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Abstract. Let k, n1, . . . , nk be fixed positive integers, c1, . . . , ck ∈ GF (q)∗,
and a1, . . . , ak, c ∈ GF (q). We study the number of solutions in GF (q) of
the equation c1Dn1(x1, a1)+c2Dn2(x2, a2)+· · ·+ckDnk(xk, ak) = c, where
each Dni (xi, ai), 1 ≤ i ≤ k, is the Dickson polynomial of degree ni with
parameter ai. We also employ the results of the k = 1 case to recover the
cardinality of preimages and images of Dickson polynomials obtained earlier
by Chou, Gomez-Calderon and Mullen [1].

1. INTRODUCTION

Let q be a prime power. A diagonal equation over the finite field GF (q) is
defined to be an equation of the form

c1x
n1
1 + c2x

n2
2 + · · ·+ ckx

nk
k = c,

where c, c1, . . . , ck are elements of GF (q) with c1 · · ·ck �= 0 and n1, . . . , nk are
positive integers. The diagonal equation has been studied extensively; see Chapter
6 of Lidl and Niederreiter’s book [4]. Following the method used in [4], we are
going to extend this equation to the equation over GF (q) defined as

(1.1) c1Dn1(x1, a1) + c2Dn2(x2, a2) + · · ·+ ckDnk
(xk, ak) = c,

where n1, . . . , nk are positive integers, c1, . . . , ck are non-zero, c, a1, . . . , ak are
elements in GF (q), and Dn1(x1, a1), . . . , Dnk

(xk, ak) are Dickson polynomials
defined as follows.
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Let n be a positive integer and let a ∈ GF (q). The Dickson polynomial over
GF (q) of degree n with parameter a is defined to be

Dn(x, a) =
[ n
2
]∑

i=0

n

n − i

(
n − i

i

)
(−a)ixn−2i.

Dickson polynomials have been studied extensively because they play very important
roles in both theoretical work as well as in various applications; see Lidl, Mullen
and Turnwald’s book [3]. Dickson polynomials have many properties which are
closely related to properties of power polynomials xn = Dn(x, 0) (see also [3]).
For example, for a ∈ GF (q)∗ = GF (q)\{0}, Dn(x, a) induces a permutation on
GF (q) if and only if gcd(n, q2 − 1) = 1.

In this paper, we will employ the method used in [4] to estimate the number Nk

of solutions of the equation (1.1) in GF (q). At first, we consider the case k = 1 in
Section 2. In fact, we will give a formula for N1 in terms of characters on GF (q2).
From now on, we write N (Dn(x, a) = c) instead of N1 to emphasize the Dickson
polynomial Dn(x, a) and the fixed value c ∈ GF (q). In Section 3, we will use the
formulas from Section 2 to recover results in [1] about cardinalities of preimages
and images of Dickson polynomials. Finally, we will estimate Nk in Section 4.

2. THE NUMBER N (Dn(x, a) = c)

Let n > 0 be a fixed integer. Let a ∈ GF (q)∗. Every element u of GF (q) can
be expressed as u = α + a

α , where either α ∈ GF (q)∗ or α ∈ GF (q2) satisfying
αq+1 = a. Let M(a) = {ζ ∈ GF (q2)|ζq+1 = a}. Then, either α ∈ GF (q)∗

or α ∈ M(a). Moreover, if α1, α2 ∈ M(a), there is an element w ∈ GF (q2) of
multiplicative order a divisor of q + 1 satisfying α2 = α1w. So, if we set U to be
the subset of GF (q2) containing all elements of multiplicative order dividing q +1,
then M(a) = αU = {αu|u ∈ U} for any α ∈ M(a).

Throughout this section, let a, c ∈ GF (q) be fixed with a �= 0. Write x = y+ a
y .

It is well-known that

(2.2) Dn(x, a) = yn +
an

yn
.

This functional equation is very useful in studying Dickson polynomials over finite
fields.

