TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 4, pp. 917-931, July 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

ON THE NUMBER OF SOLUTIONS OF EQUATIONS OF DICKSON POLYNOMIALS OVER FINITE FIELDS

Wun-Seng Chou, Gary L. Mullen and Bertram Wassermann

Dedicated to Professor Ko-Wei Lih on the occasion of his 60th birthday.

Abstract. Let k, n_1, \ldots, n_k be fixed positive integers, $c_1, \ldots, c_k \in GF(q)^*$, and $a_1, \ldots, a_k, c \in GF(q)$. We study the number of solutions in GF(q) of the equation $c_1D_{n_1}(x_1, a_1) + c_2D_{n_2}(x_2, a_2) + \cdots + c_kD_{n_k}(x_k, a_k) = c$, where each $D_{n_i}(x_i, a_i), 1 \le i \le k$, is the Dickson polynomial of degree n_i with parameter a_i . We also employ the results of the k = 1 case to recover the cardinality of preimages and images of Dickson polynomials obtained earlier by Chou, Gomez-Calderon and Mullen [1].

1. INTRODUCTION

Let q be a prime power. A *diagonal equation* over the finite field GF(q) is defined to be an equation of the form

$$c_1 x_1^{n_1} + c_2 x_2^{n_2} + \dots + c_k x_k^{n_k} = c,$$

where c, c_1, \ldots, c_k are elements of GF(q) with $c_1 \cdots c_k \neq 0$ and n_1, \ldots, n_k are positive integers. The diagonal equation has been studied extensively; see Chapter 6 of Lidl and Niederreiter's book [4]. Following the method used in [4], we are going to extend this equation to the equation over GF(q) defined as

(1.1)
$$c_1 D_{n_1}(x_1, a_1) + c_2 D_{n_2}(x_2, a_2) + \dots + c_k D_{n_k}(x_k, a_k) = c,$$

where n_1, \ldots, n_k are positive integers, c_1, \ldots, c_k are non-zero, c, a_1, \ldots, a_k are elements in GF(q), and $D_{n_1}(x_1, a_1), \ldots, D_{n_k}(x_k, a_k)$ are Dickson polynomials defined as follows.

Communicated by Hung-Lin Fu.

Received December 23, 2007, Accepted February 13, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 11T06.

Key words and phrases: Finite field, Dickson polynomial, Character, Gauss sum, Trace.

The author would like to thank the National Science Council for partial support of this work under grant number NSC 94-2115-M-001-019.

Let n be a positive integer and let $a \in GF(q)$. The Dickson polynomial over GF(q) of degree n with parameter a is defined to be

$$D_n(x,a) = \sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n}{n-i} \left(\begin{array}{c} n-i\\i \end{array}\right) (-a)^i x^{n-2i}.$$

Dickson polynomials have been studied extensively because they play very important roles in both theoretical work as well as in various applications; see Lidl, Mullen and Turnwald's book [3]. Dickson polynomials have many properties which are closely related to properties of power polynomials $x^n = D_n(x, 0)$ (see also [3]). For example, for $a \in GF(q)^* = GF(q) \setminus \{0\}$, $D_n(x, a)$ induces a permutation on GF(q) if and only if $gcd(n, q^2 - 1) = 1$.

In this paper, we will employ the method used in [4] to estimate the number N_k of solutions of the equation (1.1) in GF(q). At first, we consider the case k = 1 in Section 2. In fact, we will give a formula for N_1 in terms of characters on $GF(q^2)$. From now on, we write $N(D_n(x, a) = c)$ instead of N_1 to emphasize the Dickson polynomial $D_n(x, a)$ and the fixed value $c \in GF(q)$. In Section 3, we will use the formulas from Section 2 to recover results in [1] about cardinalities of preimages and images of Dickson polynomials. Finally, we will estimate N_k in Section 4.

2. The Number $N(D_n(x, a) = c)$

Let n > 0 be a fixed integer. Let $a \in GF(q)^*$. Every element u of GF(q) can be expressed as $u = \alpha + \frac{a}{\alpha}$, where either $\alpha \in GF(q)^*$ or $\alpha \in GF(q^2)$ satisfying $\alpha^{q+1} = a$. Let $M(a) = \{\zeta \in GF(q^2) | \zeta^{q+1} = a\}$. Then, either $\alpha \in GF(q)^*$ or $\alpha \in M(a)$. Moreover, if $\alpha_1, \alpha_2 \in M(a)$, there is an element $w \in GF(q^2)$ of multiplicative order a divisor of q + 1 satisfying $\alpha_2 = \alpha_1 w$. So, if we set U to be the subset of $GF(q^2)$ containing all elements of multiplicative order dividing q + 1, then $M(a) = \alpha U = \{\alpha u | u \in U\}$ for any $\alpha \in M(a)$.

Throughout this section, let $a, c \in GF(q)$ be fixed with $a \neq 0$. Write $x = y + \frac{a}{y}$. It is well-known that

$$(2.2) D_n(x,a) = y^n + \frac{a^n}{y^n}.$$

This functional equation is very useful in studying Dickson polynomials over finite fields.

We now define a new equation which will be very useful in studying $N(D_n(x, a) = c)$. For $\theta \in GF(q^2)$, we set an equation

(2.3)
$$y^n = \theta$$
 with the constraint $y + \frac{a}{y} \in GF(q)$.

918

If the equation has a solution, then its solutions belong to $GF(q)^* \cup M(a)$ because of the constraint. Let $N_a(y^n = \theta)$ be the number of solutions in $GF(q^2)$ of the equation (2.3). This equation has a very close relation with the equation $D_n(x, a) = c$ as we are going to see in the following two lemmas.

Lemma 1. Let $a, c \in GF(q)$ with $a \neq 0$ and let $\theta \in GF(q^2)$. Then $N_a(y^n = \theta) \neq 0$ if and only if θ is a solution of $x^2 - cx + a^n = 0$ and $N(D_n(x, a) = c) \neq 0$.

Proof. Assume first that y_0 is a root of the equation (2.3). Then $x_0 = y_0 + \frac{a}{y_0} \in GF(q)$ and $c = y_0^n + \frac{a^n}{y_0^n} \in GF(q)$. This implies that x_0 is a solution of the equation $D_n(x, a) = c$ and θ is a solution of $x^2 - cx + a^n = 0$ because $y_0^n = \theta$.

