma 3, we can find α > 0,
z ∈ SX , the unit sphere of X, such that the diameter of the weak* slice

S := S(z, T (B(a, δ)), α) = {u∗ ∈ T [B(a, δ)] : 〈u∗, z〉 > σT (B(a,δ))(z) − α}

is less than
1
n
. Let us take u ∈ B(a, δ), u∗ ∈ T (u) such that

〈u∗, z〉 > σT (B(a,δ))(z) − α/2.

By the approximate monotonicity of T at u exhibited in Proposition 7, there exists
ε ∈ (0, δ) such that

〈v∗ − u∗, v − u〉 ≥ −α

2
‖v − u‖, ∀v ∈ B(u, ε), ∀v∗ ∈ T (v).

Taking t > 0 such that v := u + tz ∈ B(a, δ) ∩ B(u, ε), one has

〈v∗ − u∗, (u + tz) − u〉 � −(α/2)t, ∀v∗ ∈ T (v).

Thus,

〈v∗, z〉 � 〈u∗, z〉 − α/2 > σT (B(a,δ))(z) − α ∀v∗ ∈ T (v).

Since T is norm to weak* upper semicontinuous at v (because f is locally Lipschitz
around v and T coincides with the Clarke subdifferential [4, Prop. 2.1.5]), there
exists γ > 0 such that B(v, γ) ⊂ B(a, δ) and

〈w∗, z〉 � σT (B(a,δ))(z) − α ∀w ∈ B(v, γ), w∗ ∈ T (w).

That is T [B(v, γ)] ⊂ S. Hence diamT [B(v, γ)] <
1
n

. That is v ∈ Gn ∩ B(a, δ).
The proof is complete.

The preceding result is close to Corollary 2.2 (ii) of [8]. There f is just lower
semicontinuous and it is shown that the set of points where f is Fr échet subdifferen-
tiable but not Fréchet directionally differentiable is of first category in U. However,
the linearity of the derivative is not obtained on the complement of this set.

Taking for A the set U itself, we get the following consequence.

Theorem 10. Let f : U → R be a lower semicontinuous, approximately
convex function on an open subset U of an Asplund space. Then f is Fr échet
differentiable on a dense Gδ-subset of U .

This theorem can be deduced from a delicate result of Zaj́lcek [34] asserting
that a lower semicontinuous function f on an open subset U of an Asplund space X
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has the property that the set of points where f is Fréchet subdifferentiable but not
Fréchet differentiable is first category in U. Here we avoid the use of such a result
but we rely on characterizations of Asplund spaces which are not simple either but
which can be considered as classical. In order to get the result via [34], as above,
one uses the facts that an approximately convex function on an open subset U of X

is locally Lipschitzian and that its Fréchet subdifferential coincides with the Clarke
subdifferential, hence is nonempty valued.

4. AN EXTENSION TO REGULAR FUNCTIONS

By using the well known notion of Banach-Mazur game ([16], [20, Thm 4.23],
[22]), we can prove a general version of Proposition 9 and of its consequences.
Let us recall that a Banach-Mazur game on a nonempty open set U of X with
objective a subset G of U is a decreasing sequence of nonempty open subsets of
U : U1 ⊇ V1 ⊇ U2 ⊇ V2 ⊇ · · · ⊇ Un ⊇ Vn ⊇ · · · , where (Un) and (Vn) have
been chosen by player A and by player B alternatively. Player B is said to be the
winner if ∩∞

n=1Vn ⊆ G. We say that player B has a winning strategy if using it, B
wins for any choice of A.

Lemma 11. ([16], [20, Thm 4.23]). The player B has a winning strategy if
and only if the objective set G contains a dense G δ−set.

The following technical lemma will be needed in the proof of the main result
of this section.

Lemma 12. Let (pn)n∈N be a sequence of equivalent norms on X such that
there exist m, m′ > 0 such that

m‖x‖ ≤ pn(x) ≤ m′‖x‖, for all n ∈ N, x ∈ X.