We now define a new equation which will be very useful in studyingN (Dn(x, a) =
c). For θ ∈ GF (q2), we set an equation

(2.3) yn = θ with the constraint y +
a

y
∈ GF (q).



Equations of Dickson Polynomials 919

If the equation has a solution, then its solutions belong to GF (q)∗∪M(a) because of
the constraint. LetNa(yn = θ) be the number of solutions inGF (q2) of the equation
(2.3). This equation has a very close relation with the equation Dn(x, a) = c as we
are going to see in the following two lemmas.

Lemma 1. Let a, c ∈ GF (q) with a �= 0 and let θ ∈ GF (q2). Then Na(yn =
θ) �= 0 if and only if θ is a solution of x 2−cx+an = 0 and N (Dn(x, a) = c) �= 0.

Proof. Assume first that y0 is a root of the equation (2.3). Then x0 = y0+ a
y0

∈
GF (q) and c = yn

0 + an

yn
0
∈ GF (q). This implies that x0 is a solution of the equation

Dn(x, a) = c and θ is a solution of x2 − cx + an = 0 because yn
0 = θ.

For the sufficiency, assume that θ is a solution of x2 − cx + an = 0 and
N (Dn(x, a) = c) �= 0. Let x0 be a solution of Dn(x, a) = c. Write x0 = y1 + a

y1

with y1 ∈ GF (q)∗ ∪ M(a). From (2.2), yn
1 + an

yn
1

= c. So, we take either y0 = y1

or y0 = a
y1
according to whether θ = yn

1 or θ = ( a
y1

)n, respectively. This completes
the proof.

Lemma 2. Let n be a positive integer. Let a, c ∈ GF (q) with a �= 0 and let
θ ∈ GF (q2) be a solution of x2 − cx + an = 0. Let r be the number of solutions
of (2.3) with y = ±√

a. Then

N (Dn(x, a) = c) =




Na(yn = θ) if θ2 �= an

Na(yn = θ) + r

2
if θ2 = an

Proof. In the second part of the proof of Lemma 1, y0 is chosen uniquely except
for θ = yn

1 = ( a
y1

)n and y1 �= a
y1
. This exceptional case implies that θ2 = an (and

so c = ±2
√

an) and y2
1 �= a (and so x0 �= ±2

√
a). Moreover, both choices of

y0 = y1 and y0 = a
y1
generate only one solution x0 of Dn(x, a) = c in GF (q). So,

the lemma follows.

In fact, the number of solutions of the equation (2.3) can be expressed as a
character sum over GF (q2).

Lemma 3. Let 0 �= a ∈ GF (q) and let θ ∈ GF (q2). Let α ∈ M(a). Write
m = gcd(n, q − 1) and � = gcd(n, q + 1). Let r be the number of solutions of
(2.3) with y = ±√

a. Then

Na(yn = θ)

=




1
q + 1

m(q+1)−1∑
i=0

λi(θ) +
1

q − 1

�(q−1)−1∑
i=0

µi(θα−n), if θ2 �= an

1
q + 1

m(q+1)−1∑
i=0

λi(θ) +
1

q − 1

�(q−1)−1∑
i=0

µi(θα−n)− r, if θ2 = an
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where λ and µ are multiplicative characters of orders m(q + 1) and �(q − 1),
respectively.

Proof. Suppose first that θ ∈ GF (q2) is not a root of x2 − cx + an = 0
for any c ∈ GF (q). Then Na(yn = θ) = 0 from Lemma 1. Moreover, θ /∈
GF (q) and θα−n has multiplicative order not dividing q + 1. These facts imply∑m(q+1)−1

i=0 λi(θ) = 0 =
∑�(q−1)−1

i=0 µi(θα−n) and so the lemma holds.
In what follows, we suppose that θ ∈ GF (q2) is a root of x2 − cx+an = 0 for

some c ∈ GF (q). Note that every solution of the equation (2.3) belongs toGF (q)∗∪
M(a). Note also that any solution in GF (q)∗ of (2.3) is a gcd(n(q + 1), q2− 1) =
m(q + 1) power of some element in GF (q2). So, the total number of solutions in
GF (q)∗ of the equation (2.3) equals 1