For the sufficiency, assume that θ is a solution of $x^2 - cx + a^n = 0$ and $N(D_n(x, a) = c) \neq 0$. Let x_0 be a solution of $D_n(x, a) = c$. Write $x_0 = y_1 + \frac{a}{y_1}$ with $y_1 \in GF(q)^* \cup M(a)$. From (2.2), $y_1^n + \frac{a^n}{y_1^n} = c$. So, we take either $y_0 = y_1$ or $y_0 = \frac{a}{y_1}$ according to whether $\theta = y_1^n$ or $\theta = (\frac{a}{y_1})^n$, respectively. This completes the proof.

Lemma 2. Let n be a positive integer. Let $a, c \in GF(q)$ with $a \neq 0$ and let $\theta \in GF(q^2)$ be a solution of $x^2 - cx + a^n = 0$. Let r be the number of solutions of (2.3) with $y = \pm \sqrt{a}$. Then

$$N(D_n(x,a) = c) = \begin{cases} N_a(y^n = \theta) & \text{if } \theta^2 \neq a^n \\ \frac{N_a(y^n = \theta) + r}{2} & \text{if } \theta^2 = a^n \end{cases}$$

Proof. In the second part of the proof of Lemma 1, y_0 is chosen uniquely except for $\theta = y_1^n = \left(\frac{a}{y_1}\right)^n$ and $y_1 \neq \frac{a}{y_1}$. This exceptional case implies that $\theta^2 = a^n$ (and so $c = \pm 2\sqrt{a^n}$) and $y_1^2 \neq a$ (and so $x_0 \neq \pm 2\sqrt{a}$). Moreover, both choices of $y_0 = y_1$ and $y_0 = \frac{a}{y_1}$ generate only one solution x_0 of $D_n(x, a) = c$ in GF(q). So, the lemma follows.

In fact, the number of solutions of the equation (2.3) can be expressed as a character sum over $GF(q^2)$.

Lemma 3. Let $0 \neq a \in GF(q)$ and let $\theta \in GF(q^2)$. Let $\alpha \in M(a)$. Write $m = \gcd(n, q - 1)$ and $\ell = \gcd(n, q + 1)$. Let r be the number of solutions of (2.3) with $y = \pm \sqrt{a}$. Then

$$N_{a}(y^{n} = \theta) = \begin{cases} \frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta) + \frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}(\theta\alpha^{-n}), & \text{if } \theta^{2} \neq a^{n} \\ \frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta) + \frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}(\theta\alpha^{-n}) - r, & \text{if } \theta^{2} = a^{n} \end{cases}$$

where λ and μ are multiplicative characters of orders m(q+1) and $\ell(q-1)$, respectively.

Proof. Suppose first that $\theta \in GF(q^2)$ is not a root of $x^2 - cx + a^n = 0$ for any $c \in GF(q)$. Then $N_a(y^n = \theta) = 0$ from Lemma 1. Moreover, $\theta \notin GF(q)$ and $\theta \alpha^{-n}$ has multiplicative order not dividing q + 1. These facts imply $\sum_{i=0}^{m(q+1)-1} \lambda^i(\theta) = 0 = \sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta \alpha^{-n})$ and so the lemma holds.

In what follows, we suppose that $\theta \in GF(q^2)$ is a root of $x^2 - cx + a^n = 0$ for some $c \in GF(q)$. Note that every solution of the equation (2.3) belongs to $GF(q)^* \cup M(a)$. Note also that any solution in $GF(q)^*$ of (2.3) is a $gcd(n(q+1), q^2 - 1) = m(q+1)$ power of some element in $GF(q^2)$. So, the total number of solutions in $GF(q)^*$ of the equation (2.3) equals $\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^i(\theta)$. Furthermore, $u \in M(a)$ is a solution of the equation (2.3) if and only if $u\alpha^{-1}$ has order dividing q + 1 and is a solution of the equation $y^n = \theta\alpha^{-n}$. The last statement is equivalent to the fact that $\theta\alpha^{-n}$ is a $gcd(n(q-1), q^2 - 1) = \ell(q-1)$ power of some element in $GF(q^2)$. So, the total number of solutions in M(a) of (2.3) equals $\frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta\alpha^{-n})$. Finally, if $u \in GF(q)^* \cap M(a)$ is a solution of the equation (2.3), then

Finally, if $u \in GF(q)^* \cap M(a)$ is a solution of the equation (2.3), then $u^2 = u^{q+1} = a$. This case holds if and only if $\theta^2 = a^n$. Combining all of these results together, we have that $N_a(y^n = \theta) = \frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^i(\theta) + \frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta\alpha^{-n})$ if $\theta^2 \neq a^n$, and $N_a(y^n = \theta) = \frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^i(\theta) + \frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta\alpha^{-n}) - r$ if $\theta^2 = a^n$, because we count $u \in GF(q)^* \cap M(a)$ twice in the latter case.

We are now ready to express $N(D_n(x, a) = c)$ in terms of character sums over a finite field.

Theorem 4. Let n be a positive integer. Write m = gcd(n, q - 1) and $\ell = gcd(n, q + 1)$. Let $a, c \in GF(q)$ with $a \neq 0$ and let $\theta \in GF(q^2)$ be a solution of $x^2 - cx + a^n = 0$. Choose an arbitrary element $\alpha \in M(a)$, and finally, choose two multiplicative characters λ and μ of orders m(q+1) and $\ell(q-1)$ respectively. Then

$$\begin{split} N(D_n(x,a) &= c) \\ &= \left\{ \begin{array}{ll} \frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^i(\theta) + \frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta\alpha^{-n}), & \text{if } \theta^2 \neq a^n, \\ \frac{1}{2} \left[\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^i(\theta) + \frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta\alpha^{-n}) \right], & \text{if } \theta^2 = a^n. \end{split} \right. \end{split}$$

Proof. The theorem follows immediately by Lemmas 2 and 3.

