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ON THE NUMBER OF SOLUTIONS OF EQUATIONS
OF DICKSON POLYNOMIALS OVER FINITE FIELDS

Wun-Seng Chou, Gary L. Mullen and Bertram Wassermann

Dedicated to Professor Ko-Wei Lih on the occasion of his 60th birthday.

Abstract. Let k,ny, ..., ny be fixed positive integers, c1, . ..,cx € GF(q)*,
and ay,...,ar, ¢ € GF(q). We study the number of solutions in GF(q) of
the equation ¢y Dy, (21, a1)+caDn, (22, a2)+- - -+ Dy, (Tk, ar) = ¢, where
each D, (x;,a;), 1 < i < k, is the Dickson polynomial of degree n; with
parameter a;. We also employ the results of the £k = 1 case to recover the
cardinality of preimages and images of Dickson polynomials obtained earlier
by Chou, Gomez-Calderon and Mullen [1].

1. INTRODUCTION

Let ¢ be a prime power. A diagonal equation over the finite field GF(q) is
defined to be an equation of the form

1zt + cary? + -+t = ¢,

where ¢, ¢y, ..., are elements of GF(q) with ¢;---¢ # 0 and ng, ..., ny are
positive integers. The diagonal equation has been studied extensively; see Chapter
6 of Lidl and Niederreiter’s book [4]. Following the method used in [4], we are
going to extend this equation to the equation over GF(q) defined as

(1.1) c1Dy, (x1,a1) + 2Dy, (22, a2) + - - - + ¢ Dy, (T, ar) = ¢,
where nq,...,n are positive integers, ci,...,c, are non-zero, c,ai, ..., a are
elements in GF(q), and D,, (21,a1),..., Dy, (2, a;) are Dickson polynomials

defined as follows.
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Let n be a positive integer and let a € GF(q). The Dickson polynomial over
GF(q) of degree n with parameter a is defined to be

(5] .
Dy, (z,a) = o < et ) (—a)iz" 2,

n—1 7
=0

Dickson polynomials have been studied extensively because they play very important
roles in both theoretical work as well as in various applications; see Lidl, Mullen
and Turnwald’s book [3]. Dickson polynomials have many properties which are
closely related to properties of power polynomials 2* = D, (z,0) (see also [3]).
For example, for a € GF(q)" = GF(q)\{0}, D, (x,a) induces a permutation on
GF(q) if and only if gcd(n, ¢> — 1) = 1.

In this paper, we will employ the method used in [4] to estimate the number Ny
of solutions of the equation (1.1) in GF(q). At first, we consider the case k = 1 in
Section 2. In fact, we will give a formula for V; in terms of characters on GF(qQ).
From now on, we write N (D, (x,a) = c¢) instead of N; to emphasize the Dickson
polynomial D,,(z,a) and the fixed value ¢ € GF(q). In Section 3, we will use the
formulas from Section 2 to recover results in [1] about cardinalities of preimages
and images of Dickson polynomials. Finally, we will estimate Ny in Section 4.

2. THE NUMBER N (D, (z,a) = c)

Let n > 0 be a fixed integer. Let a € GF(q)*. Every element u of GF(q) can
be expressed as u = a + £, where either & € GF(q)* or o € GF(¢?) satisfying
a?tt = a. Let M(a) = {¢ € GF(¢?)|¢9™! = a}. Then, either « € GF(q)*
or a € M(a). Moreover, if ag, a0 € M(a), there is an element w € GF(q¢?) of
multiplicative order a divisor of ¢ + 1 satisfying ay = ayw. So, if we set U to be
the subset of GF(¢q?) containing all elements of multiplicative order dividing ¢+ 1,
then M (a) = aU = {au|u € U} for any o € M(a).

Throughout this section, let a, c € GF(q) be fixed with a # 0. Write x = y+ %
It is well-known that

n

a
(22) Dnfa, @) =" + =

This functional equation is very useful in studying Dickson polynomials over finite
fields.

We now define a new equation which will be very useful in studying N (D,,(z, a) =
c). For € GF(q¢?), we set an equation

(2.3) y" =6  with the constraint gy + 2e GF(q).
Y
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If the equation has a solution, then its solutions belong to GF'(q)*UM (a) because of
the constraint. Let N, (y"™ = 6) be the number of solutions in GF'(q?) of the equation
(2.3). This equation has a very close relation with the equation D,,(z,a) = c as we
are going to see in the following two lemmas.

