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BOLZA TYPE PROBLEMS IN DISCRETE TIME

R. Sahraoui and L. Thibault
Dedicated to Professor Wataru Takahashi on the occasion of his 65th birthday

Abstract. In this paper we study a discrete time version of optimization
problems of Bolza type. The functionals are assumed to be merely lower
semicontinuous. We obtain optimality conditions which are always necessary
and which are also sufficient in the convex case whenever the given problem
satisfies a qualification condition.

1. INTRODUCTION

The general problem of Bolza in the Calculus of Variations (see, e.g., [6, 13, 18,
22]) can be formulated in Nonsmooth Analysis as the minimization of the functional

(1.1) I(x) = l(x(t0), x(t1)) +
∫ t1

t0

L(t, x(t), ẋ(t)) dt

over the space of all absolutely continuous arcs x : [t0, t1] → R
n. This general

formulation has the advantage to incorporate the equality and inequality constraints
relative to the initial/end point pair (x(t0), x(t1)) and the triple (t, x(t), ẋ(t)) since
the functions l and L(t, ·, ·) are extended real valued, that is, they are allowed to
take the value +∞. The model even permits to include nonsmooth set constraint
and set-valued constraint.

In the corresponding discrete time problem, one considers in place of an arc
x : [t0, t1] → R

n a vector x = (x0, x1, · · · , xT ) ∈ R
n × · · · × R

n = (Rn)T+1 and
in place of ẋ = dx

dt the difference∆xt = xt−xt−1 for t = 1, · · · , T . The associated
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problem (P(l, L)) takes then the form: Minimize over all x = (x0, x1, . . . , xT ) ∈
(Rn)T+1 the function

ϕ(x) := l(x0, xT ) +
T∑

t=1

Lt(xt−1, ∆xt),

where l and Lt for all t = 1, · · · , T are functions from R
n × R

n into R ∪ {+∞}
which are proper, that is, none of which is identically +∞. Throughout, unless
otherwise stated, we assume that these functions are lower semicontinuous (lsc, for
short) or locally Lipschitzian. Then ϕ, too, is lsc with values in R ∪ {+∞}. As
for the Bolza problem above in calculus of variations, it is important to observe
the fact that in (P(l, L)) the constraints are implicit in the inequality ϕ(x) < ∞,
because only vectors x satisfying ϕ(x) < +∞ are of interest in the minimization.
Throughout, we assume that ϕ is proper, that is, there exists some z ∈ (Rn)T+1

such that l(z0, zT ) < +∞ and Lt(zt−1, ∆zt) < +∞ for all t = 1, · · · , T . Letting

(1.2) C = {(u, v) ∈ R
n × R

n | l(u, v) < ∞}

(that is, C is the effective domain dom l of l) and

(1.3) Ft(u) = {v ∈ R
n |Lt(u, v) < ∞} ,

it is emphasized in [20] that, without loss of generality, one can restrict attention in
(P(l, L)) to minimizing ϕ(x) over the set of all x ∈ (Rn)T+1 which satisfy

(1.4) (x0, xT ) ∈ C and ∆xt ∈ Ft(xt−1) ∀ t = 1, · · · , T.

Implicit in the dynamical constraint∆xt ∈ Ft(xt−1) is the state constraint xt−1 ∈ Zt

for t = 1, · · · , T , where Zt = {z ∈ R
n|Ft(z) �= ∅}.

Conversely, given finite valued functions l and Lt, set constraint C ⊂ R
n ×R

n

and set-valued mapping constraints Ft : R
n ⇒ R

n, it is also of interest to study
the minimization problem (PC,F (l, L)) consisting in minimizing the function ϕ(x)
above over all the vectors x ∈ (Rn)T+1 satisfying the constraints in (1.4). At a first
step, this problem may be translated in the form of problem (P(l, L)) by putting on
the one hand l̃(u, v) = l(u, v) if (u, v) ∈ C and l̃(u, v) = +∞ otherwise and on
the other hand L̃t(u, v) = Lt(u, v) if v ∈ Ft(u) and L̃t(u, v) = +∞ otherwise.