Let (en)n∈N be a sequence of elements in X satisfying pn(en) = pn(en−1) = 1 for
every n ∈ N and such that there are x∗ ∈ X∗ and λ > 0 satisfying 〈x∗, en〉 > λ for
all n ∈ N. If

∑∞
n=0 d(en+1, Ren) is finite then the sequence (en)n∈N is convergent.

Proof. For each n ∈ N, let tn ∈ R be such that ‖en+1−tnen‖ = d(en+1, Ren).
Set un = en+1 − tnen. Then

∑∞
n=0 ‖un‖ is finite. Hence ‖un‖ → 0 as n → ∞.

Thus, from the relation

〈x∗, en+1〉 = tn〈x∗, en〉 + 〈x∗, un〉,
and since 〈x∗, en〉 > λ for all n ∈ N, then tn > 0 when n is sufficiently large. We
can assume that tn > 0 for all n. Since

∑∞
n=0 ‖un‖ is finite, then

∑∞
n=0 pn+1(un)

is finite. Hence,
∑∞

n=0 |1− tn| < +∞ by the following relation

|1 − tn| = |pn+1(en+1)− tnpn+1(en)| ≤ pn+1(en+1 − tnen) = pn+1(un).
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Thus
∞∑

n=0

‖en+1−en‖ ≤
∞∑

n=0

‖en‖|1−tn|+
∞∑

n=0

‖un‖ ≤ m−1
∞∑

n=0

|1−tn|+
∞∑

n=0

‖un‖ < +∞.

This implies that (en)n∈N is convergent.

Let us say that a set-valued mapping T : U ⇒ X∗ is Fréchet continuous at
x ∈ U if T (x) is a singleton and T is norm to norm upper semicontinuous at x,

i.e., for every ε > 0 there exists a neighborhood V of x such that

T (V ) ⊆ T (x) + εB∗.

Theorem 13. Suppose that X admits a Fr échet smooth equivalent norm and
let U be an open subset of X. Suppose that f : U → R is lower semicontinuous
on U and approximately convex at each point on a dense subset of U. Then f is
(strictly) Fréchet differentiable on a dense Gδ-subset of U .

Proof. Assume that the norm ‖·‖ is Fréchet smooth. Set T := ∂Cf. By Lemma
4, it suffices to show that the set G of x ∈ U such that T is Fréchet continuous at x
is a generic subset in U. To prove this, we use the Banach-Mazur game on U with
the objective set G. Let A and B be two players in this Banach-Mazur game. By
Lemma 11, it suffices to prove that B has a winning strategy. This means that for
any choice (Un) of A we will construct a choice (Vn) of B such that ∩∞

n=0Vn ⊆ G.

Let us choose a decreasing sequence of positive numbers (εn) such that ε0 = 1,∑∞
n=1

√
εn < 1. For each n, let us define Dn as the set of x ∈ U for which there

exists some δ > 0 such that B(x, δ) ⊂ U , T is bounded on B(x, δ) and

〈y∗ − x∗, y − x〉 > −ε2
n

2
‖y − x‖ ∀y ∈ B(x, δ), x∗ ∈ T (x), y∗ ∈ T (y).

By Proposition 3.2 in [12] and Theorem 10 in [13], Dn is a dense open subset
in U. First, suppose that U0 has been chosen by A. Player B can choose an open
set V0 ⊆ U0 ∩ D0 such that T (V0) is bounded (for example, V0 := B(x, δ) with
x ∈ U0 ∩D0 and δ > 0 such that T is bounded on B(x, δ) and B(x, δ) is included
in U0 ∩ V0). Set e0 := 0, p0 := 0, p1 := ε0d(·, Re0) = ‖ · ‖ and denote by p∗1 the
dual norm of p1 on X∗. For U1 ⊆ V0 chosen by A, set

s1 := sup{p∗1(x∗) : x∗ ∈ T (U1 ∩ D1)} < +∞.

