ON THE NUMBER OF SOLUTIONS OF EQUATIONS OF DICKSON POLYNOMIALS OVER FINITE FIELDS

Wun-Seng Chou, Gary L. Mullen and Bertram Wassermann
Dedicated to Professor Ko-Wei Lih on the occasion of his 60th birthday.

Abstract

Let k, n_{1}, \ldots, n_{k} be fixed positive integers, $c_{1}, \ldots, c_{k} \in G F(q)^{*}$, and $a_{1}, \ldots, a_{k}, c \in G F(q)$. We study the number of solutions in $G F(q)$ of the equation $c_{1} D_{n_{1}}\left(x_{1}, a_{1}\right)+c_{2} D_{n_{2}}\left(x_{2}, a_{2}\right)+\cdots+c_{k} D_{n_{k}}\left(x_{k}, a_{k}\right)=c$, where each $D_{n_{i}}\left(x_{i}, a_{i}\right), 1 \leq i \leq k$, is the Dickson polynomial of degree n_{i} with parameter a_{i}. We also employ the results of the $k=1$ case to recover the cardinality of preimages and images of Dickson polynomials obtained earlier by Chou, Gomez-Calderon and Mullen [1].

1. Introduction

Let q be a prime power. A diagonal equation over the finite field $G F(q)$ is defined to be an equation of the form

$$
c_{1} x_{1}^{n_{1}}+c_{2} x_{2}^{n_{2}}+\cdots+c_{k} x_{k}^{n_{k}}=c,
$$

where c, c_{1}, \ldots, c_{k} are elements of $G F(q)$ with $c_{1} \cdots c_{k} \neq 0$ and n_{1}, \ldots, n_{k} are positive integers. The diagonal equation has been studied extensively; see Chapter 6 of Lidl and Niederreiter's book [4]. Following the method used in [4], we are going to extend this equation to the equation over $G F(q)$ defined as

$$
\begin{equation*}
c_{1} D_{n_{1}}\left(x_{1}, a_{1}\right)+c_{2} D_{n_{2}}\left(x_{2}, a_{2}\right)+\cdots+c_{k} D_{n_{k}}\left(x_{k}, a_{k}\right)=c, \tag{1.1}
\end{equation*}
$$

where n_{1}, \ldots, n_{k} are positive integers, c_{1}, \ldots, c_{k} are non-zero, c, a_{1}, \ldots, a_{k} are elements in $G F(q)$, and $D_{n_{1}}\left(x_{1}, a_{1}\right), \ldots, D_{n_{k}}\left(x_{k}, a_{k}\right)$ are Dickson polynomials defined as follows.

[^0]Let n be a positive integer and let $a \in G F(q)$. The Dickson polynomial over $G F(q)$ of degree n with parameter a is defined to be

$$
D_{n}(x, a)=\sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n}{n-i}\binom{n-i}{i}(-a)^{i} x^{n-2 i} .
$$

Dickson polynomials have been studied extensively because they play very important roles in both theoretical work as well as in various applications; see Lidl, Mullen and Turnwald's book [3]. Dickson polynomials have many properties which are closely related to properties of power polynomials $x^{n}=D_{n}(x, 0)$ (see also [3]). For example, for $a \in G F(q)^{*}=G F(q) \backslash\{0\}, D_{n}(x, a)$ induces a permutation on $G F(q)$ if and only if $\operatorname{gcd}\left(n, q^{2}-1\right)=1$.

In this paper, we will employ the method used in [4] to estimate the number N_{k} of solutions of the equation (1.1) in $G F(q)$. At first, we consider the case $k=1$ in Section 2. In fact, we will give a formula for N_{1} in terms of characters on $G F\left(q^{2}\right)$. From now on, we write $N\left(D_{n}(x, a)=c\right)$ instead of N_{1} to emphasize the Dickson polynomial $D_{n}(x, a)$ and the fixed value $c \in G F(q)$. In Section 3, we will use the formulas from Section 2 to recover results in [1] about cardinalities of preimages and images of Dickson polynomials. Finally, we will estimate N_{k} in Section 4.

2. The Number $N\left(D_{n}(x, a)=c\right)$

Let $n>0$ be a fixed integer. Let $a \in G F(q)^{*}$. Every element u of $G F(q)$ can be expressed as $u=\alpha+\frac{a}{\alpha}$, where either $\alpha \in G F(q)^{*}$ or $\alpha \in G F\left(q^{2}\right)$ satisfying $\alpha^{q+1}=a$. Let $M(a)=\left\{\zeta \in G F\left(q^{2}\right) \mid \zeta^{q+1}=a\right\}$. Then, either $\alpha \in G F(q)^{*}$ or $\alpha \in M(a)$. Moreover, if $\alpha_{1}, \alpha_{2} \in M(a)$, there is an element $w \in G F\left(q^{2}\right)$ of multiplicative order a divisor of $q+1$ satisfying $\alpha_{2}=\alpha_{1} w$. So, if we set U to be the subset of $G F\left(q^{2}\right)$ containing all elements of multiplicative order dividing $q+1$, then $M(a)=\alpha U=\{\alpha u \mid u \in U\}$ for any $\alpha \in M(a)$.

Throughout this section, let $a, c \in G F(q)$ be fixed with $a \neq 0$. Write $x=y+\frac{a}{y}$. It is well-known that

$$
\begin{equation*}
D_{n}(x, a)=y^{n}+\frac{a^{n}}{y^{n}} . \tag{2.2}
\end{equation*}
$$

This functional equation is very useful in studying Dickson polynomials over finite fields.

We now define a new equation which will be very useful in studying $N\left(D_{n}(x, a)=\right.$ c). For $\theta \in G F\left(q^{2}\right)$, we set an equation

$$
\begin{equation*}
y^{n}=\theta \quad \text { with the constraint } \quad y+\frac{a}{y} \in G F(q) . \tag{2.3}
\end{equation*}
$$

If the equation has a solution, then its solutions belong to $G F(q)^{*} \cup M(a)$ because of the constraint. Let $N_{a}\left(y^{n}=\theta\right)$ be the number of solutions in $G F\left(q^{2}\right)$ of the equation (2.3). This equation has a very close relation with the equation $D_{n}(x, a)=c$ as we are going to see in the following two lemmas.

Lemma 1. Let $a, c \in G F(q)$ with $a \neq 0$ and let $\theta \in G F\left(q^{2}\right)$. Then $N_{a}\left(y^{n}=\right.$ $\theta) \neq 0$ if and only if θ is a solution of $x^{2}-c x+a^{n}=0$ and $N\left(D_{n}(x, a)=c\right) \neq 0$.

Proof. Assume first that y_{0} is a root of the equation (2.3). Then $x_{0}=y_{0}+\frac{a}{y_{0}} \in$ $G F(q)$ and $c=y_{0}^{n}+\frac{a^{n}}{y_{0}^{n}} \in G F(q)$. This implies that x_{0} is a solution of the equation $D_{n}(x, a)=c$ and θ is a solution of $x^{2}-c x+a^{n}=0$ because $y_{0}^{n}=\theta$.