The formula in the last theorem is a formula for computing the number of preimages of a fixed element $c \in GF(q)$ under the Dickson polynomial $D_n(x, a)$. Sometimes we only need to know whether or not the equation $D_n(x, a) = c$ has a solution in GF(q). We only need to modify this formula a little bit for this purpose. Namely, let $I(D_n(x, a) = c) = 1$ if the equation $D_n(x, a) = c$ has a solution in GF(q), while $I(D_n(x, a) = c) = 0$ if the equation $D_n(x, a) = c$ does not have any solution in GF(q). We are going to express the number $I(D_n(x, a) = c)$ in terms of character sums in the following

Theorem 5. Let n be a positive integer. Write m = gcd(n, q - 1) and $\ell = gcd(n, q + 1)$. Let $a, c \in GF(q)$ with $a \neq 0$ and let $\theta \in GF(q^2)$ be a solution of $x^2 - cx + a^n = 0$ with $\theta^2 \neq a^n$. Choose an arbitrary element $\alpha \in M(a)$, and finally, choose two multiplicative characters λ and μ of orders m(q + 1) and $\ell(q - 1)$ respectively. Then

$$I(D_n(x,a)=c) = \frac{1}{m(q+1)} \sum_{i=0}^{m(q+1)-1} \lambda^i(\theta) + \frac{1}{\ell(q-1)} \sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta\alpha^{-n}).$$

Proof. Note that $\theta \notin GF(q)^* \cap M(a^n)$ since $\theta^2 \neq a^n$. So, if one of the summations in the statement of the theorem is non-zero, then the other summation is zero. Moreover, $\sum_{i=0}^{m(q+1)-1} \lambda^i(\theta)$ equals either m(q+1) or 0 depending on whether θ either an m(q+1)th power in $GF(q^2)$ or not, respectively, and $\sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta\alpha^{-n})$ equals either $\ell(q-1)$ or 0 depending on $\theta\alpha^{-n}$ either an $\ell(q-1)$ th power in $GF(q^2)$ or not, respectively. From the definition of $I(D_n(x, a) = c)$, the theorem follows.

3. CARDINALITIES OF PREIMAGES AND IMAGES

Using results in Section 2, we are going to give a new proof of results obtained by Chou, Gomez-Calderon and Mullen [1]. In this section, $n \ge 2$ is an integer, $a \in GF(q)^*$, and η denotes the quadratic character of GF(q). Moreover, $d^j || t$ means that d^j divides t but d^{j+1} does not divide t. The following theorem includes both Theorems 9 and 9' in [1].

Theorem 6. (Theorems 9 and 9', [1]). Let $a \in GF(q)^*$, $x_0 \in GF(q)$ and let $D_n^{-1}(D_n(x_0, a))$ be the preimage of $D_n(x_0, a)$. If q is even, then

$$|D_n^{-1}(D_n(x_0, a))| = \begin{cases} \gcd(n, q-1) \text{ if } x^2 + x_0 x + a \text{ is reducible over } GF(q) \text{ and } D_n(x_0, a) \neq 0, \\ \gcd(n, q+1) \text{ if } x^2 + x_0 x + a \text{ is irreducible over } GF(q) \text{ and } D_n(x_0, a) \neq 0, \\ \frac{\gcd(n, q-1) + \gcd(n, q+1)}{2} \quad \text{if } D_n(x_0, a) = 0. \end{cases}$$

If q is odd and $2^r ||(q^2 - 1)$, then

$$\begin{split} |D_n^{-1}(D_n(x_0,a))| \\ &= \begin{cases} \gcd(n,q-1) & \text{if } \eta(x_0^2-4a) = 1 \text{ and } D_n(x_0,a) \neq \pm 2a^{n/2}, \\ \gcd(n,q+1) & \text{if } \eta(x_0^2-4a) = -1 \text{ and } D_n(x_0,a) \neq \pm 2a^{n/2}, \\ \frac{\gcd(n,q-1)}{2} & \text{if } \eta(x_0^2-4a) = -1 \text{ and condition } A \text{ holds,} \\ \frac{\gcd(n,q+1)}{2} & \text{if } \eta(x_0^2-4a) = -1 \text{ and condition } A \text{ holds,} \\ \frac{\gcd(n,q-1)+\gcd(n,q+1)}{2} & \text{otherwise,} \end{cases}$$

where condition A holds if either

$$2^t || n \text{ with } 1 \le t \le r-1, \eta(a) = -1 \text{ and } D_n(x_0, a) = \pm 2a^{n/2}$$

or

$$2^t || n \text{ with } 1 \le t \le r-2, \eta(a) = 1 \text{ and } D_n(x_0, a) = -2a^{n/2}.$$

Proof. Write $c = D_n(x_0, a)$. Then $0 \neq |D_n^{-1}(D_n(x_0, a))| = N(D_n(x, a) = c)$. Let $\theta \in GF(q^2)$ be a root of $x^2 - cx + a^n = 0$ and let $\alpha \in M(a)$. Note that if $u \in GF(q^2)$ is a root of $x^2 - x_0x + a = 0$, then either u or $\frac{a}{u}$ is a root of $y^n = \theta$ with $u \in GF(q)^* \cup M(a)$.

We first consider $\theta^2 \neq a^n$. From Theorem 4,

$$|D_n^{-1}(D_n(x_0,a))| = \frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^i(\theta) + \frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta\alpha^{-n}),$$

where λ and μ are multiplicative characters of orders m(q+1) and $\ell(q-1)$, respectively. Since $\theta^2 \neq a^n$, either $\theta \in GF(q)$ or $\theta \in M(a^n)$, but cannot be both. This implies either $\sum_{i=0}^{m(q+1)-1} \lambda^i(\theta) = 0$ or $\sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta\alpha^{-n}) = 0$, but cannot be both zero simultaneously. Precisely, if $x^2 - x_0x + a$ is reducible (or $\eta(x_0^2 - 4a) = 1$ when q odd) over GF(q), then $\theta \in GF(q)$ is an *m*th power and so $\sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta\alpha^{-n}) = 0$ and $|D_n^{-1}(D_n(x_0, a))| = \frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^i(\theta) = m$; while if $x^2 - x_0x + a$ is irreducible (or $\eta(x_0^2 - 4a) = -1$ when q odd) over GF(q), then $\theta \alpha^{-n} \in U$ is an ℓ th power and so $\sum_{i=0}^{m(q+1)-1} \lambda^i(\theta) = 0$ and $|D_n^{-1}(D_n(x_0, a))| = \frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta\alpha^{-n}) = \ell$. This proves the first two situations for any prime power q.