Lemma 1. Let a,c € GF(q) with a # 0 and let € GF(q?). Then N,(y" =
0) # 0 if and only if  is a solution of v ? —cx+a" = 0 and N (D, (z,a) = c) # 0.

Proof. Assume first that y is a root of the equation (2.3). Then zg = yo+ ;io €
GF(q)and c = yj + % € GF(q). This implies that z( is a solution of the equation
Dy, (z,a) = c and 0 is a solution of 2% — cx + a" = 0 because yj = 0.

For the sufficiency, assume that 6 is a solution of 22 — cx + a® = 0 and
N(Dn(z,a) = c) # 0. Let zg be a solution of Dy (z,a) = c. Write zo = y1 + 3+
with y; € GF(q)* U M (a). From (2.2), y} + % = c¢. So, we take either yg = 11
or yg = ;il according to whether § =y}’ or 6 = (;il)”, respectively. This completes
the proof. n

Lemma 2. Let n be a positive integer. Let a,c € GF(q) with a # 0 and let
0 € GF(q?) be a solution of % — cx + a™ = 0. Let r be the number of solutions
of (2.3) with y = £+/a. Then
Na(y™ = 6) if 0% # a"

N(D,(x,a)=c) = n —
( ( ) ) Na(y 0)+7“ if92:a”

Proof. In the second part of the proof of Lemma 1, g is chosen uniquely except
for 0 =y = (;il)” and y; # ;. This exceptional case implies that 6% = a" (and
so ¢ = +2y/a™) and y? # a (and so z¢g # 42\/a). Moreover, both choices of
Yo = y1 and yo = - generate only one solution zp of Dy, (z,a) = cin GF(q). So,
the lemma follows. u

In fact, the number of solutions of the equation (2.3) can be expressed as a
character sum over GF(¢?).

Lemma 3. Let 0 # a € GF(q) and let 0 € GF(q?). Let o € M(a). Write
m = ged(n,q — 1) and £ = ged(n,q + 1). Let r be the number of solutions of
(2.3) with y = ++/a. Then

No(y™ =0)
1 m(g+1)—1 1 £(g—1)—1
o He) + —— HOa™™), if 0% # a™
o X YOI X M, ey
1 m(g+1)—1 1 £(g—1)—1
— "0+ —— YOa) — 1, if 02 =a”
ST X MO I X e
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where X\ and p are multiplicative characters of orders m(q + 1) and ¢(q — 1),
respectively.

Proof.  Suppose first that § € GF(q?) is not a root of 2> — cx +a" = 0
for any ¢ € GF(q). Then N,(y™ = #) = 0 from Lemma 1. Moreover, 0 ¢
GF(q) and fa~™ has multiplicative order not dividing ¢ + 1. These facts imply

Z;Z(Oqﬂ)_l N(0) =0= foo_l)_l pi(Ba~™) and so the lemma holds.

In what follows, we suppose that § € GF(q?) is a root of 22 — cz +a" = 0 for
some ¢ € GF(q). Note that every solution of the equation (2.3) belongs to GF'(¢)*U
M (a). Note also that any solution in GF(q)* of 2.3)isa ged(n(q+1),¢>—1) =
m(q + 1) power of some element in GF( 2). So, the total number of solutions in
GF(q)* of the equation (2.3) equals q+1 Zm(q+1 Ai(6). Furthermore, u € M (a)
is a solution of the equation (2.3) if and only if ua™! has order dividing ¢ 4+ 1 and
is a solution of the equation y"™ = fa~". The last statement is equivalent to the fact
that 0o " is a ged(n(q—1),¢%>— 1) = £(q— 1) power of some element in GF(¢?).
So, the total number of solutions in M (a) of (2.3) equals = Zf(q - ZA(é?ofn).

Finally, if u € GF(q)* N M(a) is a solution of the equation (2.3), then
u? = uit!l = a. This case holds if and only if 6> = a” Combining all

of these results together, we have that N,(y" = 0) = - +1 Zm(qH N(O) +
w L ST i (0o i 02 # 0, and No(y" = 0) = 5 S0 i) +

=) Zf(q D=1 iga=n) — r if 62 = ", because we count u € GF(q)* N M(a)
twice in the latter case. [ |

We are now ready to express N (D, (z,a) = ¢) in terms of character sums over
a finite field.