For the sufficiency, assume that θ is a solution of $x^{2}-c x+a^{n}=0$ and $N\left(D_{n}(x, a)=c\right) \neq 0$. Let x_{0} be a solution of $D_{n}(x, a)=c$. Write $x_{0}=y_{1}+\frac{a}{y_{1}}$ with $y_{1} \in G F(q)^{*} \cup M(a)$. From (2.2), $y_{1}^{n}+\frac{a^{n}}{y_{1}^{n}}=c$. So, we take either $y_{0}=y_{1}$ or $y_{0}=\frac{a}{y_{1}}$ according to whether $\theta=y_{1}^{n}$ or $\theta=\left(\frac{a}{y_{1}}\right)^{n}$, respectively. This completes the proof.

Lemma 2. Let n be a positive integer. Let $a, c \in G F(q)$ with $a \neq 0$ and let $\theta \in G F\left(q^{2}\right)$ be a solution of $x^{2}-c x+a^{n}=0$. Let r be the number of solutions of (2.3) with $y= \pm \sqrt{a}$. Then

$$
N\left(D_{n}(x, a)=c\right)= \begin{cases}N_{a}\left(y^{n}=\theta\right) & \text { if } \theta^{2} \neq a^{n} \\ \frac{N_{a}\left(y^{n}=\theta\right)+r}{2} & \text { if } \theta^{2}=a^{n}\end{cases}
$$

Proof. In the second part of the proof of Lemma $1, y_{0}$ is chosen uniquely except for $\theta=y_{1}^{n}=\left(\frac{a}{y_{1}}\right)^{n}$ and $y_{1} \neq \frac{a}{y_{1}}$. This exceptional case implies that $\theta^{2}=a^{n}$ (and so $c= \pm 2 \sqrt{a^{n}}$) and $y_{1}^{2} \neq a$ (and so $x_{0} \neq \pm 2 \sqrt{a}$. Moreover, both choices of $y_{0}=y_{1}$ and $y_{0}=\frac{a}{y_{1}}$ generate only one solution x_{0} of $D_{n}(x, a)=c$ in $G F(q)$. So, the lemma follows.

In fact, the number of solutions of the equation (2.3) can be expressed as a character sum over $G F\left(q^{2}\right)$.

Lemma 3. Let $0 \neq a \in G F(q)$ and let $\theta \in G F\left(q^{2}\right)$. Let $\alpha \in M(a)$. Write $m=\operatorname{gcd}(n, q-1)$ and $\ell=\operatorname{gcd}(n, q+1)$. Let r be the number of solutions of (2.3) with $y= \pm \sqrt{a}$. Then

$$
\begin{aligned}
& N_{a}\left(y^{n}=\theta\right) \\
& = \begin{cases}\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)+\frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right), & \text { if } \theta^{2} \neq a^{n} \\
\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)+\frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right)-r, & \text { if } \theta^{2}=a^{n}\end{cases}
\end{aligned}
$$

where λ and μ are multiplicative characters of orders $m(q+1)$ and $\ell(q-1)$, respectively.

Proof. Suppose first that $\theta \in G F\left(q^{2}\right)$ is not a root of $x^{2}-c x+a^{n}=0$ for any $c \in G F(q)$. Then $N_{a}\left(y^{n}=\theta\right)=0$ from Lemma 1. Moreover, $\theta \notin$ $G F(q)$ and $\theta \alpha^{-n}$ has multiplicative order not dividing $q+1$. These facts imply $\sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)=0=\sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right)$ and so the lemma holds.

In what follows, we suppose that $\theta \in G F\left(q^{2}\right)$ is a root of $x^{2}-c x+a^{n}=0$ for some $c \in G F(q)$. Note that every solution of the equation (2.3) belongs to $G F(q)^{*} \cup$ $M(a)$. Note also that any solution in $G F(q)^{*}$ of (2.3) is a $\operatorname{gcd}\left(n(q+1), q^{2}-1\right)=$ $m(q+1)$ power of some element in $G F\left(q^{2}\right)$. So, the total number of solutions in $G F(q)^{*}$ of the equation (2.3) equals $\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)$. Furthermore, $u \in M(a)$ is a solution of the equation (2.3) if and only if $u \alpha^{-1}$ has order dividing $q+1$ and is a solution of the equation $y^{n}=\theta \alpha^{-n}$. The last statement is equivalent to the fact that $\theta \alpha^{-n}$ is a $\operatorname{gcd}\left(n(q-1), q^{2}-1\right)=\ell(q-1)$ power of some element in $G F\left(q^{2}\right)$. So, the total number of solutions in $M(a)$ of (2.3) equals $\frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right)$.

Finally, if $u \in G F(q)^{*} \cap M(a)$ is a solution of the equation (2.3), then $u^{2}=u^{q+1}=a$. This case holds if and only if $\theta^{2}=a^{n}$. Combining all of these results together, we have that $N_{a}\left(y^{n}=\theta\right)=\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)+$ $\frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right)$ if $\theta^{2} \neq a^{n}$, and $N_{a}\left(y^{n}=\theta\right)=\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)+$ $\frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right)-r$ if $\theta^{2}=a^{n}$, because we count $u \in G F(q)^{*} \cap M(a)$ twice in the latter case.

We are now ready to express $N\left(D_{n}(x, a)=c\right)$ in terms of character sums over a finite field.

Theorem 4. Let n be a positive integer. Write $m=\operatorname{gcd}(n, q-1)$ and $\ell=\operatorname{gcd}(n, q+1)$. Let $a, c \in G F(q)$ with $a \neq 0$ and let $\theta \in G F\left(q^{2}\right)$ be a solution of $x^{2}-c x+a^{n}=0$. Choose an arbitrary element $\alpha \in M(a)$, and finally, choose two multiplicative characters λ and μ of orders $m(q+1)$ and $\ell(q-1)$ respectively. Then

$$
\begin{aligned}
& N\left(D_{n}(x, a)=c\right) \\
& = \begin{cases}\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)+\frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right), & \text { if } \theta^{2} \neq a^{n} \\
\frac{1}{2}\left[\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)+\frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right)\right], & \text { if } \theta^{2}=a^{n}\end{cases}
\end{aligned}
$$

Proof. The theorem follows immediately by Lemmas 2 and 3.

The formula in the last theorem is a formula for computing the number of preimages of a fixed element $c \in G F(q)$ under the Dickson polynomial $D_{n}(x, a)$. Sometimes we only need to know whether or not the equation $D_{n}(x, a)=c$ has a solution in $G F(q)$. We only need to modify this formula a little bit for this purpose. Namely, let $I\left(D_{n}(x, a)=c\right)=1$ if the equation $D_{n}(x, a)=c$ has a solution in $G F(q)$, while $I\left(D_{n}(x, a)=c\right)=0$ if the equation $D_{n}(x, a)=c$ does not have any solution in $\operatorname{GF}(q)$. We are going to express the number $I\left(D_{n}(x, a)=c\right)$ in terms of character sums in the following

Theorem 5. Let n be a positive integer. Write $m=\operatorname{gcd}(n, q-1)$ and $\ell=\operatorname{gcd}(n, q+1)$. Let $a, c \in G F(q)$ with $a \neq 0$ and let $\theta \in G F\left(q^{2}\right)$ be a solution of $x^{2}-c x+a^{n}=0$ with $\theta^{2} \neq a^{n}$. Choose an arbitrary element $\alpha \in M(a)$, and finally, choose two multiplicative characters λ and μ of orders $m(q+1)$ and $\ell(q-1)$ respectively. Then

$$
I\left(D_{n}(x, a)=c\right)=\frac{1}{m(q+1)} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)+\frac{1}{\ell(q-1)} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right) .
$$

Proof. Note that $\theta \notin G F(q)^{*} \cap M\left(a^{n}\right)$ since $\theta^{2} \neq a^{n}$. So, if one of the summations in the statement of the theorem is non-zero, then the other summation is zero. Moreover, $\sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)$ equals either $m(q+1)$ or 0 depending on whether θ either an $m(q+1)$ th power in $G F\left(q^{2}\right)$ or not, respectively, and $\sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right)$ equals either $\ell(q-1)$ or 0 depending on $\theta \alpha^{-n}$ either an $\ell(q-1)$ th power in $G F\left(q^{2}\right)$ or not, respectively. From the definition of $I\left(D_{n}(x, a)=c\right)$, the theorem follows.