The discrete Bolza type problem (P(l, L)) has been introduced and largely stud-
ied in the convex setting by Rockafellar and Wets [20] and they also considered the
stochastic version in discrete time where the decision at any time t is required to
depend only on past random events. This stochastic discrete Bolza type problem
is related to stochastic problems with recourse. Other results of interest concerning
stochastic optimization problems with recourse can be found, e.g., in [19, 10, 4]
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and the references therein. Results concerning the discrete Bolza problem in the
form (PC,F (l, L)), with l and L locally Lipschitzian, have been also provided in
Mordukhovich [13][Theorem 6.17] (see also [12]). The study of such problems
by Mordukhovich was the first step of his efficient approach to derive necessary
optimality conditions for optimal control problems after making appropriate dis-
cretizations of the control problems. It is also worth mentioning that, among do-
mains of its own interest, the problem (PC,F (l, L)) contains as particular case the
modelization of various economic dynamics (see, e.g., [8, 11]). In the present paper
we focus our attention to the discrete problem without any convexity assumption.
We first establish general necessary optimality conditions for the discrete above
problem (P(l, L)). Optimality conditions for the problem (PC,F (l, L)) is then de-
rived when the functions l and Lt are locally Lipschitzian around the candidate
point through some relative qualification condition. A particular attention is paid
to the case when the images of the set-valued mappings Ft are prox-regular. The
corresponding optimality conditions of [20] in the convex setting are also derived.

2. DEFINITIONS AND PRELIMINARIES

In the next section, although our necessary optimality conditions could be given
with the use of many types of subdifferentials, we will limit ourselves to state and
establish them with the basic limiting subdifferential.

Recall first that for a proper lsc function f : R
n → R ∪ {+∞} and u ∈ dom f

the Fréchet subdifferential ∂̂f(u) is defined by the fact that a vector v ∈ ∂̂f(u)
when for any positive number ε there exists some positive number η such that one
has

〈v, u′ − u〉 ≤ f(u′) − f(u) + ε‖u′ − u‖ for all u′ ∈ B(u, η),

where B(u, η) denotes the open ball with radius η centered at the point u. One puts
in general ∂̂f(u) = ∅ when f(u) is not finite.

When f is the indicator function δS of a closed subset S ⊂ R
n, that is, δS(u) =

0 if u ∈ S and δS(u) = +∞ otherwise, its Fréchet subdifferential at a point u ∈ S
is a cone. It is generally called the Fréchet normal cone to S at u and one denotes
either N̂S(u) or N̂(S, u).

Since the Fréchet subdifferential enjoys only fuzzy calculus rules (see, e.g.,
[13] for more details), one considers a limiting process of such subdifferentials
yielding to the so-called limiting (basic) subdifferential. A vector v is in the limiting
subdifferential ∂f(u) at a point u ∈ dom f when there exists a sequence (uk, f(uk))
converging to (u, f(u)) and vectors vk ∈ ∂̂f(uk) with vk → v. As above, one sets
∂f(u) = ∅ if u �∈ dom f . The set ∂f(u) is nonconvex in general but it enjoys
full pointbased calculus rules. For example, if g : R

n → R is a locally Lipschitz
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function one has (see [13, 21]) the inclusion

(2.1) ∂(f + g)(u) ⊂ ∂f(u) + ∂g(u),

where the addition in the second member is taken in the usual Minkowski sense,
that is, ∂f(u) + ∂g(u) := {v + v ′ | v ∈ ∂f(u), v′ ∈ ∂g(u)}.

The inclusion (2.1) can be also obtained under a much weaker condition than the
local Lipschitz property of one of the functions f and g. To see that, let us recall the
concept of singular limiting subdifferential. Modifying slightly the definition above,
we say that a vector v belongs to the singular limiting subdifferential ∂∞f(u) at a
point u ∈ dom f when there exists a sequence (uk, f(uk)) converging to (u, f(u)),
positive numbers λk ↓ 0 and vectors vk ∈ ∂̂f(uk) such that λkvk → v. So, if for two
lsc functions f, g the qualification condition ∂∞f(u)∩−∂∞g(u) = {0} holds, then
one has (see [13, 21]) ∂(f + g)(u) ⊂ ∂f(u) + ∂g(u). This qualification condition
can be translated (see [13, 21]) in the case of any finite number of lsc functions:
for a finite number of lsc functions fi, i = 0, 1, · · · , m, and for u ∈ ∩m

i=0dom fi

one has

(2.2) ∂(
m∑

i=0

fi)(u) ⊂
m∑

i=0

∂fi(u)

whenever for any yi ∈ ∂∞fi(u) with
∑m

i=0 yi = 0 one necessarily has y0 = y1 =
· · · = ym = 0. The inclusion (2.1) is a particular case of (2.2) since

(2.3) ∂∞g(u) = {0} whenever g Lipschitz near u.

The same qualification condition above also gives (see [13, 21])

(2.4) ∂∞(
m∑

i=0

fi)(u) ⊂
m∑

i=0

∂∞fi(u).