Theorem 4. Let n be a positive integer. Write m = ged(n,q — 1) and
¢ =ged(n,q+1). Let a,c € GF(q) with a # 0 and let § € GF(q?) be a solution
of 22 — cx + a™ = 0. Choose an arbitrary element o € M (a), and finally, choose
two multiplicative characters X and p of orders m(q—+1) and ¢(q— 1) respectively.
Then

N(Dp(z,a) =c)

m(g+1)—1 £(g—1)—1

1 i 1 i —-n : 2 n

- 1 | M- | e
- - 1 - 1 —n . 2 . )
5 | 731 ZZ; A(@)—i—q_l ZZ; w(0a ™), if 6% =a™

Proof. The theorem follows immediately by Lemmas 2 and 3. ]
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The formula in the last theorem is a formula for computing the number of
preimages of a fixed element ¢ € GF(q) under the Dickson polynomial D, (z,a).
Sometimes we only need to know whether or not the equation D, (x,a) = ¢ has a
solution in GF'(q). We only need to modify this formula a little bit for this purpose.
Namely, let I(D,(x,a) = ¢) = 1 if the equation D,,(z,a) = c has a solution in
GF(q), while I(D,(z,a) = ¢) = 0 if the equation D,,(x, a) = ¢ does not have any
solution in GF'(q). We are going to express the number I(D,,(z,a) = ¢) in terms
of character sums in the following

Theorem 5. Let n be a positive integer. Write m = ged(n,q — 1) and
¢ = ged(n,q+1). Let a,c € GF(q) with a # 0 and let § € GF(q?) be a solution
of 22 — cx + a" = 0 with 0> # a". Choose an arbitrary element o € M(a),
and finally, choose two multiplicative characters X and 1 of orders m(q + 1) and
0(q — 1) respectively. Then

1 m(g+1)—1 1
I(D = :
(Dulwa) =)= ey 2 MO+,

Proof. Note that § ¢ GF(q)* N M(a"™) since #> # a". So, if one of the
summations in the statement of the theorem is non-zero, then the other summation is
m(a+ =1 )i () equals either m(q+1) or 0 depending on whether
A i (bam)

zero. Moreover, ) .

0 either an m(q+1)th power in GF(g?) or not, respectively, and >, %
equals either £(g—1) or0depending on fa~" either an £(g—1)th power inGF(q?)or
not, respectively. From the definition of (D, (z,a) = ¢), the theorem follows. m

3. CARDINALITIES OF PREIMAGES AND IMAGES

Using results in Section 2, we are going to give a new proof of results obtained
by Chou, Gomez-Calderon and Mullen [1]. In this section, n > 2 is an integer,
a € GF(q)*, and 7 denotes the quadratic character of GF(q). Moreover, d||t
means that d’ divides ¢ but /! does not divide t. The following theorem includes
both Theorems 9 and 9’ in [1].

Theorem 6. (Theorems 9 and 9, [1]). Let a € GF(q)*, xo € GF(q) and let
D;Y(Dy(z0,a)) be the preimage of Dy, (zo,a). If q is even, then

\Dﬁl( n(20,a))|

) if 22 + zox + a is reducible over GF(q) and D (o, a)#0,

) if % 4 wox + a is irreducible over GF(q) and D, (z¢,a)#0,
)

gcd(n, — 1)+ ged(n, g+ 1)
2

if Dy(z9,a) = 0.
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If q is odd and 27||(q* — 1), then

‘D;l(Dn(xm ))

|
ged(n,g—1) if n(x3—4a)=1 and D, (z,a)#+2a"/?,
ged(n, g+ 1) if n(x—4a)=—1 and D, (z¢,a) # £2a™?,
_ w if n(z3—4a) =1 and condition A holds,
M if n(x3—4a)=—1 and condition A holds,
ged(n, g—1) +ged(n, ¢+1) otherwise,

2

where condition A holds if either
2 |n with 1 <t <r—1,n(a) = —1 and D,(xo,a) = £2a™/>

or
2|n with 1 <t <r—2,n(a) =1 and D,(xo,a) = —2a™>.