In the remaining part of this proof, assume $\theta^2 = a^n$. Then c = 0 if q is even while $c \in GF(q)^* \cap M(a^n) = \{\pm 2\sqrt{a^n}\}$ if q is odd. In this case, there is only one choice for θ . From Theorem 4,

(3.4)
$$|D_n^{-1}(D_n(x_0, a))| = \frac{1}{2} \Big[\frac{1}{q+1} \sum_{i=0}^{m(q+1)-1} \lambda^i(\theta) + \frac{1}{q-1} \sum_{i=0}^{\ell(q-1)-1} \mu^i(\theta \alpha^{-n}) \Big]$$

Assume first that $\theta = \sqrt{a^n}$. There are two cases to consider. (1) a is a square in GF(q) so that $\sqrt{a} \in GF(q)^* \cap M(a)$ is a solution of $y^n = \theta$. This implies that θ is an *m*th power in GF(q) and $\theta \alpha^{-n}$ is an ℓ th power in U. So we have that if a is a square in GF(q), then $|D_n^{-1}(D_n(x_0, a))| = \frac{m+\ell}{2}$ from the equation (3.4). This proves the third situation for q even and part of the last situation for qodd. (2) a is a non-square in GF(q). So q must be odd. For a positive integer u, write $\omega(u)$ to be the non-negative integer satisfying $2^{\omega(u)}||u$. If $\eta(x_0^2 - 4a) = 1$, then $y^n = \sqrt{a^n}$ has a solution in GF(q) and so $\theta = \sqrt{a^n}$ is an *m*th power in GF(q). This implies that n is even and $t = \omega(n) > \omega(q-1)$. Now $(\theta \alpha^{-n})^{\frac{q+1}{\ell}} =$ $(a^{\frac{n}{2}})^{\frac{q+1}{\ell}}(\alpha^{q+1})^{-\frac{n}{\ell}} = (a^{\frac{q+1}{2}})^{\frac{n}{\ell}}a^{-\frac{n}{\ell}} = (-1)^{\frac{n}{\ell}}$. This implies that $\theta \alpha^{-n}$ is an ℓ th power in U if and only if $t = \omega(n) > \omega(\ell) = \omega(q+1)$. Combining together, we have, from the equation (3.4), that $|D_n^{-1}(D_n(x_0,a))| = \frac{m}{2}$ if $\eta(x_0^2 - 4a) = 1$ and $1 \le t \le r-1$, while $|D_n^{-1}(D_n(x_0,a))| = \frac{m+\ell}{2}$ if $\eta(x_0^2 - 4a) = 1$ and $t \ge r$. If $\eta(x_0^2 - 4a) = -1$, then $y^n = \sqrt{a^n}$ has a solution in M(a) and so $\theta \alpha^{-n}$ is an ℓ th power in U. Hence, $t = \omega(n) > \omega(\ell) = \omega(q+1)$ in this case. Now $\theta^{\frac{q-1}{m}} = (a^{\frac{q-1}{2}})^{\frac{n}{m}} = (-1)^{\frac{n}{m}}$. This implies that θ is an *m*th power in GF(q) if and only if $t = \omega(n) > \omega(m) = \omega(q-1)$. So, from the equation (3.4) again, we have that $|D_n^{-1}(D_n(x_0,a))| = \frac{\ell}{2}$ if $\eta(x_0^2 - 4a) = -1$ and $1 \le t \le r-1$, while $|D_n^{-1}(D_n(x_0,a))| = \frac{\ell}{2}$ if $\eta(x_0^2 - 4a) = -1$ and $t \ge r$.

Finally, assume $\theta = -\sqrt{a^n}$ for q odd. We also consider two cases. (1) a is a square in GF(q). Now θ is an mth power in $GF(q)^*$ if and only if $1 = (\theta)^{\frac{q-1}{m}} = (-1)^{\frac{q-1}{m}} (a^{\frac{n}{2}})^{\frac{q-1}{m}} = (-1)^{\frac{q-1}{m}}$. This is equivalent to $t < \omega(q-1)$. On the other hand, $\theta \alpha^{-n}$ is an ℓ th power in U if and only if $1 = (\theta \alpha^{-n})^{\frac{q+1}{\ell}} = (-1)^{\frac{q+1}{\ell}} (a^{\frac{n}{2}})^{\frac{q+1}{\ell}} (\alpha^{q+1})^{-\frac{n}{\ell}} = (-1)^{\frac{q+1}{\ell}}$. The last statement is equivalent to $t < \omega(q+1)$. So if $\eta(x_0^2 - 4a) = 1$ (or $y^n = -\sqrt{a^n}$ has a solution in GF(q)), then $|D_n^{-1}(D_n(x_0, a))| = \frac{m}{2}$ if $1 \le t < \omega(q-1)$ and $|D_n^{-1}(D_n(x_0, a))| = \frac{m+\ell}{2}$ if t = 0. And if $\eta(x_0^2 - 4a) = -1$ (or $y^n = -\sqrt{a^n}$ has a solution in M(a)), $|D_n^{-1}(D_n(x_0, a))| = \frac{\ell}{2}$ if $1 \le t < \omega(q-1)$ and $|D_n^{-1}(D_n(x_0, a))| = \frac{m+\ell}{2}$ if t = 0. (2) a is a non-square in $GF(q)^*$. This implies that n is even. θ is an mth power in $GF(q)^*$ if and only if $1 = (\theta)^{\frac{q-1}{m}} = (-1)^{\frac{q-1}{m}} (a^{\frac{n}{2}})^{\frac{q-1}{m}} = (-1)^{\frac{q-1+n}{m}}$. This is equivalent to $t = \omega(q-1)$. On the other hand, $\theta \alpha^{-n}$ is an ℓ th power in U if and only

if $1 = (\theta \alpha^{-n})^{\frac{q+1}{\ell}} = (-1)^{\frac{q+1}{\ell}} (a^{\frac{n}{2}})^{\frac{q+1}{\ell}} (\alpha^{q+1})^{-\frac{n}{\ell}} = (-1)^{\frac{q+1+n}{\ell}}$. The last statement is equivalent to $t = \omega(q+1)$. Note that either $t = \omega(q-1)$ or $t = \omega(q+1)$, but cannot be both. So, from the equation (3.4), we have that $|D_n^{-1}(D_n(x_0,a))| = \frac{m}{2}$ if $\eta(x_0^2 - 4a) = 1$, while $|D_n^{-1}(D_n(x_0,a))| = \frac{\ell}{2}$ if $\eta(x_0^2 - 4a) = -1$. This completes the proof.

We now provide an alternate proof of one of the main result in [1] about the cardinality $|V_{D_n(x,a)}|$ of the value set of $D_n(x,a)$.