Concerning the composition operation, we will recall the result with the com-
position with a linear mapping. If A : R

m → R
n is a linear surjective mapping,

then see [13, 21]

(2.5) ∂(f ◦ A)(u) ⊂ A∗∂f(Au) and ∂∞(f ◦ A)(u) ⊂ A∗∂∞f(Au),

where A∗ denotes the adjoint of A and A∗∂f(Au) := {A∗v | v ∈ ∂f(Au)}.
As for the Fréchet normal cone (see above), the limiting normal cone to a closed

subset S at u ∈ S is defined through its indicator function by NS(u) := ∂δS(u).
Sometimes one write N (S, u) in place of NS(u). The connexion with the singular
subdifferential is provided by the equalities

∂∞δS(u) = ∂δS(u) = N (S, u).
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Of course, when the point u is a minimum point for the function f one has both
0 ∈ ∂̂f(u) and 0 ∈ ∂f(u), the first inclusion being obvious under the minimum
point assumption and the second one being a consequence of the fact that one always
has ∂̂f ⊂ ∂f . Further, when f is convex, the Fréchet subdifferential and the limiting
subdifferential coincide with the usual Fenchel subdifferential of Convex Analysis.

In the next section, we will just say subdifferential of f and normal cone to S
in place of limiting subdifferential of f and limiting normal cone to S.

3. NECESSARY OPTIMALITY CONDITIONS

The following theorem states the first result of the paper. Here the functions l
and Lt are neither convex nor locally Lipschitzian.

Theorem 3.1. Let x̄ ∈ (Rn)T+1 be a solution of problem (P(l, L)).
Assume that l and Lt are proper and lsc for all t = 1, · · · , T and that the following
qualification condition Q(x̄) holds:

the only vector y = (y0, · · · , yT ) ∈ (Rn)T+1 for which

(y0,−yT ) ∈ ∂∞l(x̄0, x̄T ) and (∆yt, yt) ∈ ∂∞Lt(x̄t−1, ∆x̄t), ∀ t = 1, · · · , T

is the zero vector in (Rn)T+1 .

Then there exists some vector p = (p0, · · · , pT ) ∈ (Rn)T+1 such that:
a) (p0,−pT ) ∈ ∂l(x̄0, x̄T )
b) (∆pt, pt) ∈ ∂Lt(x̄t−1, ∆x̄t) for all t = 1, · · · , T .

Proof.

Step 1. Consider the function ϕ : (Rn)T+1 −→ R ∪ {+∞}

x �→ ϕ(x) := l(x0, xT ) +
T∑

t=1

Lt(xt−1, ∆xt)

and put ϕ0(x) := l(x0, xT ) = (l ◦ A0)(x) and

ϕt(x) := Lt(xt−1, ∆xt) = (Lt ◦ At)(x) for t = 1, · · · , T,

where A0, At : (Rn)T+1 −→ (Rn)2 are linear mappings defined by

A0x := (x0, xT ) and Atx := (xt−1, ∆xt) for all t = 1, · · · , T.

As x̄ is a solution of the minimization problem (P(l, L)) we have

0 ∈ ∂ϕ(x̄) = ∂(ϕ0 +
T∑

t=1

ϕt)(x̄).
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Step 2. Let us show that a corresponding qualification condition holds for the
functions ϕ0, ϕ1, . . . , ϕT .
In fact we are going to prove that for each y = (y0, . . . , yT ) ∈ (Rn)T+1 for which

T∑
t=0

yt = 0 with yt ∈ ∂∞ϕt(x̄) for all t = 0, · · · , T,

then we necessarily have y = 0.
Indeed fix any such y. As the linear mappingsAt are surjective for t = 0, · · · , T ,

then according to (2.5)

y0 ∈ ∂∞ϕ0(x̄) = ∂∞(l ◦A0)(x̄) ⊂ A∗
0∂

∞l(A0x̄)

and

yt ∈ ∂∞ϕt(x̄) = ∂∞(Lt ◦ At)(x̄) ⊂ A∗
t ∂

∞Lt(Atx̄) ∀ t = 1, · · · , T,

which gives the existence of some

(3.1) z0 = (z1
0 , z2

0) ∈ ∂∞l(x̄0, x̄T ) such that y0 = A∗
0z0

and some

(3.2) zt = (z1
t , z

2
t ) ∈ ∂∞Lt(x̄t−1, ∆x̄t) such that yt = A∗

t zt for t = 1, · · · , T.

Now we must calculate A∗
0 and A∗

t for t = 1, · · · , T.
We have A∗

t : (Rn)2 −→ (Rn)T+1, t = 1, · · · , T and

〈A∗
0(z1, z2), h〉(Rn)T+1 = 〈(z1, z2), A0h〉(Rn)2 = 〈(z1, z2), (h0, hT )〉(Rn)2

= 〈(z1, 0, . . . , 0, z2), (h0, h1, · · · , hT )〉(Rn)T+1 .