Proof.  Write ¢ = D,,(z9,a). Then 0 # |D;;}(D,(z0,a))| = N(Dp(z,a) =
c). Let § € GF(q?) be aroot of 22 — cx +a"™ = 0 and let « € M (a). Note that if
u € GF(¢?) is a root of 2 — 2oz + a = 0, then either u or £ is a root of y" = 0
with u € GF(q)* U M (a).

We first consider #2 # a™. From Theorem 4,

1 m(q—}—l)—lA 1 ((q—l)—lA
D, Y (Dy(z0,0))| = —— A(0)+ —— (Ba™™),
POl = g L X+ X e

where A and p are multiplicative characters of orders m(q + 1) and ¢(q — 1),
respectively. Since 62 # a”, either § € GF(q) or § € M (a”), but cannot be
both. This implies either Zm(q+1) (@) = 0 or Zf(q D=1 igam) = 0, but
cannot be both zero simultaneously. Precisely, if 2> — zgz + a is reducible (or
n(z? 4a) = 1 when ¢ odd) over GF(q), then § € GF(q) is an mth power and

S0 Zé(q 1)— i(@a_n) — 0 and ’Dﬁl(Dn(UUO, a))‘ — q_’% Z;Z(O‘J-Fl)_l )\1(0) =m,

while if 2% — 2oz + a is irreducible (or (22 — 4a) = —1 When q odd) over
GF(q), then 0a™™ e U is an éth power and so Zm(q+1 "Ai(#) = 0 and
|D;; Y (Dn(0,a))| = 25 Zf(q D=1 i(@a—") = . This proves the first two situ-

ations for any prime power q.
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In the remaining part of this proof, assume 6> = a”™. Then ¢ = 0 if ¢ is even
while c € GF(q)*NM(a™) = {£2v/a"} if ¢ is odd. In this case, there is only one
choice for 6. From Theorem 4,

| D5 (Do (o, a)))|

(3.4) 101 mg+1)-1 1 fa-1)-1 .
25[(]? ZZ; )‘(9)4'(]_—1 ZZ% p' (B )}

Assume first that § = \/a". There are two cases to consider. (1) a is a square
in GF(q) so that \/Ja € GF(q)* N M(a) is a solution of y™ = 6. This implies
that 6 is an mth power in GF(q) and 6a~" is an fth power in U. So we have
that if @ is a square in GF(q), then | D} (D, (z0,a))| = " from the equation
(3.4). This proves the third situation for ¢ even and part of the last situation for ¢
odd. (2) a is a non-square in GF'(q). So ¢ must be odd. For a positive integer u,
write w(u) to be the non-negative integer satisfying 2¢(||u. If n(22 — 4a) = 1,
then y” = \/a" has a solution in GF(q) and so § = \/a™ is an mth power in

GF(q). This implies that n is even and t = w( ) > w(g—1). Now (fa™ )qu =
(a,%)#(of”l)_ﬂ = (aqgl) = (—1)7. This implies that o™ is an (th

power in U if and only if t = w( ) > w( ) = w(g + 1). Combining together, we
have, from the equation (3. 4) that | D, }(Dy (20, a))| = 2 if n(z} — 4a) = 1 and
1 <t <r—1, while |D;}(Dy(w0,a))| = B if n(zd — 4a) = 1 and ¢t > 7.

If n(a3 — 4a) = —1, then y™ = V/a" has a solutlon in M(a) and so fa™" is
an (th power in U. Hence, ¢ = w(n) > w({) = w(g+ 1) in this case. Now

g—1l.n

0% = (a"z )m = (—1)m. This implies that 6 is an mth power in GF(q) if
and only if t = w(n) > w(m) = w(qg — 1). So, from the equation (3.4) again, we
have that |D;; ' (Dy(z0,a))| = £ if n(22 —4a) = —l and 1 < ¢t < r — 1, while
|D;Y(Dp (w0, a))| = & if n(zd — 4a) = —1 and t > 7.