Theorem 7. (Theorems 10 and 10', [1]). Let $a \in GF(q)^*$. Suppose that $2^r ||(q^2 - 1) \text{ and } \eta \text{ is the quadratic character on } GF(q) \text{ whenever } q \text{ is odd. Then we have}$

$$|V_{D_n(x,a)}| = \frac{q-1}{2(n,q-1)} + \frac{q+1}{2(n,q+1)} + \delta,$$

where

1 - -

$$\delta = \begin{cases} 1 & \text{if } q \text{ is odd, } 2^{r-1} || n \text{ and } \eta(a) = -1, \\ \frac{1}{2} & \text{if } q \text{ is odd and } 2^t || n \text{ with } 1 \le t \le r-2 \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Let $S = GF(q)^* \cap M(a^n)$ and let $\alpha \in M(a)$ be fixed. Note that every element $\theta \in S$ satisfies $\theta^2 = a^n$. Let k be the number of elements $\beta \in S$ such that either β is an mth power in $GF(q)^*$ or $\beta \alpha^{-n}$ is an ℓ th power in U. From the definition of $I(D_n(x, a) = c)$, we have $|V_{D_n(x,a)}| = \sum_{c \in GF(q)} I(D_n(x, a) = c)$. For $c \neq \pm \sqrt{a^n}$, we take only one root θ in Theorem 5. So, when we sum over all elements in $GF(q)^* \cup M(a^n)$ in Theorem 5, we have

(3.5)
$$|V_{D_{n}(x,a)}| = \frac{1}{2} \sum_{\theta \in (GF(q)^{*} \cup M(a^{n})) \setminus S} \left[\frac{1}{m(q+1)} \sum_{i=0}^{m(q+1)-1} \lambda^{i}(\theta) + \frac{1}{\ell(q-1)} \sum_{i=0}^{\ell(q-1)-1} \mu^{i}(\theta\alpha^{-n}) \right] + k$$
$$= \frac{1}{2m(q+1)} \sum_{i=0}^{m(q+1)-1} \sum_{\theta \in GF(q)^{*} \setminus S} \lambda^{i}(\theta) + \frac{1}{2\ell(q-1)} \sum_{i=0}^{\ell(q-1)-1} \sum_{\theta \in M(a^{n}) \setminus S} \mu^{i}(\theta\alpha^{-n}) + k,$$

where λ and μ are multiplicative characters on $GF(q^2)$ of orders m(q+1) and $\ell(q-1)$, respectively.

Since every $\theta \in GF(q)$ is a (q+1)th power in $GF(q^2)$ and there are exactly $\frac{q-1}{m}$ elements in $GF(q)^*$ which are *m*th powers in $GF(q)^*$, the first term in the equation (3.5) can be rewritten as

(3.6)
$$E_{1} = \frac{1}{2m(q+1)} \sum_{i=0}^{m(q+1)-1} \sum_{\theta \in GF(q)^{*} \setminus S} \lambda^{i}(\theta)$$
$$= \frac{1}{2m} \left[\sum_{\theta \in GF(q)^{*}} \sum_{i=0}^{m-1} \lambda^{(q+1)i}(\theta) - \sum_{\theta \in S} \sum_{i=0}^{m-1} \lambda^{(q+1)i}(\theta) \right]$$
$$= \frac{1}{2m} \left[q - 1 - \sum_{\theta \in S} \sum_{i=0}^{m-1} \lambda^{(q+1)i}(\theta) \right].$$

Moreover, every $u \in U$ is a (q-1)th power in $GF(q^2)$ and there are exactly $\frac{q+1}{\ell}$ elements in U which are ℓ th powers in U, the second term in the equation (3.5) can be rewritten as

(3.7)

$$E_{2} = \frac{1}{2\ell(q-1)} \sum_{i=0}^{\ell(q-1)-1} \sum_{\theta \in M(a^{n}) \setminus S} \mu^{i}(\theta \alpha^{-n})$$

$$= \frac{1}{2\ell} \left[\sum_{i=0}^{\ell-1} \sum_{u \in U} \mu^{(q-1)i}(u) - \sum_{\theta \in S} \sum_{i=0}^{\ell-1} \mu^{(q-1)i}(\theta \alpha^{-n}) \right]$$

$$= \frac{1}{2\ell} \left[q + 1 - \sum_{\theta \in S} \sum_{i=0}^{\ell-1} \mu^{(q-1)i}(\theta \alpha^{-n}) \right].$$

Suppose now that |S| = 0. Then *a* is a non-square in GF(q) and *n* is odd. So k = 0, $\sum_{\theta \in S} \sum_{i=0}^{m-1} \lambda^{(q+1)i}(\theta) = 0$ in the equation (3.6), and $\sum_{\theta \in S} \sum_{i=0}^{\ell-1} \mu^{(q-1)i}(\theta \alpha^{-n}) = 0$ in the equation (3.7). In this case, $\delta = 0$ and so, $|V_{D_n(x,a)}| = \frac{q-1}{2m} + \frac{q+1}{2\ell}$ as desired.

Finally suppose $|S| \neq 0$. Then $S = \{\sqrt{a^n}\}$ if q is even and $S = \{\pm \sqrt{a^n}\}$ if q is odd. Note that $\theta = \pm \sqrt{a^n}$ is an *m*th power in $GF(q)^*$ if and only if $1 = (\pm \sqrt{a^n})^{\frac{q-1}{m}} = (\pm 1)^{\frac{q-1}{m}} (a^{\frac{q-1}{2}})^{\frac{n}{m}}$, while $\theta \alpha^{-n} = \pm \sqrt{a^n} \alpha^{-n}$ is an ℓ th power in U if and only if $1 = (\pm \sqrt{a^n} \alpha^{-n})^{\frac{q+1}{\ell}} = (\pm 1)^{\frac{q+1}{\ell}} (a^{\frac{q-1}{2}})^{\frac{n}{\ell}}$. Note also that $a^{\frac{q-1}{2}} = 1$ if a is a square, and $a^{\frac{q-1}{2}} = -1$ if a ia a non-square. So, there are only two cases to be considered.

(1) *a* is quadratic in $GF(q)^*$. Then $a^{\frac{q-1}{2}} = 1$ and so $\theta = \sqrt{a^n}$ is an *m*th power in $GF(q)^*$ and an ℓ th power in *U*. So $\sum_{i=0}^{m-1} \lambda^{(q+1)i}(\sqrt{a^n}) = m$ and $\sum_{i=0}^{\ell-1} \mu^{(q-1)i}(\sqrt{a^n}\alpha^{-n}) = \ell$. From equations (3.5), (3.6) and (3.7), if *q* is even, we have $|V_{D_n(x,a)}| = \frac{q-1}{2m} + \frac{q+1}{2\ell}$ (i.e., $\delta = 0$), because k = 1. Assume now *q* odd. From the above results, $-\sqrt{a^n}$ is an *m*th power in $GF(q)^*$ if and only if $\frac{q-1}{m}$ is even, and $-\sqrt{a^n}\alpha^{-n}$ is an ℓ th power in *U* if and only if