Let x1 ∈ U1 ∩ D1, x∗
1 ∈ T (x1) and e1 ∈ X be such that

p1(e1) = 1 and 〈x∗
1, e1〉 > s1 − ε2

1/2.
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Then player B can choose

V1 := {x ∈ U1 ∩ D1 : 〈x∗, e1〉 > s1 − ε2
1 ∀x∗ ∈ T (x)}.

Indeed, since f is locally Lipschitzian at each point in D1, then T = ∂Cf is norm
to weak* upper semicontinuous at each point of D1. Hence V1 is an open set. Let
us prove that V1 is nonempty. Since x1 ∈ U1 ∩ D1, there is some δ > 0 such that
B(x1, δ) ⊆ U1 and

〈y∗ − x∗
1, y − x1〉 > −ε2

1

2
‖x1 − y‖, for all y ∈ B(x1, δ), y∗ ∈ T (y), x∗

1 ∈ T (x1).

Taking y := x1 + δe1/2 in this relation, one obtains

〈y∗, e1〉 > 〈x∗
1, e1〉 − ε2

1

2
‖e1‖ > s1 − ε2

1 for all y
∗ ∈ T (y), x∗

1 ∈ T (x1).

Thus, sinceD1 is dense in U and T = ∂Cf is norm to weak* upper semicontinuous
on D1, we can find z ∈ U1 ∩ D1 such that

〈z∗, e1〉 > s1 − ε2
1 for all z

∗ ∈ T (z).

That is, V1 is nonempty.
Suppose defined for k = 1, ..., n nonempty open subsets Uk, Vk, real numbers

sk, norms pk on X, xk ∈ Uk∩Dk, x∗
k ∈ T (xk) , ek ∈ X such that, for k = 1, ..., n,

one has

(2) p2
k(x) := p2

k−1(x) + εk−1d
2(x, Rek−1),

(3) sk := sup{p∗k(x∗) : x∗ ∈ T (Uk ∩ Dk)},

(4) pk(ek) = 1, 〈x∗
k, ek〉 > sk − ε2

k/2,

(5) Vk := {x ∈ Uk ∩ Dk : 〈x∗, ek〉 > sk − ε2
k ∀x∗ ∈ T (x)}.

Given Un+1 ⊂ Vn, set

p2
n+1(x) : = p2

n(x) + εnd2(x, Ren),

sn+1 : = sup{p∗n+1(x
∗) : x∗ ∈ T (Un+1 ∩ Dn+1)}.

Take xn+1 ∈ Un+1 ∩ Dn+1, x∗
n+1 ∈ T (xn+1) and en+1 ∈ X such that

pn+1(en+1) = 1 and 〈x∗
n+1, en+1〉 > sn+1 − ε2

n+1/2.
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Then B can choose

Vn+1 := {x ∈ Un+1 ∩ Dn+1 : 〈x∗, en+1〉 > sn+1 − ε2
n+1 ∀x∗ ∈ T (x)},

As above, one can show that Vn+1 is a nonempty and open set. Thus, for any choice
(Un) of A, player B has a strategy to obtain a sequence (Vn) by constructing the
sequences (sn), (en) and the sequence of norms (pn) as above. To complete the
proof, we need to prove that ∩∞

n=1Vn ⊆ G.
Set

p2(x) = ‖x‖2 +
∞∑

n=1

εnd2(x, Ren).

Then p is an equivalent norm on X since ‖x‖ ≤ p(x) ≤ √
2‖x‖ for all x ∈ X.

Obviously, the sequence (p2
n) uniformly converges to p2 on every bounded set of

X.

By Proposition 8, p2
n is Fréchet differentiable, too. By using the Weierstrass

M−test, we can show that p′n is uniformly convergent on every bounded set of
X. Hence, p2 is Fréchet differentiable on X. Consequently, the norm p is Fréchet
smooth.