Finally, assume # = —+/a™ for ¢ odd. We also consider two cases. (1) a
is a square in GF(gq). Now 6 is an mth power in GF(q)* if and only if 1 =
1 —1 —1 1
)% = (-1)% (a%)= = (1) . This is equivalent to ¢ < w(q —1). On
g+1

the other hand, fa™™ is an (th power in U if and only if 1 = (o ") ¢ =
(—1)(15#(0,%)%;1 (@t =% = (—1)(1_?1. The last statement is equivalent to ¢ <

w(g+1). So if n(z3 — 4a) = 1 (or ¥y = —+/a™ has a solution in GF(q)),
then |D;;}(Dy(z0,a))] = 2 if 1 < ¢t < w(g — 1) and | Dy} (Dy(x0,a))| = 2
if t = 0. And if n(23 — 4a) = —1 (or y* = —/a" has a solution in M (a)),
|D;Y(Dp (w0, a))| = £ if 1 <t <w(g—1) and | D;;} (D (20, a))| = &L if t = 0.
(2) a is a non-square in GF(q)*. This 1mphes that n is even. 6 is an mth power
in GF(q)* if and only if 1 = ()% = (=1)% (a3)% = (=1)*5 . This is
equivalentto t = w(g—1). On the other hand, ™" is an ¢th power in U if and only
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if 1= (Ga_”)q+ = (—1)(11#(0,2)%1 (@@t =% = (—1) . The last statement

is equivalent to ¢ = w(q + 1). Note that either t = w(¢ — 1) or t = w(q + 1), but
cannot be both. So, from the equation (3.4), we have that | D, 1(D,,(z¢, a))| = 2

1ﬂx%—4a):1,WME]D;1UZAxma»L:§ifnu%—4a)——4ﬂThmcompkms
the proof. ]

gt+i4n
£

We now provide an alternate proof of one of the main result in [1] about the
cardinality |Vp, ()| of the value set of D, (z,a).

Theorem 7. (Theorems 10 and 10, [1]). Let a € GF(q)*. Suppose that
27||(¢* — 1) and n is the quadratic character on GF(q) whenever q is odd. Then
we have

q—1 n qg+1

+ 9,
n,g—1)  2(n,q+1)

‘VDn(a},a)‘ - 2(

where
if q is odd, 2"~Y||n and n(a) = —1,

1
. ¢ .
3 if ¢ is odd and 2*||n with 1 <t <r — 2,
0 otherwise.

Proof. Let S = GF(q)*NM(a") and let « € M (a) be fixed. Note that every
element § € S satisfies #2 = a™. Let k be the number of elements 3 € S such
that either (3 is an mth power in GF(¢q)* or Sa~" is an (th power in U. From the
definition of I(Dy(x,a) = c), we have [Vp, (z.0)] = X cear(g) I (Pn(@,a) = c).
For ¢ # ++/a", we take only one root  in Theorem 5. So, when we sum over all
elements in GF(q)* U M(a™) in Theorem 5, we have

VD, (z,a)
1 1 m(g+1)-1 2(g—1)1
=5 2 i NOF gy o #GaT | vk
3.9 0E(GF(q)*UM (am))\S =0 i=0
1 m(g+1)—1 2g—1)—1
i=0 0eGF(q)* \s i=0 eeM(aw)\s

where A and p are multiplicative characters on GF(q?) of orders m(q 4 1) and
¢(q — 1), respectively.

Since every 6 € GF(q) is a (q + 1)th power in GF(q?) and there are exactly
elements in GF'(q)* which are mth powers in GF(q)*, the first term in the
equation (3.5) can be rewritten as

q—1
m
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m(q+1)—

1 i
Bi = gai D Z > X(0)

i=0  HeGF(q)*\S

(3.6) _ QL 3 mz_: A0 Zmzl AV
m GEGF(q)* i=0 9eS i=0
:% q_l_ZZ)\(qH
6eS =0

Moreover, every u € U is a (g — 1)th power in GF(¢?) and there are exactly q+1

elements in U which are ¢th powers in U, the second term in the equation (3.5) can
be rewritten as

1 £(g—1)—1
By = 55— p(0a™)
20g-1) = 0eM (am)\S
1 [/—1 A -1 A
(3.7) =57 [ 22 D u Y w) =y Zu(q‘l)z(%f”)]
L:=0 ucU 6eS i=0

- q+1_zzu<q1 (6o ]

6esS =0

Suppose now that |\S| = 0. Then a is a non-square in GF'(¢) and n is odd. So
k=0, gcs ot AetDi(g) = 0 in the equation (3.6), and >, g S04 pla—1)?
(0a™™) = 0 in the equation (3.7). In this case, § = 0 and so, [Vp,, (z.0)| = %—i—%
as desired.