3. Cardinalities of Preimages and Images

Using results in Section 2, we are going to give a new proof of results obtained by Chou, Gomez-Calderon and Mullen [1]. In this section, $n \geq 2$ is an integer, $a \in G F(q)^{*}$, and η denotes the quadratic character of $G F(q)$. Moreover, $d^{j} \| t$ means that d^{j} divides t but d^{j+1} does not divide t. The following theorem includes both Theorems 9 and 9^{\prime} in [1].

Theorem 6. (Theorems 9 and $\left.9^{\prime},[1]\right)$. Let $a \in G F(q)^{*}, x_{0} \in G F(q)$ and let $D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)$ be the preimage of $D_{n}\left(x_{0}, a\right)$. If q is even, then

$$
\begin{aligned}
& \left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right| \\
& =\left\{\begin{array}{l}
\operatorname{gcd}(n, q-1) \text { if } x^{2}+x_{0} x+a \text { is reducible over } G F(q) \text { and } D_{n}\left(x_{0}, a\right) \neq 0, \\
\operatorname{gcd}(n, q+1) \text { if } x^{2}+x_{0} x+a \text { is irreducible over } G F(q) \text { and } D_{n}\left(x_{0}, a\right) \neq 0, \\
\frac{\operatorname{gcd}(n, q-1)+\operatorname{gcd}(n, q+1)}{2}
\end{array} \text { if } D_{n}\left(x_{0}, a\right)=0 .\right.
\end{aligned}
$$

If q is odd and $2^{r} \|\left(q^{2}-1\right)$, then

$$
\begin{aligned}
& \left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right| \\
& = \begin{cases}\operatorname{gcd}(n, q-1) & \text { if } \eta\left(x_{0}^{2}-4 a\right)=1 \text { and } D_{n}\left(x_{0}, a\right) \neq \pm 2 a^{n / 2}, \\
\operatorname{gcd}(n, q+1) & \text { if } \eta\left(x_{0}^{2}-4 a\right)=-1 \text { and } D_{n}\left(x_{0}, a\right) \neq \pm 2 a^{n / 2}, \\
\frac{\operatorname{gcd}(n, q-1)}{2} & \text { if } \eta\left(x_{0}^{2}-4 a\right)=1 \text { and condition } A \text { holds, } \\
\frac{\operatorname{gcd}(n, q+1)}{2} & \text { if } \eta\left(x_{0}^{2}-4 a\right)=-1 \text { and condition } A \text { holds, } \\
\frac{\operatorname{gcd}(n, q-1)+\operatorname{gcd}(n, q+1)}{2} & \text { otherwise, }\end{cases}
\end{aligned}
$$

where condition A holds if either

$$
2^{t} \| n \text { with } 1 \leq t \leq r-1, \eta(a)=-1 \text { and } D_{n}\left(x_{0}, a\right)= \pm 2 a^{n / 2}
$$

or

$$
2^{t} \| n \text { with } 1 \leq t \leq r-2, \eta(a)=1 \text { and } D_{n}\left(x_{0}, a\right)=-2 a^{n / 2} \text {. }
$$

Proof. Write $c=D_{n}\left(x_{0}, a\right)$. Then $0 \neq\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=N\left(D_{n}(x, a)=\right.$ c). Let $\theta \in G F\left(q^{2}\right)$ be a root of $x^{2}-c x+a^{n}=0$ and let $\alpha \in M(a)$. Note that if $u \in G F\left(q^{2}\right)$ is a root of $x^{2}-x_{0} x+a=0$, then either u or $\frac{a}{u}$ is a root of $y^{n}=\theta$ with $u \in G F(q)^{*} \cup M(a)$.

We first consider $\theta^{2} \neq a^{n}$. From Theorem 4,

$$
\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)+\frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right),
$$

where λ and μ are multiplicative characters of orders $m(q+1)$ and $\ell(q-1)$, respectively. Since $\theta^{2} \neq a^{n}$, either $\theta \in G F(q)$ or $\theta \in M\left(a^{n}\right)$, but cannot be both. This implies either $\sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)=0$ or $\sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right)=0$, but cannot be both zero simultaneously. Precisely, if $x^{2}-x_{0} x+a$ is reducible (or $\eta\left(x_{0}^{2}-4 a\right)=1$ when q odd) over $G F(q)$, then $\theta \in G F(q)$ is an m th power and so $\sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right)=0$ and $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)=m$; while if $x^{2}-x_{0} x+a$ is irreducible (or $\eta\left(x_{0}^{2}-4 a\right)=-1$ when q odd) over $G F(q)$, then $\theta \alpha^{-n} \in U$ is an ℓ th power and so $\sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)=0$ and $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right)=\ell$. This proves the first two situations for any prime power q.

In the remaining part of this proof, assume $\theta^{2}=a^{n}$. Then $c=0$ if q is even while $c \in G F(q)^{*} \cap M\left(a^{n}\right)=\left\{ \pm 2 \sqrt{a^{n}}\right\}$ if q is odd. In this case, there is only one choice for θ. From Theorem 4,

$$
\begin{align*}
& \left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right| \\
= & \frac{1}{2}\left[\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)+\frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right)\right] . \tag{3.4}
\end{align*}
$$