 $\begin{array}{l} \frac{q+1}{\ell} \text{ is even. If } t \geq r-1 \text{, then both } \frac{q-1}{m} \text{ and } \frac{q+1}{\ell} \text{ are odd and so, } k=1 \text{. In this case, } |V_{D_n(x,a)}| = \frac{q-1-m}{2m} + \frac{q+1-\ell}{2\ell} + 1 = \frac{q-1}{2m} + \frac{q+1}{2\ell} \text{ (i.e., } \delta=0 \text{), from equations (3.5), (3.6) and (3.7). If } t < r-1 \text{, then } k=2 \text{. If } t=0 \text{, then } |V_{D_n(x,a)}| = \frac{q-1-2m}{2m} + \frac{q+1-2\ell}{2\ell} + 2 = \frac{q-1}{2m} + \frac{q+1}{2\ell} \text{ (i.e., } \delta=0 \text{), from equations (3.5), (3.6) and (3.7). If } 1 \leq t \leq r-2 \text{, then one of } \frac{q-1}{m} \text{ and } \frac{q+1}{\ell} \text{ is even and the other is odd. In this case, we have } |V_{D_n(x,a)}| = \frac{q-1}{2m} + \frac{q+1}{2\ell} + \frac{1}{2} \text{ from equations (3.5), (3.6) and (3.7).} \end{array}$

(2) *a* is a non-square in $GF(q)^*$. Then *q* is odd and $a^{\frac{q-1}{2}} = -1$. Moreover, $\theta = \pm \sqrt{a^n} \in S$ if and only if *n* is even. So, if *n* is odd, then |S| = 0 = k and so $|V_{D_n(x,a)}| = \frac{q-1}{2m} + \frac{q+1}{2\ell}$ from equations (3.5), (3.6) and (3.7). From now on, let *n* be even. Then $S = \{\pm \sqrt{a^n}\}$. From the above results, $\theta = \pm \sqrt{a^n}$ is an *m*th power in $GF(q)^*$ if and only if $1 = (\pm 1)^{\frac{q-1}{m}}(-1)^{\frac{n}{m}}$, while $\theta \alpha^{-n} = \pm \sqrt{a^n} \alpha^{-n}$ is an ℓ th power in *U* if and only if $1 = (\pm 1)^{\frac{q+1}{\ell}}(-1)^{\frac{n}{\ell}}$. If t = 1, then both $\frac{n}{m}$ and $\frac{n}{\ell}$ are odd and exactly one of $\frac{q-1}{m} + \frac{n}{m}$ and $\frac{q+1}{\ell} + \frac{n}{\ell}$ is odd. In this case, k = 1 and, from equations (3.5), (3.6) and (3.7), $|V_{D_n(x,a)}| = \frac{q-1}{2m} + \frac{q+1}{2\ell} + \frac{1}{2}$. If $2 \le t \le r-2$, then exactly one of $\frac{n}{m}$ and $\frac{n}{\ell}$ is odd and both $\frac{q-1}{m} + \frac{n}{m}$ and $\frac{q+1}{\ell} + \frac{n}{\ell}$ are odd. So, we also have k = 1 and $|V_{D_n(x,a)}| = \frac{q-1}{2m} + \frac{q+1}{2\ell} + \frac{1}{2}$ in this case. If t = r - 1, then exactly one of $\frac{n}{m}$ and $\frac{n}{\ell}$ is even, exactly one of $\frac{n}{m}$ and $\frac{n}{m} + \frac{q-1}{m}$ is even, and exactly one of $\frac{n}{m}$ and $\frac{n}{\ell}$ are even and both $\frac{q-1}{2m} + \frac{q+1}{2\ell} + 1$. Finally, if $t \ge r$, then both $\frac{n}{m}$ and $\frac{n}{\ell}$ are even and both $\frac{q-1}{m} + \frac{n}{m}$ and $\frac{q+1}{\ell} + \frac{n}{\ell}$ are odd. So, we have that k = 1 and, from equations (3.5), (3.6) and (3.7), $|V_{D_n(x,a)}| = \frac{q-1}{2m} + \frac{q+1}{2m} + \frac{n}{\ell}$ are odd. So, we have that k = 1 and, from equations (3.5), (3.6) and (3.7), $|V_{D_n(x,a)}| = \frac{q-1}{m} + \frac{n}{m}$ and $\frac{q+1}{\ell} + \frac{n}{\ell}$ are odd. So, we have that k = 1 and, from equations (3.5), (3.6) and (3.7), $|V_{D_n(x,a)}| = \frac{q-1}{2m} + \frac{q+1}{2\ell}$ in this case. This completes the proof.

4. AN EQUATION INVOLVING DICKSON POLYNOMIALS

In this section, let $k, n_1, \ldots, n_k \ge 2$ be fixed positive integers, $c_1, \ldots, c_k \in GF(q)^*$, and $a_1, \ldots, a_k, c \in GF(q)$. We are going to estimate the number N_k of solutions in GF(q) of the equation (1.1); namely, the number of solutions in GF(q) of the equation (1.1); namely, the number of solutions in GF(q) of the equation $c_1D_{n_1}(x_1, a_1) + c_2D_{n_2}(x_2, a_2) + \cdots + c_kD_{n_k}(x_k, a_k) = c$, where each $D_{n_i}(x_i, a_i)$ is a Dickson polynomial of degree n_i with parameter a_i . For this purpose, we need the following two lemmas.

Lemma 8. (Theorem 10, Chapter 6, [2]) Let χ be a non-trivial additive character of GF(q). Suppose either λ is a non-trivial multiplicative character of GF(q) * or $b, c \in GF(q)$ are not equal to zero simultaneously. Then

$$\Big|\sum_{\theta\in GF(q)^*}\chi(b\theta+\frac{c}{\theta})\lambda(\theta)\Big|\leq 2\sqrt{q}.$$

In the following lemma, let U be the subset of $GF(q^2)$ defined at the beginning of Section 2. That is, every element of U has multiplicative order dividing q + 1. So, U is the set of elements in $GF(q^2)$ which have norm 1 in GF(q).