Since (pn) is an increasing sequence, the sequence (p∗
n) is decreasing. Therefore,

the sequence (sn) is a decreasing sequence of nonnegative numbers. Thus it is
convergent, say, to s ≥ 0. Let us consider the following two cases.

Case 1. s = 0. Obviously, for any x ∈ ∩∞n=1Vn (if it is nonempty), by (3) and
the equivalence of pn+1 with p1 we have T (x) = {0} and T is norm to norm upper
semicontinuous at x. That is, ∩∞

n=1Vn ⊆ G.

Case 2. s > 0. Let x ∈ ∩∞
n=1Vn, x∗ ∈ T (x). By our construction, for each

n, one has pn+1(en+1) = pn+1(en) = 1 and 〈x∗, en〉 > sn − ε2
n > s/2 when n is

sufficiently large. Moreover, since pn+1(en) = 1

sn+1 ≥ p∗n+1(x
∗) ≥ 〈x∗, en〉 > sn − ε2

n.

Since sn := sup p∗n(T (Un∩Dn)) and x∗
n+1 ∈ T (Un∩Dn), we have sn ≥ p∗n(x∗

n+1)
and, by (4) with k := n + 1,

pn(en+1) ≥ pn(en+1)p∗n(x∗
n+1)/sn ≥ 〈x∗

n+1, en+1〉/sn

> sn+1/sn − ε2
n+1/2sn > 1 − ε2

n/sn − ε2
n+1/2sn > 1 − 3ε2

n/2s.

Consequently,

d2(en+1, Ren) = ε−1
n (1− p2

n(en+1)) ≤ ε−1
n (1− (1− 3ε2

n/2s)2) ≤ 3εn/s.
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Therefore, d(en+1, Ren) ≤ √
3/s

√
εn, which implies

∑∞
n=1 d(en+1, Ren) < +∞.

According to Lemma 12, the sequence (en) converges to some e ∈ X. Hence
p(e) = limn→∞ pn(en) = 1.

From the relations

sn ≥ p∗n(x∗)) ≥ 〈x∗, en〉 ≥ sn − ε2
n,

by letting n → ∞, one obtains 〈x∗, e〉 = s = p∗(x∗) or 〈x∗/s, e〉 = 1 = p∗(x∗/s),
p(e) = 1. Thus x∗/s = p′(e) and since p is Fréchet smooth, then T (x) is a singleton.

It remains to show that T is Fréchet continuous at x. Let ε > 0 be given. Take
δ ∈ (0, 1) such that δ2p′(e) + 2δB∗ ⊆ εB∗ and that

‖p′(u) − p′(e)‖ ≤ ε

2(s + 1)
for all u ∈ B(e, δ).

For every n ≥ 2 by (5), one has

〈y∗, en−1〉 > sn−1 − ε2
n−1 for all y ∈ Vn, y∗ ∈ T (y).

Hence there exists an index k such that for all n > k, one has

(6) 〈y∗, e〉 > s − δ2/2 for all y ∈ Vn, y∗ ∈ T (y).

On the other hand, by our construction, p∗(y∗) ≤ p∗n−1(y
∗) ≤ sn−1 for all y ∈ Vn,

y∗ ∈ T (y). Therefore, when n is sufficiently large, say, n > k, then

(7) p∗(y∗) ≤ s + δ2/2 for all y ∈ Vn, y∗ ∈ T (y).

Since p(e) = 1 and by the definition of p∗, the inequalities (6), (7) imply that for
each y ∈ Vn, y∗ ∈ T (y), one has

(8) 〈y∗, u− e〉 ≤ (s + δ2/2)(p(u)− p(e)) + δ2, for all u ∈ X.

For each n > k, y ∈ Vn, y∗ ∈ T (y), let us consider the function g defined by

f(u) := (s + δ2/2)p(u)− 〈y∗, u〉, u ∈ X.

Then, by relation (8), f(e) ≤ infu∈X f(u)+δ2. By the Ekeland variational principle,
there exists z ∈ B(e, δ) such that

f(z) ≤ f(u) + δ‖u − z‖, for all u ∈ X.