Assume first that $\theta=\sqrt{a^{n}}$. There are two cases to consider. (1) a is a square in $G F(q)$ so that $\sqrt{a} \in G F(q)^{*} \cap M(a)$ is a solution of $y^{n}=\theta$. This implies that θ is an m th power in $G F(q)$ and $\theta \alpha^{-n}$ is an ℓ th power in U. So we have that if a is a square in $G F(q)$, then $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{m+\ell}{2}$ from the equation (3.4). This proves the third situation for q even and part of the last situation for q odd. (2) a is a non-square in $G F(q)$. So q must be odd. For a positive integer u, write $\omega(u)$ to be the non-negative integer satisfying $2^{\omega(u)} \| u$. If $\eta\left(x_{0}^{2}-4 a\right)=1$, then $y^{n}=\sqrt{a^{n}}$ has a solution in $G F(q)$ and so $\theta=\sqrt{a^{n}}$ is an m th power in $G F(q)$. This implies that n is even and $t=\omega(n)>\omega(q-1)$. Now $\left(\theta \alpha^{-n}\right)^{\frac{q+1}{\ell}}=$ $\left(a^{\frac{n}{2}}\right)^{\frac{q+1}{\ell}}\left(\alpha^{q+1}\right)^{-\frac{n}{\ell}}=\left(a^{\frac{q+1}{2}}\right)^{\frac{n}{\ell}} a^{-\frac{n}{\ell}}=(-1)^{\frac{n}{\ell}}$. This implies that $\theta \alpha^{-n}$ is an ℓ th power in U if and only if $t=\omega(n)>\omega(\ell)=\omega(q+1)$. Combining together, we have, from the equation (3.4), that $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{m}{2}$ if $\eta\left(x_{0}^{2}-4 a\right)=1$ and $1 \leq t \leq r-1$, while $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{m+\ell}{2}$ if $\eta\left(x_{0}^{2}-4 a\right)=1$ and $t \geq r$. If $\eta\left(x_{0}^{2}-4 a\right)=-1$, then $y^{n}=\sqrt{a^{n}}$ has a solution in $M(a)$ and so $\theta \alpha^{-n}$ is an ℓ th power in U. Hence, $t=\omega(n)>\omega(\ell)=\omega(q+1)$ in this case. Now $\theta^{\frac{q-1}{m}}=\left(a^{\frac{q-1}{2}}\right)^{\frac{n}{m}}=(-1)^{\frac{n}{m}}$. This implies that θ is an m th power in $G F(q)$ if and only if $t=\omega(n)>\omega(m)=\omega(q-1)$. So, from the equation (3.4) again, we have that $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{\ell}{2}$ if $\eta\left(x_{0}^{2}-4 a\right)=-1$ and $1 \leq t \leq r-1$, while $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{m+\ell}{2}$ if $\eta\left(x_{0}^{2}-4 a\right)=-1$ and $t \geq r$.

Finally, assume $\theta=-\sqrt{a^{n}}$ for q odd. We also consider two cases. (1) a is a square in $G F(q)$. Now θ is an m th power in $G F(q)^{*}$ if and only if $1=$ $(\theta)^{\frac{q-1}{m}}=(-1)^{\frac{q-1}{m}}\left(a^{\frac{n}{2}}\right)^{\frac{q-1}{m}}=(-1)^{\frac{q-1}{m}}$. This is equivalent to $t<\omega(q-1)$. On the other hand, $\theta \alpha^{-n}$ is an ℓ th power in U if and only if $1=\left(\theta \alpha^{-n}\right)^{\frac{q+1}{\ell}}=$ $(-1)^{\frac{q+1}{\ell}}\left(a^{\frac{n}{2}}\right)^{\frac{q+1}{\ell}}\left(\alpha^{q+1}\right)^{-\frac{n}{\ell}}=(-1)^{\frac{q+1}{\ell}}$. The last statement is equivalent to $t<$ $\omega(q+1)$. So if $\eta\left(x_{0}^{2}-4 a\right)=1$ (or $y^{n}=-\sqrt{a^{n}}$ has a solution in $G F(q)$), then $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{m}{2}$ if $1 \leq t<\omega(q-1)$ and $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{m+\ell}{2}$ if $t=0$. And if $\eta\left(x_{0}^{2}-4 a\right)=-1$ (or $y^{n}=-\sqrt{a^{n}}$ has a solution in $M(a)$), $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{\ell}{2}$ if $1 \leq t<\omega(q-1)$ and $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{m+\ell}{2}$ if $t=0$. (2) a is a non-square in $G F(q)^{*}$. This implies that n is even. θ is an m th power in $G F(q)^{*}$ if and only if $1=(\theta)^{\frac{q-1}{m}}=(-1)^{\frac{q-1}{m}}\left(a^{\frac{n}{2}}\right)^{\frac{q-1}{m}}=(-1)^{\frac{q-1+n}{m}}$. This is equivalent to $t=\omega(q-1)$. On the other hand, $\theta \alpha^{-n}$ is an ℓ th power in U if and only
if $1=\left(\theta \alpha^{-n}\right)^{\frac{q+1}{\ell}}=(-1)^{\frac{q+1}{\ell}}\left(a^{\frac{n}{2}}\right)^{\frac{q+1}{\ell}}\left(\alpha^{q+1}\right)^{-\frac{n}{\ell}}=(-1)^{\frac{q+1+n}{\ell}}$. The last statement is equivalent to $t=\omega(q+1)$. Note that either $t=\omega(q-1)$ or $t=\omega(q+1)$, but cannot be both. So, from the equation (3.4), we have that $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{m}{2}$ if $\eta\left(x_{0}^{2}-4 a\right)=1$, while $\left|D_{n}^{-1}\left(D_{n}\left(x_{0}, a\right)\right)\right|=\frac{\ell}{2}$ if $\eta\left(x_{0}^{2}-4 a\right)=-1$. This completes the proof.

We now provide an alternate proof of one of the main result in [1] about the cardinality $\left|V_{D_{n}(x, a)}\right|$ of the value set of $D_{n}(x, a)$.

Theorem 7. (Theorems 10 and 10^{\prime}, [1]). Let $a \in G F(q)^{*}$. Suppose that $2^{r} \|\left(q^{2}-1\right)$ and η is the quadratic character on $G F(q)$ whenever q is odd. Then we have

$$
\left|V_{D_{n}(x, a)}\right|=\frac{q-1}{2(n, q-1)}+\frac{q+1}{2(n, q+1)}+\delta
$$

where

$$
\delta=\left\{\begin{array}{l}
1 \quad \text { if } q \text { is odd, } 2^{r-1} \| n \text { and } \eta(a)=-1 \\
\frac{1}{2} \quad \text { if } q \text { is odd and } 2^{t} \| n \text { with } 1 \leq t \leq r-2 \\
0 \quad \text { otherwise. }
\end{array}\right.
$$

Proof. Let $S=G F(q)^{*} \cap M\left(a^{n}\right)$ and let $\alpha \in M(a)$ be fixed. Note that every element $\theta \in S$ satisfies $\theta^{2}=a^{n}$. Let k be the number of elements $\beta \in S$ such that either β is an m th power in $G F(q)^{*}$ or $\beta \alpha^{-n}$ is an ℓ th power in U. From the definition of $I\left(D_{n}(x, a)=c\right)$, we have $\left|V_{D_{n}(x, a)}\right|=\sum_{c \in G F(q)} I\left(D_{n}(x, a)=c\right)$. For $c \neq \pm \sqrt{a^{n}}$, we take only one root θ in Theorem 5 . So, when we sum over all elements in $G F(q)^{*} \cup M\left(a^{n}\right)$ in Theorem 5, we have

$$
\begin{align*}
& \left|V_{D_{n}(x, a)}\right| \\
& =\frac{1}{2} \sum_{\theta \in\left(G F(q)^{*} \cup M\left(a^{n}\right)\right) \backslash S}\left[\frac{1}{m(q+1)} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta)+\frac{1}{\ell(q-1)} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}\left(\theta \alpha^{-n}\right)\right]+k \tag{3.5}\\
& =\frac{1}{2 m(q+1)} \sum_{i=0}^{m(q+1)-1} \sum_{\theta \in G F(q)^{*} \backslash S} \lambda^{i}(\theta)+\frac{1}{2 \ell(q-1)} \sum_{i=0}^{\ell(q-1)-1} \sum_{\theta \in M\left(a^{n}\right) \backslash S} \mu^{i}\left(\theta \alpha^{-n}\right)+k,
\end{align*}
$$

where λ and μ are multiplicative characters on $G F\left(q^{2}\right)$ of orders $m(q+1)$ and $\ell(q-1)$, respectively.