q+1

∑m(q+1)−1
i=0 λi(θ). Furthermore, u ∈ M(a)

is a solution of the equation (2.3) if and only if uα−1 has order dividing q + 1 and
is a solution of the equation yn = θα−n . The last statement is equivalent to the fact
that θα−n is a gcd(n(q−1), q2−1) = �(q−1) power of some element in GF (q2).
So, the total number of solutions inM(a) of (2.3) equals 1

q−1

∑�(q−1)−1
i=0 µi(θα−n).

Finally, if u ∈ GF (q)∗ ∩ M(a) is a solution of the equation (2.3), then
u2 = uq+1 = a. This case holds if and only if θ2 = an. Combining all
of these results together, we have that Na(yn = θ) = 1

q+1

∑m(q+1)−1
i=0 λi(θ) +

1
q−1

∑�(q−1)−1
i=0 µi(θα−n) if θ2 �= an, and Na(yn = θ) = 1

q+1

∑m(q+1)−1
i=0 λi(θ) +

1
q−1

∑�(q−1)−1
i=0 µi(θα−n) − r if θ2 = an, because we count u ∈ GF (q)∗ ∩ M(a)

twice in the latter case.

We are now ready to express N (Dn(x, a) = c) in terms of character sums over
a finite field.

Theorem 4. Let n be a positive integer. Write m = gcd(n, q − 1) and
� = gcd(n, q + 1). Let a, c ∈ GF (q) with a �= 0 and let θ ∈ GF (q2) be a solution
of x2 − cx + an = 0. Choose an arbitrary element α ∈ M(a), and finally, choose
two multiplicative characters λ and µ of orders m(q+1) and �(q−1) respectively.
Then

N (Dn(x, a) = c)

=




1
q + 1

m(q+1)−1∑
i=0

λi(θ) +
1

q − 1

�(q−1)−1∑
i=0

µi(θα−n), if θ2 �= an,

1
2


 1

q + 1

m(q+1)−1∑
i=0

λi(θ) +
1

q − 1

�(q−1)−1∑
i=0

µi(θα−n)


 , if θ2 = an.

Proof. The theorem follows immediately by Lemmas 2 and 3.
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The formula in the last theorem is a formula for computing the number of
preimages of a fixed element c ∈ GF (q) under the Dickson polynomial Dn(x, a).
Sometimes we only need to know whether or not the equation Dn(x, a) = c has a
solution in GF (q). We only need to modify this formula a little bit for this purpose.
Namely, let I(Dn(x, a) = c) = 1 if the equation Dn(x, a) = c has a solution in
GF (q), while I(Dn(x, a) = c) = 0 if the equation Dn(x, a) = c does not have any
solution in GF (q). We are going to express the number I(Dn(x, a) = c) in terms
of character sums in the following

Theorem 5. Let n be a positive integer. Write m = gcd(n, q − 1) and
� = gcd(n, q + 1). Let a, c ∈ GF (q) with a �= 0 and let θ ∈ GF (q2) be a solution
of x2 − cx + an = 0 with θ2 �= an. Choose an arbitrary element α ∈ M(a),
and finally, choose two multiplicative characters λ and µ of orders m(q + 1) and
�(q − 1) respectively. Then

I(Dn(x, a) = c) =
1

m(q + 1)

m(q+1)−1∑
i=0

λi(θ) +
1

�(q − 1)

�(q−1)−1∑
i=0

µi(θα−n).

Proof. Note that θ �∈ GF (q)∗ ∩ M(an) since θ2 �= an. So, if one of the
summations in the statement of the theorem is non-zero, then the other summation is
zero. Moreover,

∑m(q+1)−1
i=0 λi(θ) equals eitherm(q+1) or 0 depending on whether

θ either anm(q+1)th power in GF (q2) or not, respectively, and
∑�(q−1)−1

i=0 µi(θα−n)
equals either �(q−1) or0depending on θα−n either an �(q−1)th power inGF (q2)or
not, respectively. From the definition of I(Dn(x, a) = c), the theorem follows.