Finally suppose |S| # 0. Then S = {v/a"} if ¢ is even and S = {£\/a"}
if ¢ is odd. Note that # = 4+/a™ is an mth power in GF(q)* if and only if

1= (i\/a”)% = (il)q_r;l(aqT_l)%, while fa™" = i ao~" is an (th power in
1 —1

U if and only if 1 = (£v/a"a )T = (£1)** (a"2 ). Note also that a"Z = 1

if a is a square, and ' =-lifaiaa non-square. So, there are only two cases

to be considered.

(1) a is quadratic in GF(q)*. Then 0T = 1and so § = Va" is an mth
power in GF(g)* and an ¢th power in U. So 7' A@+Di(\/a™) = m and
Zf;é pla=Vi(\/ana~") = ¢. From equatlons (3.5), (3.6) and (3.7), if ¢ is
even, we have [Vp, o)l = 5 1 + q (1 e., 6 = 0), because k = 1. Assume
now ¢ odd. From the above results, —\/a_” is an mth power in GF(q)* if
and only if qr_n—l is even, and —v/a"a~" is an ¢th power in U if and only if
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% is even. If t > r — 1, then both q_l and 2L are odd and so, k = 1. In

7

this case, |Vp, (z,0)] = % 21mm + q+1 =4 +1="%4— LT L (1 e., d = 0), from
equations (3.5), (3.6) and (3.7). If t < r -1, then k = 2. If t =0, then
Via(ea) = T + g2 +2 = S0+ 47

(3.5), 3.6) and 3.7). If 1 <t < r — 2, then one of = ! and q+1 1s even
and the other is odd. In this case, we have [Vp, (;.q)| = —|— il —|— from
equations (3.5), (3.6) and (3.7).

a is a non-square in GF(q)*. Then ¢ is odd and o't = —1. Moreover,

0 = £v/a" € S if and only if n is even. So, if n is odd, then |S| =0=Fk
and 50 |Vp,, (z,a)l = a1 q+1 from equations (3.5), (3.6) and (3.7). From

2m

now on, let n be even. Then S = {++va"}. From the above results, § =
—1 n
+1/a” is an mth power in GF(q)* if and only if 1 = (£1)%= (—1)m, while

n

fa~" = £v/a"a™" is an (th power in U if and only if 1 = (j:l)q%l(—l)i
If £ = 1, then both 7+ and % are odd and exactly one of ﬂ + o+ and
q+1 + 7 1s odd In thls case k = 1 and, from equations (3.5), (3 6) and (3.7),
\VDn(gE,a | = —|— L —|— 3. If 2 <t <7 — 2, then exactly one of 2% and %
is odd and both qml m and q;fl + 7 are odd. So, we also have k =1 and
Vona) = 5y Ly q —|— in this case. If ¢ = r — 1, then exactly one of ;-
and 7 is even, exactly one of " and L+ T L is even, and exactly one of 7 n
and 7 + q+1 is even. In this case, we have k = 2 and, from equations (3. 5)
3. 6) and (3 7, Vo, (o) = S + L4 + 1. Finally, if ¢ > r, then both 2
and 7 are even and both <~ L o a d q+1 + % are odd. So we have that
k =1 and, from equations (3 5), (3.6) and BN, Vb, (a, a) \ = —|— q

this case. This completes the proof. ]

4. AN EQUATION INVOLVING DICKSON POLYNOMIALS

In this section, let k,n1,...,n; > 2 be fixed positive integers, c1,...,cp €

GF(q

)*, and ay,...,ax,c € GF(q). We are going to estimate the number N of

solutions in GF(q) of the equation (1.1); namely, the number of solutions in GF(q)
of the equation ¢1D,,, (z1,a1) + c2Dp, (22, a2) + - - - + cx Dy, (21, ar,) = ¢, where
each D, (x;, a;) is a Dickson polynomial of degree n; with parameter a;. For this
purpose, we need the following two lemmas.

Lemma 8. (Theorem 10, Chapter 6, [2]) Let x be a non-trivial additive charac-
ter of GF(q). Suppose either \ is a non-trivial multiplicative character of GF(q) *
or b,c € GF(q) are not equal to zero simultaneously. Then

D> X(b0+§))\(0)|§2\/§.