Then
A∗

0(z1, z2) = (z1, 0, . . . , 0, z2) for all (z1, z2) ∈ (Rn)2.

In the same way, for A∗
1 we have

〈A∗
1(z1, z2), h〉(Rn)T+1 = 〈(z1, z2), A1h〉(Rn)2 = 〈(z1, z2), (h0, h1 − h0)〉(Rn)2

= 〈(z1 − z2, z2, 0, · · · , 0), (h0, h1, · · · , hT )〉(Rn)T+1 .

So,
A∗

1(z1, z2) = (z1 − z2, z2, 0, . . . , 0) for all (z1, z2) ∈ (Rn)2

and similarly we have

A∗
t (z1, z2) = (0, · · · , 0, z1 − z2, z2, 0, . . . , 0) for all t = 1, · · · , T.
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Therefore

y0 = (z1
0 , 0, · · · , 0, z2

0)
y1 = (z1

1 − z2
1, z

2
1, 0, · · · , 0)

...
yt = (0, · · · , 0, z1

t − z2
t , z2

t , 0, · · · , 0)
yT = (0, · · · , 0, z1

T − z2
T , z2

T ).

As
∑T

t=0 yt = 0, then we have

(a) z1
0 + z1

1 − z2
1 = 0

(b) z2
t−1 + z1

t − z2
t = 0 for t = 2, · · · , T − 1

(c) z2
0 + z2

T = 0.

Put q0 = z1
0 and qt = z2

t for all t = 1, · · · , T. So for any t = 2, · · · , T − 1
we have ∆qt = qt − qt−1 = z2

t − z2
t−1 and hence from equation (b) we obtain

∆qt = z1
t . Further from equation (a) we have ∆q1 = q1 − q0 = z2

1 − z1
0 = z1

1 and
from equation (c) we also have qT = z2

T = −z2
0 . If we substitute in the relations

(3.1) and (3.2) , we obtain

(q0,−qT ) ∈ ∂∞l(x̄0, x̄T ) and (∆qt, qt) ∈ ∂∞Lt(x̄t−1, ∆x̄t) ∀t = 1, · · · , T.

According to the qualification condition Q(x̄) that we have assumed, we see that
q0 = q1 = · · · = qT = 0, and then: 0 = q0 = z1

0 , 0 = qt = z2
t , 0 = ∆qt = z1

t for
all t = 1, · · · , T , and 0 = qT = −z2

0 . This yields z1
0 = z2

0 = z1
t = z2

t = 0 for all
t = 1, · · · , T and hence

y0 = A∗z0 = 0 and yt = A∗zt = 0 for all t = 1, · · · , T,

which means
y = (y0, y1, · · · , yT ) = 0.

Step 3. As the functions ϕt are lsc over a finite dimensional space for all
t = 0, · · · , T and as the qualification condition in Step 2 holds, we have by the
formula (2.2)

∂(ϕ0 +
T∑

t=1

ϕt)(x̄) ⊂ ∂ϕ0(x̄) +
T∑

t=1

∂ϕt(x̄)

and hence

0 ∈ ∂(l ◦ A0)(x̄) +
T∑

t=1

∂(Lt ◦ At)(x̄).
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This ensures the existence of ξ0 ∈ ∂(l ◦ A0)(x̄) and ξt ∈ ∂(Lt ◦ At)(x̄) for all
t = 1, · · · , T such that

∑T
t=0 ξt = 0. As the mappings At are surjective and

the functions l, Lt are lsc for all t = 1, · · · , T , according to the calculus rule of
subdifferential of composition function in (2.5), we have

∂(l ◦ A0)(x̄) ⊂ A∗
0∂l(A0x̄) and ∂(Lt ◦ At)(x̄) ⊂ A∗

t∂Lt(Atx̄) ∀t = 1, · · · , T.

Then ξ0 ∈ A∗
0∂l(x̄0, x̄T ) and ξt ∈ A∗

t∂l(x̄t−1, ∆x̄t) for all t = 1, · · · , T , which
ensures the existence of some u0 ∈ ∂l(x̄0, x̄T ) such that ξ0 = A∗

0u0 and some
ut ∈ ∂Lt(x̄t−1, ∆x̄t) such that ξt = A∗

tut for all t = 1, · · · , T . This can be
translated in the form

(3.3) u0 = (u1
0, u

2
0) ∈ ∂l(x̄0, x̄T ) and ξ0 = (u1

0, 0, · · · , 0, u2
0)

and for all t = 1, · · · , T

(3.4) ut = (u1
t , u

2
t ) ∈ ∂Lt(x̄t−1, ∆x̄t) and ξt = (0, · · · , 0, u1

t − u2
t , u

2
t , 0, · · · , 0).