3. CARDINALITIES OF PREIMAGES AND IMAGES

Using results in Section 2, we are going to give a new proof of results obtained
by Chou, Gomez-Calderon and Mullen [1]. In this section, n ≥ 2 is an integer,
a ∈ GF (q)∗, and η denotes the quadratic character of GF (q). Moreover, dj||t
means that dj divides t but dj+1 does not divide t. The following theorem includes
both Theorems 9 and 9′ in [1].

Theorem 6. (Theorems 9 and 9′, [1]). Let a ∈ GF (q)∗, x0 ∈ GF (q) and let
D−1

n (Dn(x0, a)) be the preimage of Dn(x0, a). If q is even, then

|D−1
n (Dn(x0, a))|

=




gcd(n, q − 1) if x2 + x0x + a is reducible over GF (q) and Dn(x0, a) �=0,

gcd(n, q + 1) if x2 + x0x + a is irreducible over GF (q) and Dn(x0, a) �=0,

gcd(n, q − 1) + gcd(n, q + 1)
2

if Dn(x0, a) = 0.
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If q is odd and 2r||(q2 − 1), then

|D−1
n (Dn(x0, a))|

=




gcd(n, q − 1) if η(x2
0−4a)=1 and Dn(x0, a) �=±2an/2,

gcd(n, q + 1) if η(x2
0−4a)=−1 and Dn(x0, a) �= ±2an/2,

gcd(n, q − 1)
2

if η(x2
0−4a)=1 and condition A holds,

gcd(n, q + 1)
2

if η(x2
0−4a)=−1 and condition A holds,

gcd(n, q−1)+gcd(n, q+1)
2

otherwise,

where condition A holds if either

2t||n with 1 ≤ t ≤ r − 1, η(a) = −1 and Dn(x0, a) = ±2an/2

or
2t||n with 1 ≤ t ≤ r − 2, η(a) = 1 and Dn(x0, a) = −2an/2.

Proof. Write c = Dn(x0, a). Then 0 �= |D−1
n (Dn(x0, a))| = N (Dn(x, a) =

c). Let θ ∈ GF (q2) be a root of x2 − cx + an = 0 and let α ∈ M(a). Note that if
u ∈ GF (q2) is a root of x2 − x0x + a = 0, then either u or a

u is a root of yn = θ
with u ∈ GF (q)∗ ∪ M(a).

We first consider θ2 �= an. From Theorem 4,

|D−1
n (Dn(x0, a))| = 1

q + 1

m(q+1)−1∑
i=0

λi(θ) +
1

q − 1

�(q−1)−1∑
i=0

µi(θα−n),

where λ and µ are multiplicative characters of orders m(q + 1) and �(q − 1),
respectively. Since θ2 �= an, either θ ∈ GF (q) or θ ∈ M(an), but cannot be
both. This implies either

∑m(q+1)−1
i=0 λi(θ) = 0 or

∑�(q−1)−1
i=0 µi(θα−n) = 0, but

cannot be both zero simultaneously. Precisely, if x2 − x0x + a is reducible (or
η(x2

0 − 4a) = 1 when q odd) over GF (q), then θ ∈ GF (q) is an mth power and
so

∑�(q−1)−1
i=0 µi(θα−n) = 0 and |D−1

n (Dn(x0, a))| = 1
q+1

∑m(q+1)−1
i=0 λi(θ) = m;

while if x2 − x0x + a is irreducible (or η(x2
0 − 4a) = −1 when q odd) over

GF (q), then θα−n ∈ U is an �th power and so
∑m(q+1)−1

i=0 λi(θ) = 0 and
|D−1

n (Dn(x0, a))| = 1
q−1

∑�(q−1)−1
i=0 µi(θα−n) = �. This proves the first two situ-

ations for any prime power q.
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In the remaining part of this proof, assume θ2 = an. Then c = 0 if q is even
while c ∈ GF (q)∗∩M(an) = {±2

√
an} if q is odd. In this case, there is only one

choice for θ. From Theorem 4,

(3.4)

|D−1
n (Dn(x0, a))|

=
1
2

[ 1
q + 1

m(q+1)−1∑
i=0

λi(θ) +
1

q − 1

�(q−1)−1∑
i=0

µi(θα−n)
]
.