0cGF(q)*
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In the following lemma, let U be the subset of G F(q?) defined at the begining
of Section 2. That is, every element of U has multiplicative order dividing ¢ + 1.
So, U is the set of elements in GF(¢?) which have norm 1 in GF(q).

Lemma 9. (Corollary 8, Chapter 6, [2]) For either x a non-trivial additive
character of GF(q*) or A a non-trivial multiplicative character of GF(q?) of
order dividing q + 1, one has

[ x(OA0)] < 2v4.
ocU
We now estimate V. It is easy to see that

1
Ny, = Z Z QZX(Canl(ul’al) + ...—I—Cank(Umak) _C)
X

u1 €EGF(q) ur€GF(q)

=3Zx(6)‘1 S x(eDa(ura)) - Y x(ckDny (ur, ar)),

u1 €EGF(q) ur€GF(q)

where x runs over all the additive characters. Let x be the trivial additive character
over GF(q). Then the last equation becomes

(4.8) XFX0
D X(eDny(u,a)) - Y X(erDyy (s ar)).
u1 EGF(q) ur €GF(q)

Let x be any non-trivial additive character and take any 1 < j < k. Let x.; be
the additive character satistying x.; (u) = x(c;u) for all u € GF(q). Then

Z X(Canj(ujvaj)) = Z XCj(Dnj(uj7aj))

u; EGF(q) u; EGF(q)

= > Xe,(WN(Dy,(j,a;) = u).

ueGF(q)

(4.9)

Let m; = ged(nj,q¢ — 1) and ¢; = ged(nj, ¢+ 1). Assume that \; and p; are
multiplicative characters on GF(q?) of orders m;(g+1) and ¢;(g— 1), respectively.

J .
At first, we consider all a; # 0. Write u = 6+ % with 6 € GF(q)* UM(a?])
and take a fixed a;; € M(a;). Then from Theorem 4, the equation (4.9) becomes

> x(e;Da,(ug, )

u; EGF(q)
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= Z Xe;j (U)NQ(Dnj(xﬁ a’j) = u)

u€GF(q)

1 a,’

GEGF(q)*UM(a?j)
1 m;(g+1)-1 A 1 £i(g—1)-1 A

I A R ? "
po Zg AJ(0)+q_1 Z; 1 (0o, ™)

Since each 6 € GF(q) is a (¢ + 1)th power of some element in GF(¢?) and each
fa; " with § € M(aj”) is a (¢ — 1)th power of some element in GF(¢?), we may
consider A to be of order m; and p to be of order £. Then the last equation can be

rewritten as

> x(¢;Dn;(uj,a5))
u; €GF(q)

n.;
a]

mi—1
1 J i
(4.10) =52 2 X0+ 5A0)
i=0 9eGF(q)*
1 fj—l a?jbj A o
+§ E E ch(9+%)ﬂ}(9% ])'

=0 GEM(a?j)

n; )
In the equation (4.10), the sum ¢ ()« Xe, (04 %))\}(0) is a twisted Kloost-
erman sum. From Lemma 8, we have

nj

a .. .
@.11) ( > X0+ SN0 <2va.
9eGF(q)*

For estimating the sum } M) Xe, (0 + T)Mé‘(@a;nj) in the equation
(4.10), we have to modify some notation. Let ){j = X¢; © IT'rq2/q, Where T2,
is the trace function from GF(q?) onto GF(q). Then X; is a non-trivial addi-
tive character of GF(¢?). For any 6 € M(a;’), we have 077! = a}’ and thus

g

g
0 + % = Trq2/q(0). This implies x., (6 + QJT) = X/(0). Furthermore, let
X' n; (w) = x)(a7u) for all u in GF(q?). Then X’ n; is a non-trivial additive
Oé]- aj

character of GF(q®) and X «; (fa; ) = x/j(). Notice that for; " € U from the
Q-
definition of U. By Lemma 9,
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@12) | X X 0+ (003" = | o O (0)| <2va

GEM(a?j) ocU

Substituting both inequalities (4.11) and (4.12) into (4.10) and simplifying, we
have