Since every $\theta \in G F(q)$ is a $(q+1)$ th power in $G F\left(q^{2}\right)$ and there are exactly $\frac{q-1}{m}$ elements in $G F(q)^{*}$ which are m th powers in $G F(q)^{*}$, the first term in the equation (3.5) can be rewritten as

$$
\begin{align*}
E_{1} & =\frac{1}{2 m(q+1)} \sum_{i=0}^{m(q+1)-1} \sum_{\theta \in G F(q)^{*} \backslash S} \lambda^{i}(\theta) \\
& =\frac{1}{2 m}\left[\sum_{\theta \in G F(q)^{*}} \sum_{i=0}^{m-1} \lambda^{(q+1) i}(\theta)-\sum_{\theta \in S} \sum_{i=0}^{m-1} \lambda^{(q+1) i}(\theta)\right] \tag{3.6}\\
& =\frac{1}{2 m}\left[q-1-\sum_{\theta \in S} \sum_{i=0}^{m-1} \lambda^{(q+1) i}(\theta)\right] .
\end{align*}
$$

Moreover, every $u \in U$ is a $(q-1)$ th power in $G F\left(q^{2}\right)$ and there are exactly $\frac{q+1}{\ell}$ elements in U which are ℓ th powers in U, the second term in the equation (3.5) can be rewritten as

$$
\begin{align*}
E_{2} & =\frac{1}{2 \ell(q-1)} \sum_{i=0}^{\ell(q-1)-1} \sum_{\theta \in M\left(a^{n}\right) \backslash S} \mu^{i}\left(\theta \alpha^{-n}\right) \\
& =\frac{1}{2 \ell}\left[\sum_{i=0}^{\ell-1} \sum_{u \in U} \mu^{(q-1) i}(u)-\sum_{\theta \in S} \sum_{i=0}^{\ell-1} \mu^{(q-1) i}\left(\theta \alpha^{-n}\right)\right] \tag{3.7}\\
& =\frac{1}{2 \ell}\left[q+1-\sum_{\theta \in S} \sum_{i=0}^{\ell-1} \mu^{(q-1) i}\left(\theta \alpha^{-n}\right)\right] .
\end{align*}
$$

Suppose now that $|S|=0$. Then a is a non-square in $G F(q)$ and n is odd. So $k=0, \sum_{\theta \in S} \sum_{i=0}^{m-1} \lambda^{(q+1) i}(\theta)=0$ in the equation (3.6), and $\sum_{\theta \in S} \sum_{i=0}^{\ell-1} \mu^{(q-1) i}$ $\left(\theta \alpha^{-n}\right)=0$ in the equation (3.7). In this case, $\delta=0$ and so, $\left|V_{D_{n}(x, a)}\right|=\frac{q-1}{2 m}+\frac{q+1}{2 \ell}$ as desired.

Finally suppose $|S| \neq 0$. Then $S=\left\{\sqrt{a^{n}}\right\}$ if q is even and $S=\left\{ \pm \sqrt{a^{n}}\right\}$ if q is odd. Note that $\theta= \pm \sqrt{a^{n}}$ is an m th power in $G F(q)^{*}$ if and only if $1=\left(\pm \sqrt{a^{n}}\right)^{\frac{q-1}{m}}=(\pm 1)^{\frac{q-1}{m}}\left(a^{\frac{q-1}{2}}\right)^{\frac{n}{m}}$, while $\theta \alpha^{-n}= \pm \sqrt{a^{n}} \alpha^{-n}$ is an ℓ th power in U if and only if $1=\left(\pm \sqrt{a^{n}} \alpha^{-n}\right)^{\frac{q+1}{\ell}}=(\pm 1)^{\frac{q+1}{\ell}}\left(a^{\frac{q-1}{2}}\right)^{\frac{n}{\ell}}$. Note also that $a^{\frac{q-1}{2}}=1$ if a is a square, and $a^{\frac{q-1}{2}}=-1$ if a ia a non-square. So, there are only two cases to be considered.
(1) a is quadratic in $G F(q)^{*}$. Then $a^{\frac{q-1}{2}}=1$ and so $\theta=\sqrt{a^{n}}$ is an m th power in $G F(q)^{*}$ and an ℓ th power in U. So $\sum_{i=0}^{m-1} \lambda^{(q+1) i}\left(\sqrt{a^{n}}\right)=m$ and $\sum_{i=0}^{\ell-1} \mu^{(q-1) i}\left(\sqrt{a^{n}} \alpha^{-n}\right)=\ell$. From equations (3.5), (3.6) and (3.7), if q is even, we have $\left|V_{D_{n}(x, a)}\right|=\frac{q-1}{2 m}+\frac{q+1}{2 \ell}$ (i.e., $\delta=0$), because $k=1$. Assume now q odd. From the above results, $-\sqrt{a^{n}}$ is an m th power in $G F(q)^{*}$ if and only if $\frac{q-1}{m}$ is even, and $-\sqrt{a^{n}} \alpha^{-n}$ is an ℓ th power in U if and only if
$\frac{q+1}{\ell}$ is even. If $t \geq r-1$, then both $\frac{q-1}{m}$ and $\frac{q+1}{\ell}$ are odd and so, $k=1$. In this case, $\left|V_{D_{n}(x, a)}\right|=\frac{q-1-m}{2 m}+\frac{q+1-\ell}{2 \ell}+1=\frac{q-1}{2 m}+\frac{q+1}{2 \ell}$ (i.e., $\delta=0$), from equations (3.5), (3.6) and (3.7). If $t<r-1$, then $k=2$. If $t=0$, then $\left|V_{D_{n}(x, a)}\right|=\frac{q-1-2 m}{2 m}+\frac{q+1-2 \ell}{2 \ell}+2=\frac{q-1}{2 m}+\frac{q+1}{2 \ell}$ (i.e., $\delta=0$), from equations (3.5), (3.6) and (3.7). If $1 \leq t \leq r-2$, then one of $\frac{q-1}{m}$ and $\frac{q+1}{\ell}$ is even and the other is odd. In this case, we have $\left|V_{D_{n}(x, a)}\right|=\frac{q-1}{2 m}+\frac{q+1}{2 \ell}+\frac{1}{2}$ from equations (3.5), (3.6) and (3.7).
(2) a is a non-square in $G F(q)^{*}$. Then q is odd and $a^{\frac{q-1}{2}}=-1$. Moreover, $\theta= \pm \sqrt{a^{n}} \in S$ if and only if n is even. So, if n is odd, then $|S|=0=k$ and so $\left|V_{D_{n}(x, a)}\right|=\frac{q-1}{2 m}+\frac{q+1}{2 \ell}$ from equations (3.5), (3.6) and (3.7). From now on, let n be even. Then $S=\left\{ \pm \sqrt{a^{n}}\right\}$. From the above results, $\theta=$ $\pm \sqrt{a^{n}}$ is an m th power in $G F(q)^{*}$ if and only if $1=(\pm 1)^{\frac{q-1}{m}}(-1)^{\frac{n}{m}}$, while $\theta \alpha^{-n}= \pm \sqrt{a^{n}} \alpha^{-n}$ is an ℓ th power in U if and only if $1=(\pm 1)^{\frac{q+1}{\ell}}(-1)^{\frac{n}{\ell}}$. If $t=1$, then both $\frac{n}{m}$ and $\frac{n}{\ell}$ are odd and exactly one of $\frac{q-1}{m}+\frac{n}{m}$ and $\frac{q+1}{\ell}+\frac{n}{\ell}$ is odd. In this case, $k=1$ and, from equations (3.5), (3.6) and (3.7), $\left|V_{D_{n}(x, a)}\right|=\frac{q-1}{2 m}+\frac{q+1}{2 \ell}+\frac{1}{2}$. If $2 \leq t \leq r-2$, then exactly one of $\frac{n}{m}$ and $\frac{n}{\ell}$ is odd and both $\frac{q-1}{m}+\frac{n}{m}$ and $\frac{q+1}{\ell}+\frac{n}{\ell}$ are odd. So, we also have $k=1$ and $\left|V_{D_{n}(x, a)}\right|=\frac{q-1}{2 m}+\frac{q+1}{2 \ell}+\frac{1}{2}$ in this case. If $t=r-1$, then exactly one of $\frac{n}{m}$ and $\frac{n}{\ell}$ is even, exactly one of $\frac{n}{m}$ and $\frac{n}{m}+\frac{q-1}{m}$ is even, and exactly one of $\frac{n}{\ell}$ and $\frac{n}{\ell}+\frac{q+1}{\ell}$ is even. In this case, we have $k=2$ and, from equations (3.5), (3.6) and (3.7), $\left|V_{D_{n}(x, a)}\right|=\frac{q-1}{2 m}+\frac{q+1}{2 \ell}+1$. Finally, if $t \geq r$, then both $\frac{n}{m}$ and $\frac{n}{\ell}$ are even and both $\frac{q-1}{m}+\frac{n}{m}$ and $\frac{q+1}{\ell}+\frac{n}{\ell}$ are odd. So, we have that $k=1$ and, from equations (3.5), (3.6) and (3.7), $\left|V_{D_{n}(x, a)}\right|=\frac{q-1}{2 m}+\frac{q+1}{2 \ell}$ in this case. This completes the proof.