Lemma 9. (Corollary 8, Chapter 6, [2]) For either χ a non-trivial additive character of $GF(q^2)$ or λ a non-trivial multiplicative character of $GF(q^2)$ of order dividing q + 1, one has

$$\left|\sum_{\theta \in U} \chi(\theta) \lambda(\theta)\right| \le 2\sqrt{q}.$$

We now estimate N_k . It is easy to see that

$$N_{k} = \sum_{u_{1} \in GF(q)} \cdots \sum_{u_{k} \in GF(q)} \frac{1}{q} \sum_{\chi} \chi(c_{1}D_{n_{1}}(u_{1}, a_{1}) + \dots + c_{k}D_{n_{k}}(u_{k}, a_{k}) - c)$$

= $\frac{1}{q} \sum_{\chi} \chi(c)^{-1} \sum_{u_{1} \in GF(q)} \chi(c_{1}D_{n_{1}}(u_{1}, a_{1})) \cdots \sum_{u_{k} \in GF(q)} \chi(c_{k}D_{n_{k}}(u_{k}, a_{k})),$

where χ runs over all the additive characters. Let χ_0 be the trivial additive character over GF(q). Then the last equation becomes

(4.8)
$$N_k - q^{k-1} = \frac{1}{q} \sum_{\substack{\chi \neq \chi_0 \\ \sum_{u_1 \in GF(q)} \chi(c_1 D_{n_1}(u_1, a_1)) \cdots \sum_{u_k \in GF(q)} \chi(c_k D_{n_k}(u_k, a_k))} \chi(c_k D_{n_k}(u_k, a_k)).$$

Let χ be any non-trivial additive character and take any $1 \le j \le k$. Let χ_{c_j} be the additive character satisfying $\chi_{c_j}(u) = \chi(c_j u)$ for all $u \in GF(q)$. Then

(4.9)
$$\sum_{u_j \in GF(q)} \chi(c_j D_{n_j}(u_j, a_j)) = \sum_{u_j \in GF(q)} \chi_{c_j}(D_{n_j}(u_j, a_j)) \\ = \sum_{u \in GF(q)} \chi_{c_j}(u) N(D_{n_j}(x_j, a_j) = u).$$

Let $m_j = \gcd(n_j, q-1)$ and $\ell_j = \gcd(n_j, q+1)$. Assume that λ_j and μ_j are multiplicative characters on $GF(q^2)$ of orders $m_j(q+1)$ and $\ell_j(q-1)$, respectively.

At first, we consider all $a_j \neq 0$. Write $u = \theta + \frac{a_j^{n_j}}{\theta}$ with $\theta \in GF(q)^* \cup M(a_j^{n_j})$ and take a fixed $\alpha_j \in M(a_j)$. Then from Theorem 4, the equation (4.9) becomes

$$\sum_{u_j \in GF(q)} \chi(c_j D_{n_j}(u_j, a_j))$$

$$= \sum_{u \in GF(q)} \chi_{c_j}(u) N_q(D_{n_j}(x_j, a_j) = u)$$

$$= \frac{1}{2} \sum_{\theta \in GF(q)^* \cup M(a_j^{n_j})} \chi_{c_j}(\theta + \frac{a_j^{n_j}}{\theta})$$

$$\left(\frac{1}{q+1} \sum_{i=0}^{m_j(q+1)-1} \lambda_j^i(\theta) + \frac{1}{q-1} \sum_{i=0}^{\ell_j(q-1)-1} \mu_j^i(\theta\alpha_j^{-n_j})\right)$$

Since each $\theta \in GF(q)$ is a (q+1)th power of some element in $GF(q^2)$ and each $\theta \alpha_j^{-n_j}$ with $\theta \in M(a_j^{n_j})$ is a (q-1)th power of some element in $GF(q^2)$, we may consider λ to be of order m_j and μ to be of order ℓ . Then the last equation can be rewritten as

(4.10)

$$\sum_{u_{j}\in GF(q)} \chi(c_{j}D_{n_{j}}(u_{j}, a_{j}))$$

$$= \frac{1}{2} \sum_{i=0}^{m_{j}-1} \sum_{\theta \in GF(q)^{*}} \chi_{c_{j}}(\theta + \frac{a_{j}^{n_{j}}}{\theta}) \lambda_{j}^{i}(\theta)$$

$$+ \frac{1}{2} \sum_{i=0}^{\ell_{j}-1} \sum_{\theta \in M(a_{j}^{n_{j}})} \chi_{c_{j}}(\theta + \frac{a_{j}^{n_{j}}}{\theta}) \mu_{j}^{i}(\theta \alpha_{j}^{-n_{j}}).$$

In the equation (4.10), the sum $\sum_{\theta \in GF(q)^*} \chi_{c_j}(\theta + \frac{a_j^{n_j}}{\theta}) \lambda_j^i(\theta)$ is a twisted Kloosterman sum. From Lemma 8, we have

(4.11)
$$\Big|\sum_{\theta \in GF(q)^*} \chi_{c_j}(\theta + \frac{a_j^{n_j}}{\theta})\lambda_j^i(\theta)\Big| \le 2\sqrt{q}.$$

For estimating the sum $\sum_{\theta \in M(a_j^{n_j})} \chi_{c_j}(\theta + \frac{a_j^{n_j}}{\theta}) \mu_j^i(\theta \alpha_j^{-n_j})$ in the equation (4.10), we have to modify some notation. Let $\chi'_j = \chi_{c_j} \circ Tr_{q^2/q}$, where $Tr_{q^2/q}$ is the trace function from $GF(q^2)$ onto GF(q). Then χ'_j is a non-trivial additive character of $GF(q^2)$. For any $\theta \in M(a_j^{n_j})$, we have $\theta^{q+1} = a_j^{n_j}$ and thus $\theta + \frac{a_j^{n_j}}{\theta} = Tr_{q^2/q}(\theta)$. This implies $\chi_{c_j}(\theta + \frac{a_j^{n_j}}{\theta}) = \chi'_j(\theta)$. Furthermore, let $\chi'_{\alpha_j^{n_j}}(u) = \chi'_j(\alpha_j^{n_j}u)$ for all u in $GF(q^2)$. Then $\chi'_{\alpha_j^{n_j}}$ is a non-trivial additive character of $GF(q^2)$ and $\chi'_{\alpha_j^{n_j}}(\theta \alpha_j^{-n_j}) = \chi'_j(\theta)$. Notice that $\theta \alpha_j^{-n_j} \in U$ from the definition of U. By Lemma 9,

Equations of Dickson Polynomials

(4.12)
$$\left|\sum_{\theta \in M(a_j^{n_j})} \chi_{c_j}(\theta + \frac{a_j^{n_j}}{\theta}) \mu_j^i(\theta \alpha_j^{-n_j})\right| = \left|\sum_{\theta \in U} \chi_{\alpha_j^{i_j}}'(\theta) \mu_j^i(\theta)\right| \le 2\sqrt{q}.$$

Substituting both inequalities (4.11) and (4.12) into (4.10) and simplifying, we have

(4.13)
$$\left|\sum_{u_j\in GF(q)}\chi(c_jD_{n_j}(u_j,a_j))\right| \le (m_j+\ell_j)\sqrt{q}.$$

Suppose that $a_j = 0$. Then the equation (4.9) becomes

$$\sum_{u_j \in GF(q)} \chi(c_j D_{n_j}(u_j, a_j)) = \sum_{u \in GF(q)} \chi(c_j u^{n_j}).$$