Putting p0 = u1
0 and pt = u2

t for all t = 1, · · · , T , we see that

0 =
∑T

t=0 ξt = ( u1
0 + u1

1 − u2
1, u

2
1 + u1

2 − u2
2, · · · ,

u2
t−1 + u1

t − u2
t , · · · , u2

T−1 + u1
T − u2

T , u2
0 + u2

T ),

which gives u1
0 + u1

1 − u2
1 = 0 for the first component, u2

t−1 + u1
t − u2

t = 0 for any
t = 2, · · · , T , and u2

0 + u2
T = 0. Then

∆pt = pt − pt−1 = u2
t − u2

t−1 = u1
t , ∀t = 2, · · · , T

and for t = 1 we also have ∆p1 = p1 − p0 = u2
1 − u1

0 = u1
1. Observe also that

pT = u2
T = −u2

0, so u2
0 = −pT . Finally, if we replace in (3.1) and (3.2) we

obtain that the vector p = (p0, p1, · · · , pT ) ∈ (Rn)T+1 satisfies the requirements
(p0,−pT ) ∈ ∂l(x̄0, x̄T ) and

(∆pt, pt) ∈ ∂LT (x̄t−1, ∆x̄t) ∀ t = 1, · · · , T.

This completes the proof of the theorem.

The following corollary deals with the discrete problem (PC,F (l, L)), that is,
the case of Lipschitzian functions l and Lt, explicit set constraint C and set-valued
mapping constraint Ft. Before stating the corollary, we need to recall that the graph
of the set-valued mapping Ft is the subset

gph Ft := {(u, v) ∈ R
n × R

n | v ∈ Ft(u)}.
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In the corollary we assume that the sets C and gphFt are closed in R
n × R

n.

Corollary 3.2. Let x̄ ∈ (Rn)T+1 be a solution of problem (PC,F (l, L)).
Assume that the functions l and L t are locally Lipschitzian for all t = 1, · · · , T

and that the following qualification condition Q̃(x̄) holds:
the only vector y = (y0, · · · , yT ) ∈ (Rn)T+1 for which

(y0,−yT ) ∈ NC(x̄0, x̄T ) and (∆yt, yt) ∈ NgphFt(x̄t−1, ∆x̄t) ∀ t = 1, · · · , T

is the zero vector in (Rn)T+1.

Then there exists some vector p = (p0, · · · , pT ) ∈ (Rn)T+1 such that:

(a) (p0,−pT ) ∈ ∂l(x̄0, x̄T ) + NC(x̄0, x̄T )

(b) (∆pt, pt) ∈ ∂Lt(x̄t−1, ∆x̄t) + NgphFt(x̄t−1, ∆x̄t) for all t = 1, · · · , T .

Proof. Put St = gphFt for all t = 1, · · · , T . Consider the functions
l̃(x0, xT ) = l(x0 xT ) + δC(x0, xT ) and

L̃t(xt−1 ∆xt) = Lt(xt−1 ∆xt) + δSt(xt−1, ∆xt),

and observe that they are lsc and proper. Let us show that the qualification condition
Q(x̄) of Theorem 3.1 holds for the functions l̃ and L̃ for all t = 1, · · · , T . So let
y ∈ (Rn)T+1 such that

(y0,−yT ) ∈ ∂∞l̃(x̄0, x̄T ) and (∆yt, yt) ∈ ∂∞L̃t(x̄t−1, ∆x̄t), ∀ t = 1, · · · , T.

As l, Lt are locally Lipschitzian functions for all t = 1, · · · , T , we see first that by
(2.4) and (2.3)

(y0,−yT ) ∈ ∂∞l̃(x̄0, x̄T ) ⊂ ∂∞δC(x̄0, x̄T ) ⊂ NC(x̄0, x̄T )

and also

(∆yt, yt) ∈ ∂∞L̃t(x̄t−1, ∆x̄t) ⊂ NgphFt(x̄t−1, ∆x̄t), ∀ t = 1, · · · , T.

By the qualification condition Q̃(x̄) we have y0 = y1 = . . . = yT = 0, that is, the
qualification condition Q(x̄) is satisfied.