4. An Equation Involving Dickson Polynomials

In this section, let $k, n_{1}, \ldots, n_{k} \geq 2$ be fixed positive integers, $c_{1}, \ldots, c_{k} \in$ $G F(q)^{*}$, and $a_{1}, \ldots, a_{k}, c \in G F(q)$. We are going to estimate the number N_{k} of solutions in $G F(q)$ of the equation (1.1); namely, the number of solutions in $G F(q)$ of the equation $c_{1} D_{n_{1}}\left(x_{1}, a_{1}\right)+c_{2} D_{n_{2}}\left(x_{2}, a_{2}\right)+\cdots+c_{k} D_{n_{k}}\left(x_{k}, a_{k}\right)=c$, where each $D_{n_{i}}\left(x_{i}, a_{i}\right)$ is a Dickson polynomial of degree n_{i} with parameter a_{i}. For this purpose, we need the following two lemmas.

Lemma 8. (Theorem 10, Chapter 6, [2]) Let χ be a non-trivial additive character of $G F(q)$. Suppose either λ is a non-trivial multiplicative character of $G F(q)$ * or $b, c \in G F(q)$ are not equal to zero simultaneously. Then

$$
\left|\sum_{\theta \in G F(q)^{*}} \chi\left(b \theta+\frac{c}{\theta}\right) \lambda(\theta)\right| \leq 2 \sqrt{q} .
$$

In the following lemma, let U be the subset of $G F\left(q^{2}\right)$ defined at the begining of Section 2. That is, every element of U has multiplicative order dividing $q+1$. So, U is the set of elements in $G F\left(q^{2}\right)$ which have norm 1 in $G F(q)$.

Lemma 9. (Corollary 8, Chapter 6, [2]) For either χ a non-trivial additive character of $G F\left(q^{2}\right)$ or λ a non-trivial multiplicative character of $G F\left(q^{2}\right)$ of order dividing $q+1$, one has

$$
\left|\sum_{\theta \in U} \chi(\theta) \lambda(\theta)\right| \leq 2 \sqrt{q} .
$$

We now estimate N_{k}. It is easy to see that

$$
\begin{aligned}
N_{k} & =\sum_{u_{1} \in G F(q)} \cdots \sum_{u_{k} \in G F(q)} \frac{1}{q} \sum_{\chi} \chi\left(c_{1} D_{n_{1}}\left(u_{1}, a_{1}\right)+\cdots+c_{k} D_{n_{k}}\left(u_{k}, a_{k}\right)-c\right) \\
& =\frac{1}{q} \sum_{\chi} \chi(c)^{-1} \sum_{u_{1} \in G F(q)} \chi\left(c_{1} D_{n_{1}}\left(u_{1}, a_{1}\right)\right) \cdots \sum_{u_{k} \in G F(q)} \chi\left(c_{k} D_{n_{k}}\left(u_{k}, a_{k}\right)\right),
\end{aligned}
$$

where χ runs over all the additive characters. Let χ_{0} be the trivial additive character over $G F(q)$. Then the last equation becomes

$$
\begin{align*}
& N_{k}-q^{k-1}= \frac{1}{q} \tag{4.8}\\
& \sum_{\chi \neq \chi_{0}} \chi(c)^{-1} \\
& \sum_{u_{1} \in G F(q)} \chi\left(c_{1} D_{n_{1}}\left(u_{1}, a_{1}\right)\right) \cdots \sum_{u_{k} \in G F(q)} \chi\left(c_{k} D_{n_{k}}\left(u_{k}, a_{k}\right)\right) .
\end{align*}
$$

Let χ be any non-trivial additive character and take any $1 \leq j \leq k$. Let $\chi_{c_{j}}$ be the additive character satisfying $\chi_{c_{j}}(u)=\chi\left(c_{j} u\right)$ for all $u \in G F(q)$. Then

$$
\begin{align*}
\sum_{u_{j} \in G F(q)} \chi\left(c_{j} D_{n_{j}}\left(u_{j}, a_{j}\right)\right) & =\sum_{u_{j} \in G F(q)} \chi_{c_{j}}\left(D_{n_{j}}\left(u_{j}, a_{j}\right)\right) \tag{4.9}\\
& =\sum_{u \in G F(q)} \chi_{c_{j}}(u) N\left(D_{n_{j}}\left(x_{j}, a_{j}\right)=u\right) .
\end{align*}
$$

Let $m_{j}=\operatorname{gcd}\left(n_{j}, q-1\right)$ and $\ell_{j}=\operatorname{gcd}\left(n_{j}, q+1\right)$. Assume that λ_{j} and μ_{j} are multiplicative characters on $G F\left(q^{2}\right)$ of orders $m_{j}(q+1)$ and $\ell_{j}(q-1)$, respectively.