From Theorem 5.30, [4], the last equation becomes

$$\sum_{u_j \in GF(q)} \chi(c_j D_{n_j}(u_j, a_j)) = \sum_{i=1}^{m_j - 1} \lambda_j^{-i}(c_j) G(\chi, \lambda_j^i),$$

where $G(\chi, \lambda_j^i) = \sum_{u \in GF(q)^*} \chi(u) \lambda_j^i(u)$ is a Gauss sum. Since $|G(\chi, \lambda_j^i)| = \sqrt{q}$ (Theorem 5.11, [4]), we have

(4.14)
$$\left|\sum_{u_j \in GF(q)} \chi(c_j D_{n_j}(u_j, a_j))\right| \le (m_j - 1)\sqrt{q}.$$

Suppose now that there exists $0 \le t \le k$ such that $a_1 = \cdots = a_t = 0$ (t = 0 means that no such t exists) and $a_j \ne 0$ for all $t < j \le k$ (t = k means the equation (1.1) is a diagonal equation). Substituting both bounds (4.13) and (4.14) into (4.8) and simplifying, we have

(4.15)
$$|N_k - q^{k-1}| \le q^{\frac{k-2}{2}}(q-1) \prod_{j=1}^t (m_j - 1) \prod_{j=t+1}^k (m_j + \ell_j).$$

We summarize all of these results above in the following

Theorem 10. Let $k, n_1, \ldots, n_k \ge 2$ be fixed positive integers, $c_1, \ldots, c_k \in GF(q)^*$, and $a_1, \ldots, a_k, c \in GF(q)$. Moreover, suppose that there exists $0 \le t \le k$ such that $a_1 = \cdots = a_t = 0$ and $a_j \ne 0$ for all $t < j \le k$. Let N_k be the number of solutions in GF(q) of the equation

$$c_1 D_{n_1}(x_1, a_1) + c_2 D_{n_2}(x_2, a_2) + \dots + c_k D_{n_k}(x_k, a_k) = c.$$

Then

$$|N_k - q^{k-1}| \le q^{\frac{k-2}{2}}(q-1) \prod_{j=1}^t (m_j - 1) \prod_{j=t+1}^k (m_j + \ell_j),$$

where $m_j = \gcd(n_j, q-1)$ and $\ell_j = \gcd(n_j, q+1)$ for $1 \le j \le k$.

Note that the main term q^{k-1} in the last theorem is reasonable. For instance, if some n_j is relatively prime to $q^2 - 1$, then the equation (1.1) has exactly q^{k-1} solutions in GF(q) because $D_{n_j}(x_j, a_j)$ is a permutation polynomial on GF(q) and so, for each $u_i \in GF(q)$, $1 \le i \le k$ and $i \ne j$, $c_j D_{n_j}(x_j, a_j) = c - c_1 D_1(u_1, a_1) - \cdots - c_{j-1} D_{j-1}(u_{j-1}, a_{j-1}) - c_{j+1} D_{j+1}(u_{j+1}, a_{j+1}) - \cdots - c_k D_k(u_k, a_k)$ has exactly one solution in GF(q).

From the last theorem, we have the following existence result for $k \ge 3$.

Theorem 11. Let $k, n_1, \ldots, n_k \ge 2$ be fixed positive integers, $c_1, \ldots, c_k \in GF(q)^*$, and $a_1, \ldots, a_k, c \in GF(q)$. Moreover, suppose that there exists $0 \le t \le k$ such that $a_1 = \cdots = a_t = 0$ and $a_j \ne 0$ for all $t < j \le k$. If $k \ge 3$ and $q > (\prod_{j=1}^k (n_j + 2))^{\frac{2}{k-2}}$, then $N_k > 0$.

Proof. From Theorem 10, we have

(4.16)
$$N_k \ge q^{k-1} - q^{\frac{k-2}{2}}(q-1) \prod_{j=1}^t (m_j - 1) \prod_{j=t+1}^k (m_j + \ell_j)$$

For any $1 \le j \le k$, both $m_j - 1 \le n_j + 2$ and $m_j + \ell_j \le n_j + 2$ hold. Since $q > (\prod_{j=1}^k (n_j + 2))^{\frac{2}{k-2}}$, the right hand side of the inequality (4.16) is positive and so $N_k > 0$.

Note that the last theorem cannot hold for k = 1 or 2. When k = 1, it is easy to see that no matter how large the prime power q is, N_k may be zero from Theorem 7. For k = 2, we give an example as following:

Example. Let $n_1, n_2 \ge 2$ be relatively prime odd integers. Take any prime number q of the form $q = 8n_1n_2s + (4n_1n_2 + 1)$. We now consider the equation

$$(4.17) D_{4n_1}(x_1,1) + D_{4n_2}(x_2,1) = 0.$$

Take any $c \in GF(q)$. Suppose that ρ is a root of $x^2 - cx + 1 = 0$. Then $-\rho$ is a root of $x^2 + cx + 1 = 0$. If $D_{4n_1}(x_1, 1) = c$ has a solution in GF(q), then $\rho \in GF(q)$ is a $4n_1$ th power in GF(q) and so $-\rho \in GF(q)$ is only a square but not a 4th power. Hence $D_{4n_2}(x_2, 1) = -c$ has no solution in this case. On the other hand, if $D_{4n_1}(x_1, 1) = c$ has a solution in $U = \{u \in GF(q^2) | u^{q+1} = 1\}$, then $\rho \in U$ is a

930

square in U and so $-\rho \in U$ is a non-square. This implies that $D_{4n_2}(x_2, 1) = -c$ has no solution in this case. Combining all the arguments together, the equation (4.17) has no solution in GF(q).

References

- 1. W.-S. Chou, J. Gomez-Calderon and G. L. Mullen, Value sets of Dickson polynomials over finite fields, *J. Number Theory*, **30** (1988), 334-344.
- W.-C. W. Li, *Number Theory With Applications*, Series on University Mathematics, Vol. 7, World Scientific, Singapore, 1996.
- R. Lidl, G. L. Mullen and G. Turnwald, *Dickson Polynomials*, Longman Scientific and Technical, Essex, United Kingdom, 1993.
- 4. R. Lidl and H. Niederreiter, *Finite Fields*, Encyclo. of Math. & Its Appls, Second Ed., Vol. 20, Cambridge University Press, Cambridge, 1997.

Wun-Seng Chou Institute of Mathematics, Academia Sinica, Nankang, Taipei 115 Taiwan, R.O.C. E-mail: macws@math.sinica.edu.tw

Gary L. Mullen Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, U.S.A. E-mail: mullen@math.psu.edu

Bertram Wassermann Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, U.S.A.