Assume first that θ =
√

an. There are two cases to consider. (1) a is a square
in GF (q) so that

√
a ∈ GF (q)∗ ∩ M(a) is a solution of yn = θ. This implies

that θ is an mth power in GF (q) and θα−n is an �th power in U . So we have
that if a is a square in GF (q), then |D−1

n (Dn(x0, a))| = m+�
2 from the equation

(3.4). This proves the third situation for q even and part of the last situation for q
odd. (2) a is a non-square in GF (q). So q must be odd. For a positive integer u,
write ω(u) to be the non-negative integer satisfying 2ω(u)||u. If η(x2

0 − 4a) = 1,
then yn =

√
an has a solution in GF (q) and so θ =

√
an is an mth power in

GF (q). This implies that n is even and t = ω(n) > ω(q − 1). Now (θα−n)
q+1

� =
(a

n
2 )

q+1
� (αq+1)−

n
� = (a

q+1
2 )

n
� a−

n
� = (−1)

n
� . This implies that θα−n is an �th

power in U if and only if t = ω(n) > ω(�) = ω(q + 1). Combining together, we
have, from the equation (3.4), that |D−1

n (Dn(x0, a))| = m
2 if η(x2

0 − 4a) = 1 and
1 ≤ t ≤ r − 1, while |D−1

n (Dn(x0, a))| = m+�
2 if η(x2

0 − 4a) = 1 and t ≥ r.
If η(x2

0 − 4a) = −1, then yn =
√

an has a solution in M(a) and so θα−n is
an �th power in U . Hence, t = ω(n) > ω(�) = ω(q + 1) in this case. Now
θ

q−1
m = (a

q−1
2 )

n
m = (−1)

n
m . This implies that θ is an mth power in GF (q) if

and only if t = ω(n) > ω(m) = ω(q − 1). So, from the equation (3.4) again, we
have that |D−1

n (Dn(x0, a))| = �
2 if η(x2

0 − 4a) = −1 and 1 ≤ t ≤ r − 1, while
|D−1

n (Dn(x0, a))| = m+�
2 if η(x2

0 − 4a) = −1 and t ≥ r.

Finally, assume θ = −√an for q odd. We also consider two cases. (1) a

is a square in GF (q). Now θ is an mth power in GF (q)∗ if and only if 1 =
(θ)

q−1
m = (−1)

q−1
m (a

n
2 )

q−1
m = (−1)

q−1
m . This is equivalent to t < ω(q − 1). On

the other hand, θα−n is an �th power in U if and only if 1 = (θα−n)
q+1

� =
(−1)

q+1
� (a

n
2 )

q+1
� (αq+1)−

n
� = (−1)

q+1
� . The last statement is equivalent to t <

ω(q + 1). So if η(x2
0 − 4a) = 1 (or yn = −√

an has a solution in GF (q)),
then |D−1

n (Dn(x0, a))| = m
2 if 1 ≤ t < ω(q − 1) and |D−1

n (Dn(x0, a))| = m+�
2

if t = 0. And if η(x2
0 − 4a) = −1 (or yn = −√

an has a solution in M(a)),
|D−1

n (Dn(x0, a))| = �
2 if 1 ≤ t < ω(q− 1) and |D−1

n (Dn(x0, a))| = m+�
2 if t = 0.