At first, we consider all $a_{j} \neq 0$. Write $u=\theta+\frac{a_{j}^{n_{j}}}{\theta}$ with $\theta \in G F(q)^{*} \cup M\left(a_{j}^{n_{j}}\right)$ and take a fixed $\alpha_{j} \in M\left(a_{j}\right)$. Then from Theorem 4, the equation (4.9) becomes

$$
\sum_{u_{j} \in G F(q)} \chi\left(c_{j} D_{n_{j}}\left(u_{j}, a_{j}\right)\right)
$$

$$
\begin{aligned}
= & \sum_{u \in G F(q)} \chi_{c_{j}}(u) N_{q}\left(D_{n_{j}}\left(x_{j}, a_{j}\right)=u\right) \\
= & \frac{1}{2} \sum_{\theta \in G F(q)^{*} \cup M\left(a_{j}^{n_{j}}\right)} \chi_{c_{j}}\left(\theta+\frac{a_{j}^{n_{j}}}{\theta}\right) \\
& \left(\frac{1}{q+1} \sum_{i=0}^{m_{j}(q+1)-1} \lambda_{j}^{i}(\theta)+\frac{1}{q-1} \sum_{i=0}^{\ell_{j}(q-1)-1} \mu_{j}^{i}\left(\theta \alpha_{j}^{-n_{j}}\right)\right)
\end{aligned}
$$

Since each $\theta \in G F(q)$ is a $(q+1)$ th power of some element in $G F\left(q^{2}\right)$ and each $\theta \alpha_{j}^{-n_{j}}$ with $\theta \in M\left(a_{j}^{n_{j}}\right)$ is a $(q-1)$ th power of some element in $G F\left(q^{2}\right)$, we may consider λ to be of order m_{j} and μ to be of order ℓ. Then the last equation can be rewritten as

$$
\begin{align*}
& \sum_{u_{j} \in G F(q)} \chi\left(c_{j} D_{n_{j}}\left(u_{j}, a_{j}\right)\right) \\
= & \frac{1}{2} \sum_{i=0}^{m_{j}-1} \sum_{\theta \in G F(q)^{*}} \chi_{c_{j}}\left(\theta+\frac{a_{j}^{n_{j}}}{\theta}\right) \lambda_{j}^{i}(\theta) \tag{4.10}\\
& +\frac{1}{2} \sum_{i=0}^{\ell_{j}-1} \sum_{\theta \in M\left(a_{j}^{n_{j}}\right)} \chi_{c_{j}}\left(\theta+\frac{a_{j}^{n_{j}}}{\theta}\right) \mu_{j}^{i}\left(\theta \alpha_{j}^{-n_{j}}\right) .
\end{align*}
$$

In the equation (4.10), the $\operatorname{sum} \sum_{\theta \in G F(q)^{*}} \chi_{c_{j}}\left(\theta+\frac{a_{j}^{n_{j}}}{\theta}\right) \lambda_{j}^{i}(\theta)$ is a twisted Kloosterman sum. From Lemma 8, we have

$$
\begin{equation*}
\left|\sum_{\theta \in G F(q)^{*}} \chi_{c_{j}}\left(\theta+\frac{a_{j}^{n_{j}}}{\theta}\right) \lambda_{j}^{i}(\theta)\right| \leq 2 \sqrt{q} \tag{4.11}
\end{equation*}
$$

For estimating the sum $\sum_{\theta \in M\left(a_{j}^{n_{j}}\right)} \chi_{c_{j}}\left(\theta+\frac{a_{j}^{n_{j}}}{\theta}\right) \mu_{j}^{i}\left(\theta \alpha_{j}^{-n_{j}}\right)$ in the equation (4.10), we have to modify some notation. Let $\chi_{j}^{\prime}=\chi_{c_{j}} \circ \operatorname{Tr}_{q^{2} / q}$, where $\operatorname{Tr}_{q^{2} / q}$ is the trace function from $G F\left(q^{2}\right)$ onto $G F(q)$. Then χ_{j}^{\prime} is a non-trivial additive character of $G F\left(q^{2}\right)$. For any $\theta \in M\left(a_{j}^{n_{j}}\right)$, we have $\theta^{q+1}=a_{j}^{n_{j}}$ and thus $\theta+\frac{a_{j}^{n_{j}}}{\theta}=\operatorname{Tr}_{q^{2} / q}(\theta)$. This implies $\chi_{c_{j}}\left(\theta+\frac{a_{j}^{n_{j}}}{\theta}\right)=\chi_{j}^{\prime}(\theta)$. Furthermore, let $\chi_{\alpha_{j}}^{\prime}{ }_{n_{j}}(u)=\chi_{j}^{\prime}\left(\alpha_{j}^{n_{j}} u\right)$ for all u in $G F\left(q^{2}\right)$. Then $\chi_{\alpha_{j}}^{\prime}{ }^{n_{j}}$ is a non-trivial additive character of $G F\left(q^{2}\right)$ and $\chi_{\alpha_{j}{ }_{j}}^{\prime}\left(\theta \alpha_{j}^{-n_{j}}\right)=\chi_{j}^{\prime}(\theta)$. Notice that $\theta \alpha_{j}^{-n_{j}} \in U$ from the definition of U. By Lemma 9 ,

$$
\begin{equation*}
\left|\sum_{\theta \in M\left(a_{j}^{n_{j}}\right)} \chi_{c_{j}}\left(\theta+\frac{a_{j}^{n_{j}}}{\theta}\right) \mu_{j}^{i}\left(\theta \alpha_{j}^{-n_{j}}\right)\right|=\left|\sum_{\theta \in U} \chi_{\alpha_{j}^{n_{j}}}^{\prime}(\theta) \mu_{j}^{i}(\theta)\right| \leq 2 \sqrt{q} \tag{4.12}
\end{equation*}
$$

Substituting both inequalities (4.11) and (4.12) into (4.10) and simplifying, we have

$$
\begin{equation*}
\left|\sum_{u_{j} \in G F(q)} \chi\left(c_{j} D_{n_{j}}\left(u_{j}, a_{j}\right)\right)\right| \leq\left(m_{j}+\ell_{j}\right) \sqrt{q} \tag{4.13}
\end{equation*}
$$

Suppose that $a_{j}=0$. Then the equation (4.9) becomes

$$
\sum_{u_{j} \in G F(q)} \chi\left(c_{j} D_{n_{j}}\left(u_{j}, a_{j}\right)\right)=\sum_{u \in G F(q)} \chi\left(c_{j} u^{n_{j}}\right)
$$

From Theorem 5.30, [4], the last equation becomes

$$
\sum_{u_{j} \in G F(q)} \chi\left(c_{j} D_{n_{j}}\left(u_{j}, a_{j}\right)\right)=\sum_{i=1}^{m_{j}-1} \lambda_{j}^{-i}\left(c_{j}\right) G\left(\chi, \lambda_{j}^{i}\right),
$$

where $G\left(\chi, \lambda_{j}^{i}\right)=\sum_{u \in G F(q)^{*}} \chi(u) \lambda_{j}^{i}(u)$ is a Gauss sum. Since $\left|G\left(\chi, \lambda_{j}^{i}\right)\right|=\sqrt{q}$ (Theorem 5.11, [4]), we have

$$
\begin{equation*}
\left|\sum_{u_{j} \in G F(q)} \chi\left(c_{j} D_{n_{j}}\left(u_{j}, a_{j}\right)\right)\right| \leq\left(m_{j}-1\right) \sqrt{q} \tag{4.14}
\end{equation*}
$$