Consequently,

y∗ ∈ (s + δ2/2)p′(z) + δB∗ ⊆ (s + δ2/2)p′(e) + ε/2B∗ + δB∗ ⊆ x∗ + εB∗.
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Thus T (Vn) ⊆ T (x) + εB∗. That is, T is Fréchet continuous at x. The proof is
complete.

By an analogous argument, we can obtain the following result for the case of
Gâteaux differentiability. The detailed proof is omitted.

Theorem 14. Suppose that X admits a Gâteaux smooth equivalent norm and
let U be an open subset of X. Suppose that f : U → R is lower semicontinuous
on U and approximately convex at each point of a dense subset of U. Then g is
Gâteaux differentiable on a dense G δ-subset of U .

In order to extend the preceding results to regular functions, we will use the
following lemmas due to Zaj́lcek ([34], Lemma 1 and Lemma 2). Here X is an
arbitrary normed vector space and S(X) denotes the family of closed separable
subspaces of X.

Lemma 15. Let U be an open subset of X and let G be a generic subset of
U. Then there exists a mapping S : S(X) → S(X) satisfying Z ⊂ S(Z) for all
Z ∈ S(X) and such that the following assertion holds: if Y is a closed subspace
of X for which the set B(Y ) :=

⋃
{Z : S(Z) ⊂ Y } is dense in Y, then the set

G ∩ Y is dense in U ∩ Y.

Lemma 16. Let U be an open subset of X and let f : U → R be an arbitrary
function. Then there exists a mapping T : S(X) → S(X) satisfying Z ⊂ T (Z)
for all Z ∈ S(X) and such that the following assertion holds: if Y is a closed
subspace of X for which the set C(Y ) :=

⋃
{Z : T (Z) ⊂ Y } is dense in Y, then

g is strictly differentiable at each point of U ∩Y at which f | U∩Y is strictly Fréchet
differentiable.

Corollary 17. Let X be an Asplund space and let U be an open subset of X.
Suppose that f : U → R is a continuous function which is approximately convex
at each point of a dense subset A of U. Then g is (strictly) Fr échet differentiable
at each point of a dense Gδ-subset of U .

Proof. Note that the set F of points at which f is strictly Fréchet differentiable
is a Gδ-set ([34, Thm A]). Thus, it suffices to show that F is dense in U. Let u ∈ U
and ε > 0 be given. We use the mappings S, T : S(X) → S(X) of Lemmas 15,
16 to construct an increasing sequence (Zn) of S(X) with Z0 := Ru by setting
Zn+1 := S(Zn) + T (Zn). Let Y be the closure of the union of the Zn’s. Then
B(Y ) and C(Y ) are dense in Y since for all n ∈ N we have S(Zn) ⊂ Zn+1 ⊂ Y,

T (Zn) ⊂ Zn+1 ⊂ Y. Since by Proposition 5 and our assumption the set G at which
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g is approximately convex is a dense Gδ set, Lemma 15 ensures that G∩Y is dense
in U ∩ Y. Now, since X is an Asplund space, the closed separable subspace Y
of X has a separable dual. Hence Y admits a Fréchet smooth renorm ([2, Thm
4.13]). According to Theorem 13, the partial function f |U∩Y is strictly Fréchet
differentiable at each point of a dense Gδ-subset of U ∩ Y. By Lemma 16, f itself
is strictly differentiable at each such point. Hence, there exists a point y ∈ B(u, ε)
at which f is strictly Fréchet differentiable.

Corollary 18. Let U be an open subset of an Asplund space X and let f :
U → R be a locally Lipschitzian regular function. Then f is Fr échet differentiable
at each point of a dense Gδ-subset of U .

Proof. By [5, Prop. 5] f is approximately convex at each point of a dense
subset of U, so that the preceding corollary applies.
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Laboratoire de Mathématiques Appliquées,
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