Since l̃ and L̃t are proper and lsc for all t = 1, · · · , T and since the qualification
condition Q(x̄) relative to the problem associated with l̃ and L̃ holds, we may apply
Theorem 3.1 to obtain some vector p = (p0 · · · pT ) ∈ (Rn)T+1 such that

(p0,−pT ) ∈ ∂l̃(x̄0, x̄T ) and (∆pt, pt) ∈ ∂L̃t(x̄t−1, ∆x̄t), ∀ t = 1, · · · , T.
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As l, Lt are locally Lipschitzian functions for all t = 1, · · · , T , we have according
to (2.1)

∂l̃(x̄0, x̄T ) ⊂ ∂l(x̄0, x̄T ) + ∂δC(x̄0, x̄T )

and

∂L̃t(x̄t−1, ∆x̄t) ⊂ ∂Lt(x̄t−1, ∆x̄t) + ∂δSt(x̄t−1, ∆x̄t), ∀ t = 1, · · · , T

So we conclude that

(a) (p0,−pT ) ∈ ∂l(x̄0, x̄T ) + NC(x̄0, x̄T ) and
(b) (∆pt, pt) ∈ ∂Lt(x̄t−1, ∆x̄t) + NgphFt(x̄t−1, ∆x̄t), ∀ t = 1, · · · , T .

Remark 3.3. We can take any Asplund space E in place of R
n in Theorem

3.1 and Corollary 3.2 to obtain the same results, but we must assume in addition
some sequential normal compactness property in the qualification condition (see,
e.g., [13]). We did not pursue this line since our next objective will be the study,
through the present paper, of the stochastic version where naturally xT (ω) ∈ R

n.
Let C0 be a nonempty closed subset of R

n. The next corollary concerns the
minimization problem (PC0,F (g, L)) where the objective is to minimize the function

x �→ g(xT ) +
T∑

t=1

Lt(xt, ∆xt)

under the initial constraint x0 ∈ C0 and the inclusion constraints ∆xt ∈ Ft(xt−1)
for all t = 1, · · · , T .

Corollary 3.4. Let x̄ ∈ (Rn)T+1 be a solution of problem (PC0,F (g, L)).
Assume that the functions g and L t are locally Lipschitzian for all t = 1, · · · , T ,
and that the following qualification condition Q̂(x̄) holds:

the only vector y = (y0, · · · , yT ) ∈ (Rn)T+1 for which

y0 ∈ NC0(x̄0), yT = 0, and (∆yt, yt) ∈ NgphFt(x̄t−1, ∆x̄t) ∀ t = 1, · · · , T

is the zero vector in (Rn)T+1.

Then there exists some vector p = (p0, · · · , pT ) ∈ (Rn)T+1 such that:

(a) p0 ∈ NC0(x̄0), pT ∈ −∂g(x̄T ),
(b) (∆pt, pt) ∈ ∂Lt(x̄t−1, ∆x̄t) + NgphFt(x̄t−1, ∆x̄t) for all t = 1, · · · , T .

Proof. Put l(x0, xT ) := g(xT ) and C := C0 × R
n. Then the normal cone to

C is given by NC(x̄0, x̄T ) = NC0(x̄0)×{0} and the function l is obviously locally
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Lipschitzian with the equality ∂l(x̄0, x̄T ) = {0}×∂g(x̄T ). Further, it is easily seen
that the qualification condition Q̃(x̄) holds. Thus, the result is a consequence of
Corollary 3.2.

The corollary belove is relative to the case when the images of the set-valued
mappings Ft are prox-regular. Recall that a closed subset S of R

n is ρ-prox-regular
(for some ρ ∈]0, +∞]) when for any point z of the ρ-open enlargement of S

Uρ(S) := {u ∈ R
n | d(u, S) < ρ}

(where d(·, S) is the distance to S with respect to the Euclidean norm), the set S
has a unique nearest point (denoted by PS(z)) to z. This class of sets has been
introduced in R

n by Federer [9] under the name of positively reached sets. The
local property has been proved in [16] to be related to the fact that the indicator
function of S is prox-regular in the sense of Poliquin and Rockafellar [15]. So the
authors of [16] used the name of ρ-prox-regular sets in the above case. A closed
set S ⊂ R

n is characterized in [16] to be ρ-prox-regular if and only if

〈v1 − v2, u1 − u2〉 ≥ −‖u1 − u2‖2

for all vi ∈ NS(ui) with ‖vi‖ ≤ ρ. Another characterization is that for any nonzero
vector v ∈ NS(u) one has u ∈ ProjS(u + ρ v

‖v‖ ), where ProjS(z) denotes the set
of all nearest points in S to z. Translating the latter inclusion in the form

‖u− (u + ρ
v

‖v‖)‖2 ≤ ‖u − u′‖2 for all u′ ∈ S,

we see that it is equivalent to the inequality

(3.5) 〈v, u′ − u〉 ≤ 1
2ρ

‖v‖ ‖u′ − u‖2 for all u′ ∈ S.