Suppose now that there exists $0 \leq t \leq k$ such that $a_{1}=\cdots=a_{t}=0(t=0$ means that no such t exists) and $a_{j} \neq 0$ for all $t<j \leq k(t=k$ means the equation (1.1) is a diagonal equation). Substituting both bounds (4.13) and (4.14) into (4.8) and simplifying, we have

$$
\begin{equation*}
\left|N_{k}-q^{k-1}\right| \leq q^{\frac{k-2}{2}}(q-1) \prod_{j=1}^{t}\left(m_{j}-1\right) \prod_{j=t+1}^{k}\left(m_{j}+\ell_{j}\right) \tag{4.15}
\end{equation*}
$$

We summarize all of these results above in the following
Theorem 10. Let $k, n_{1}, \ldots, n_{k} \geq 2$ be fixed positive integers, $c_{1}, \ldots, c_{k} \in$ $G F(q)^{*}$, and $a_{1}, \ldots, a_{k}, c \in G F(q)$. Moreover, suppose that there exists $0 \leq t \leq k$ such that $a_{1}=\cdots=a_{t}=0$ and $a_{j} \neq 0$ for all $t<j \leq k$. Let N_{k} be the number of solutions in $G F(q)$ of the equation

$$
c_{1} D_{n_{1}}\left(x_{1}, a_{1}\right)+c_{2} D_{n_{2}}\left(x_{2}, a_{2}\right)+\cdots+c_{k} D_{n_{k}}\left(x_{k}, a_{k}\right)=c
$$

Then

$$
\left|N_{k}-q^{k-1}\right| \leq q^{\frac{k-2}{2}}(q-1) \prod_{j=1}^{t}\left(m_{j}-1\right) \prod_{j=t+1}^{k}\left(m_{j}+\ell_{j}\right),
$$

where $m_{j}=\operatorname{gcd}\left(n_{j}, q-1\right)$ and $\ell_{j}=\operatorname{gcd}\left(n_{j}, q+1\right)$ for $1 \leq j \leq k$.
Note that the main term q^{k-1} in the last theorem is reasonable. For instance, if some n_{j} is relatively prime to $q^{2}-1$, then the equation (1.1) has exactly q^{k-1} solutions in $G F(q)$ because $D_{n_{j}}\left(x_{j}, a_{j}\right)$ is a permutation polynomial on $G F(q)$ and so, for each $u_{i} \in G F(q), 1 \leq i \leq k$ and $i \neq j, c_{j} D_{n_{j}}\left(x_{j}, a_{j}\right)=c-c_{1} D_{1}\left(u_{1}, a_{1}\right)-$ $\cdots-c_{j-1} D_{j-1}\left(u_{j-1}, a_{j-1}\right)-c_{j+1} D_{j+1}\left(u_{j+1}, a_{j+1}\right)-\cdots-c_{k} D_{k}\left(u_{k}, a_{k}\right)$ has exactly one solution in $G F(q)$.

From the last theorem, we have the following existence result for $k \geq 3$.
Theorem 11. Let $k, n_{1}, \ldots, n_{k} \geq 2$ be fixed positive integers, $c_{1}, \ldots, c_{k} \in$ $G F(q)^{*}$, and $a_{1}, \ldots, a_{k}, c \in G F(q)$. Moreover, suppose that there exists $0 \leq t \leq k$ such that $a_{1}=\cdots=a_{t}=0$ and $a_{j} \neq 0$ for all $t<j \leq k$. If $k \geq 3$ and $q>\left(\prod_{j=1}^{k}\left(n_{j}+2\right)\right)^{\frac{2}{k-2}}$, then $N_{k}>0$.

Proof. From Theorem 10, we have

$$
\begin{equation*}
N_{k} \geq q^{k-1}-q^{\frac{k-2}{2}}(q-1) \prod_{j=1}^{t}\left(m_{j}-1\right) \prod_{j=t+1}^{k}\left(m_{j}+\ell_{j}\right) \tag{4.16}
\end{equation*}
$$

For any $1 \leq j \leq k$, both $m_{j}-1 \leq n_{j}+2$ and $m_{j}+\ell_{j} \leq n_{j}+2$ hold. Since $q>\left(\prod_{j=1}^{k}\left(n_{j}+2\right)\right)^{\frac{2}{k-2}}$, the right hand side of the inequality (4.16) is positive and so $N_{k}>0$.

Note that the last theorem cannot hold for $k=1$ or 2 . When $k=1$, it is easy to see that no matter how large the prime power q is, N_{k} may be zero from Theorem 7. For $k=2$, we give an example as following:

Example. Let $n_{1}, n_{2} \geq 2$ be relatively prime odd integers. Take any prime number q of the form $q=8 n_{1} n_{2} s+\left(4 n_{1} n_{2}+1\right)$. We now consider the equation

$$
\begin{equation*}
D_{4 n_{1}}\left(x_{1}, 1\right)+D_{4 n_{2}}\left(x_{2}, 1\right)=0 . \tag{4.17}
\end{equation*}
$$

Take any $c \in G F(q)$. Suppose that ρ is a root of $x^{2}-c x+1=0$. Then $-\rho$ is a root of $x^{2}+c x+1=0$. If $D_{4 n_{1}}\left(x_{1}, 1\right)=c$ has a solution in $G F(q)$, then $\rho \in G F(q)$ is a $4 n_{1}$ th power in $G F(q)$ and so $-\rho \in G F(q)$ is only a square but not a 4th power. Hence $D_{4 n_{2}}\left(x_{2}, 1\right)=-c$ has no solution in this case. On the other hand, if $D_{4 n_{1}}\left(x_{1}, 1\right)=c$ has a solution in $U=\left\{u \in G F\left(q^{2}\right) \mid u^{q+1}=1\right\}$, then $\rho \in U$ is a
square in U and so $-\rho \in U$ is a non-square. This implies that $D_{4 n_{2}}\left(x_{2}, 1\right)=-c$ has no solution in this case. Combining all the arguments together, the equation (4.17) has no solution in $G F(q)$.

References

1. W.-S. Chou, J. Gomez-Calderon and G. L. Mullen, Value sets of Dickson polynomials over finite fields, J. Number Theory, 30 (1988), 334-344.
2. W.-C. W. Li, Number Theory With Applications, Series on University Mathematics, Vol. 7, World Scientific, Singapore, 1996.
3. R. Lidl, G. L. Mullen and G. Turnwald, Dickson Polynomials, Longman Scientific and Technical, Essex, United Kingdom, 1993.
4. R. Lidl and H. Niederreiter, Finite Fields, Encyclo. of Math. \& Its Appls, Second Ed., Vol. 20, Cambridge University Press, Cambridge, 1997.

Wun-Seng Chou
Institute of Mathematics,
Academia Sinica,
Nankang, Taipei 115
Taiwan, R.O.C.
E-mail: macws@math.sinica.edu.tw
Gary L. Mullen
Department of Mathematics,
The Pennsylvania State University,
University Park, PA 16802,
U.S.A.
E-mail: mullen@math.psu.edu
Bertram Wassermann
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802,
U.S.A.

[^0]: Received December 23, 2007, Accepted February 13, 2008.
 Communicated by Hung-Lin Fu.
 2000 Mathematics Subject Classification: 11T06.
 Key words and phrases: Finite field, Dickson polynomial, Character, Gauss sum, Trace.
 The author would like to thank the National Science Council for partial support of this work under grant number NSC 94-2115-M-001-019.