(4.13) | Y XleDu(ug,a)| < (my + )V
u; €GF(q)
Suppose that a; = 0. Then the equation (4.9) becomes
Y x(eDu;(ujia) = D x(egu™).
u; EGF(q) ueGF(q)

From Theorem 5.30, [4], the last equation becomes

mj;—1

Z X(¢;Dn; (uj, aj)) Z A '(¢;)G )

u; EGF(q)

where G(x, )\3) = ZueGF(q)* X(u))\é(u) is a Gauss sum. Since |G(x, )\3)\ =4
(Theorem 5.11, [4]), we have

(4.14) | > XD, (w0))| < (my — 1) v
u; EGF(q)
Suppose now that there exists 0 < ¢ < k suchthata; =---=a; =0t =0

means that no such ¢ exists) and a; # 0 for all ¢ < j < k (¢ = k means the equation
(1.1) is a diagonal equation). Substituting both bounds (4.13) and (4.14) into (4.8)
and simplifying, we have

k

t
(4.15) |Nk—qk 1| <q 7 q—l H H (mj+€j).
j=1 Jj=t+1

We summarize all of these results above in the following

Theorem 10. Let k,ny,...,n, > 2 be fixed positive integers, c1,...,C, €
GF(q)* and ay,. .., ak, c € GF(q). Moreover, suppose that there exists 0 <t < k
such that ay = ---=a; = 0 and a; # 0 for all t < j < k. Let Ny be the number

of solutions in GF(q) of the equation

c1Dp, (x1,a1) + 2Dy, (22, a2) + - - - + ¢ Dy, (T, ax) = c.
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Then 3
t
N — ¢ < ¢ (q—l)H( i I mi+4),
j=1 j=t+1

where m; = ged(nj,q — 1) and {; = ged(nj,q+1) for 1 < j < k.

k=1 in the last theorem is reasonable. For instance,

k—1

Note that the main term ¢
if some n; is relatively prime to ¢> — 1, then the equation (1.1) has exactly ¢
solutions in G F'(q) because D,,.(z;, a;) is a permutation polynomial on G F'(q) and
so, for each u; € GF(q), 1 <i < kandi # j, cjDyp,(v;,a;) = c—c1D1(u1,a1) —

ce— cj_le_l(uj_l, a,j_l) — Cj+1Dj+1(’le+1, a,j+1) — = cka(uk, ak) has ex-
actly one solution in GF(q).

From the last theorem, we have the following existence result for k£ > 3.

Theorem 11. Let k,ny,...,ng > 2 be fixed positive integers, c1,...,cC €
GF(q)* and ay,...,a, c € GF(q). Moreover, suppose that there exists 0 < t < k
such that a1 = --- —at =0and aj # 0 forallt < j < k. Ifk > 3 and

q>(]_[j l(nj—|—2))k 2, then N > 0.

Proof. From Theorem 10, we have

t k
(4.16) Ny > g =g T (g —1) H D I m;+¢).

j=1 Jj=t+1
Forany 1 < j <E, bothmj 1 <n;+2and m; +¢; < n; + 2 hold. Since

q > (Hj 1(nj+2))%—2 = , the right hand side of the inequality (4.16) is positive and
so N > 0. [ ]

Note that the last theorem cannot hold for k£ = 1 or 2. When k = 1, it is easy to
see that no matter how large the prime power ¢ is, N may be zero from Theorem
7. For k = 2, we give an example as following:

Example. Let ny,ny > 2 be relatively prime odd integers. Take any prime
number g of the form ¢ = 8nynys + (4ning + 1). We now consider the equation

(4.17) l)4n1 (1‘1, 1) + D4n2(1‘2, 1) =0.

Take any ¢ € GF(q). Suppose that p is a root of 2> —cz+1 = 0. Then —p is a root
of 22 + cx + 1 = 0. If Dy, (z1,1) = c has a solution in GF(q), then p € GF(q)
is a 4nyth power in GF(q) and so —p € GF(q) is only a square but not a 4th
power. Hence Dy, (22, 1) = —c has no solution in this case. On the other hand, if
Dyp, (71,1) = ¢ has a solution in U = {u € GF(¢*)|udt! =1}, then pc U is a
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square in U and so —p € U is a non-square. This implies that D 4, (z2,1) = —c
has no solution in this case. Combining all the arguments together, the equation
(4.17) has no solution in GF(q).
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