Observe that the latter inequality still holds for v = 0.
In fact, those results has been proved in [16] in the setting of (infinite dimen-

sional) Hilbert space (for which one needs to require, in addition, in the definition
above the continuity of PS over the open enlargement Uρ(S)). For several other
results, we refer to [9, 3, 6, 16, 7]. See also [1] for the framework of uniformly
convex Banach space.

Recall also that for any set-valued mapping G : R
n ⇒ R

n the coderivative of
G at a point (u, v) ∈ gph G is the set-valued mapping D∗G(u, v) : R

n ⇒ R
n given

by ζ ∈ D∗G(u, v)(ξ) if and and only if (ζ,−ξ) ∈ N (gphG, (u, v)).
We will also need the Lipschitz property concept for set-valued mapping. Recall

that the set-valued mapping G is locally Lipschitzian around a point ū with a non-
negative number γ for Lipschitz modulus provided that there exists some positive
number η such that for all u, u′ ∈ B(ū, η) one has

G(u′) ⊂ G(u) + γ‖u− u′‖B,
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where B denotes the closed unit ball of R
n centered at the origin.

We can now state the corollary for the problem (PC0,F (g)) where each function
Lt is equal to the null function.

Corollary 3.5. Let x̄ ∈ (Rn)T+1 be a solution of problem (PC0,F (g)). Assume
that the function g is locally Lipschitzian and that each set-valued mapping F t is
locally Lipschitzian around x̄ t−1 for t = 1, · · · , T .

Then there exists some vector p = (p0, · · · , pT ) ∈ (Rn)T+1 such that: a)
p0 ∈ NC0(x̄0), pT ∈ −∂g(x̄T ),
b) (∆pt, pt) ∈ NgphFt(x̄t−1, ∆x̄t) for all t = 1, · · · , T , that is,

∆pt ∈ D∗Ft(x̄t−1, ∆x̄t)(−pt).

If in addition the sets F t(u) are ρ-prox-regular for u near to x̄ t−1 for each
t = 1, · · · , T , then one also has

〈pt, ∆x̄t〉 = Ht,ρ(x̄t−1, ∆x̄t, pt)

for all t = 1, · · · , T , where Ht,ρ may be considered as the generalized Hamiltonian
up to the ρ-square, in the sense that

(3.6) Ht,ρ(u, v, ξ) := sup{〈ξ, w〉 − 1
2ρ

‖ξ‖ ‖w − v‖2 |w ∈ Ft(u)}.

Proof. Without loss of generality we may suppose that all the set-valued
mappings Ft, for t = 1, · · · , T , have the same Lipschitz modulus γ ≥ 0, that is,
for some real number η > 0

(3.7) Ft(u′) ⊂ Ft(u) + γ‖u′ − u‖B

for all t = 1, · · · , T and u, u′ ∈ x̄t−1 + ηB. Let us show that the qualification
Q̂(x̄) of Corollary 3.4 is satisfied. Fix any vector y = (y0, · · · , yT ) ∈ (Rn)T+1

such that y0 ∈ NC0(x̄0), yT = 0, and (∆yt, yt) ∈ NgphFt(x̄t−1, ∆x̄t) for all
t = 1, · · · , T . It is not difficult to verify (see also [13]) that the Lipschizian
property (3.4) of Ft ensures that for each t = 1, · · · , T , one has ‖ζ‖ ≤ γ‖ξ‖ for
any (ζ, ξ) ∈ NgphFt(x̄t−1, ∆x̄t). So we have ‖∆yt‖ ≤ γ‖yt‖ and hence using the
equality yT = 0 we obtain yT = yT−1 = · · · = y0 = 0, which says that Q̂(x̄) holds.
Therefore the assertions (a) and (b) follow from Corollary 3.4.

Assume now that in addition the prox-regularity assumption of the theorem
holds and fix any t ∈ {1, · · · , T}. Put ū := x̄t−1, v̄ := ∆x̄t, and take any
(ζ, ξ) ∈ NgphFt(ū, v̄). Then, by definition, there exists a sequence of Fréchet
normal vectors (ζk, ξk) converging to (ζ, ξ) with (ζk, ξk) ∈ N̂gphFt(uk, vk) and
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with (uk, vk) → (ū, v̄) and uk ∈ ū + ηB. For any ε > 0 there is some ηk < η such
that for all (u, v) ∈ gphFt with (u, v) ∈ (uk, vk) + ηkB one has

〈ζk, u− uk〉 + 〈ξk, v − vk〉 ≤ ε(‖u − uk‖ + ‖v − vk‖)
and hence taking u = uk we see that 〈ξk, v − vk〉 ≤ ε‖v − vk‖. This means
that ξk ∈ N̂ (Ft(uk), vk). Our prox-regularity property entails by (3.3) and by the
inclusion N̂(·, ·) ⊂ N (·, ·) that

(3.8) 〈ξk, v − vk〉 ≤ 1
2ρ

‖ξk‖ ‖v − vk‖2 ∀v ∈ Ft(uk).

Now by (3.4) we have Ft(ū) ⊂ Ft(uk) + γ‖ū − uk‖B, which yields that any
w ∈ Ft(ū) may be written, for each integer k, in the form w = wk + γ‖ū− uk‖bk

with bk ∈ B. The latter implies on the one hand wk → w and on the other hand
according to (3.5)

〈ξk, w − vk〉 = 〈ξk, wk − vk〉 + 〈ξk, w − wk〉

≤ 1
2ρ

‖ξk‖ ‖wk − vk‖2 + 〈ξk, w − wk〉.

Passing to the limit with k → +∞ we obtain 〈ξ, w− v̄〉 ≤ 1
2ρ‖ξ‖ ‖w− v̄‖2, that is,

〈ξ,w〉 − 1
2ρ

‖ξ‖ ‖w− v̄‖2 ≤ 〈ξ, v̄〉.

Letting (ζ, ξ) = (∆pt, pt) according to (b), we see that

〈pt, ∆x̄t〉 = Ht,ρ(x̄t−1, ∆x̄t, pt),

which completes the proof.

Remark 3.6. It is clear in the proof above that assertions (a) and (b) still holds
when the Lipschitz property of Ft is relaxed in the Aubin property for Ft around
the point (ū, v̄) := (x̄t−1, ∆x̄t), that is, for some η > 0 and γ ≥ 0 one has the
inclusion

(v̄ + ηB) ∩ Ft(u′) ⊂ Ft(u) + ‖u′ − u‖B

for all u, u′ ∈ ū+ηB. However, the Lipschitz property is required in the proof of the
equality (3.6). Nevertheless, (3.6) could be established with some other regularity
properties in [2] instead of the prox-regularity.

In the case when the functions l and Lt are convex (non necessarily lsc), our
approach in Theorem 3.1 allows us to provide another proof of the result of Rock-
afellar and Wets [20] where appears a qualification condition making use of the
relative interiors of the functions l and Lt.



1398 R. Sahraoui and L. Thibault

Theorem 3.7. Assume that the functions l and L t are proper and convex (non
necessarily lsc) for all t = 1, · · · , T and assume also the following qualification
condition holds:{

there exists some point z ∈ (Rn)T+1 such that

(z0, zT ) ∈ ri dom l and (zt−1, ∆zt) ∈ ri domLt, ∀ t = 1, · · · , T.

Then, a feasible point x̄ ∈ (Rn)T+1 of the problem (P(l, L)) is a solution of
this problem if and only if there exists some vector p ∈ (R n)T+1 satisfying relations
(a) and (b) of Theorem 3.1.

Proof. Assume that x̄ is a solution of the problem (P(l, L)) and consider the
linear mappings A0, At and the functions ϕ0, ϕt in the first step of the proof of
Theorem 3.1. We see that these functions are convex and 0 ∈ ∂ϕ(x̄) = ∂(ϕ0 +∑T

t=1 ϕt)(x̄) since x̄ is a minimum point of ϕ.
Let us prove that ∩T

t=0ri domϕt �= ∅. Indeed we have

domϕ0 = dom (l ◦ A0) and domϕt = dom (lt ◦ At), ∀ t = 1, · · · , T

and our assumption may be written in the form A0z ∈ ri dom l and Atz ∈ ri domLt

for t = 1, · · · , T . Therefore (see [17]) z ∈ ri domϕ0 and z ∈ ri domϕt for
t = 1, · · · , T , which implies that ∩T

t=0ri domϕt �= ∅.
The nonemptyness of the latter intersection ensures (see [17]) the first equality

below

∂(ϕ0 +
T∑

t=1

ϕt)(x̄) = ∂ϕ0(x̄) +
T∑

t=1

∂ϕt(x̄) = ∂(l ◦ A0)(x̄) +
T∑

t=1

∂(lt ◦ At)(x̄).

The linear mappings A0 and At for t = 1, · · · , T being surjective we have ∂(l ◦
A0)(x̄) = A∗

0∂l(A0x̄) and ∂(Lt ◦ At)(x̄) = A∗
t ∂lt(Atx̄) for t = 1, · · · , T . Thus,

the proof of optimality conditions follows the arguments of the second part of Step
2 and the arguments of Step 3 in the proof of Theorem 3.1.

Finally, the sufficiency of the optimality conditions through the convexity of l

and Lt is straightforward and we omit it.
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