(2) a is a non-square in GF (q)∗. This implies that n is even. θ is an mth power
in GF (q)∗ if and only if 1 = (θ)

q−1
m = (−1)

q−1
m (a

n
2 )

q−1
m = (−1)

q−1+n
m . This is

equivalent to t = ω(q−1). On the other hand, θα−n is an �th power in U if and only
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if 1 = (θα−n)
q+1

� = (−1)
q+1

� (a
n
2 )

q+1
� (αq+1)−

n
� = (−1)

q+1+n
� . The last statement

is equivalent to t = ω(q + 1). Note that either t = ω(q − 1) or t = ω(q + 1), but
cannot be both. So, from the equation (3.4), we have that |D−1

n (Dn(x0, a))| = m
2 if

η(x2
0 − 4a) = 1, while |D−1

n (Dn(x0, a))| = �
2 if η(x2

0− 4a) = −1. This completes
the proof.

We now provide an alternate proof of one of the main result in [1] about the
cardinality |VDn(x,a)| of the value set of Dn(x, a).

Theorem 7. (Theorems 10 and 10′, [1]). Let a ∈ GF (q)∗. Suppose that
2r||(q2 − 1) and η is the quadratic character on GF (q) whenever q is odd. Then
we have

|VDn(x,a)| =
q − 1

2(n, q − 1)
+

q + 1
2(n, q + 1)

+ δ,

where

δ =




1 if q is odd, 2r−1||n and η(a) = −1,
1
2
if q is odd and 2t||n with 1 ≤ t ≤ r − 2,

0 otherwise.

Proof. Let S = GF (q)∗ ∩M(an) and let α ∈ M(a) be fixed. Note that every
element θ ∈ S satisfies θ2 = an. Let k be the number of elements β ∈ S such
that either β is an mth power in GF (q)∗ or βα−n is an �th power in U . From the
definition of I(Dn(x, a) = c), we have |VDn(x,a)| =

∑
c∈GF (q) I(Dn(x, a) = c).

For c �= ±√an, we take only one root θ in Theorem 5. So, when we sum over all
elements in GF (q)∗ ∪ M(an) in Theorem 5, we have

(3.5)

|VDn(x,a)|

=
1
2

∑
θ∈(GF (q)∗∪M(an))\S


 1

m(q+1)

m(q+1)−1∑
i=0

λi(θ) +
1

�(q−1)

�(q−1)−1∑
i=0

µi(θα−n)


+k

=
1

2m(q + 1)

m(q+1)−1∑
i=0

∑
θ∈GF (q)∗\S

λi(θ) +
1

2�(q − 1)

�(q−1)−1∑
i=0

∑
θ∈M(an)\S

µi(θα−n) + k,

where λ and µ are multiplicative characters on GF (q2) of orders m(q + 1) and
�(q − 1), respectively.

Since every θ ∈ GF (q) is a (q + 1)th power in GF (q2) and there are exactly
q−1
m elements in GF (q)∗ which are mth powers in GF (q)∗, the first term in the
equation (3.5) can be rewritten as
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(3.6)

E1 =
1

2m(q + 1)

m(q+1)−1∑
i=0

∑
θ∈GF (q)∗\S

λi(θ)

=
1

2m


 ∑

θ∈GF (q)∗

m−1∑
i=0

λ(q+1)i(θ) −
∑
θ∈S

m−1∑
i=0

λ(q+1)i(θ)




=
1

2m

[
q − 1 −

∑
θ∈S

m−1∑
i=0

λ(q+1)i(θ)

]
.

Moreover, every u ∈ U is a (q − 1)th power in GF (q2) and there are exactly q+1
�

elements in U which are �th powers in U , the second term in the equation (3.5) can
be rewritten as

(3.7)

E2 =
1

2�(q − 1)

�(q−1)−1∑
i=0

∑
θ∈M (an)\S

µi(θα−n)

=
1
2�

[
�−1∑
i=0

∑
u∈U

µ(q−1)i(u)−
∑
θ∈S

�−1∑
i=0

µ(q−1)i(θα−n)

]

=
1
2�

[
q + 1 −

∑
θ∈S

�−1∑
i=0

µ(q−1)i(θα−n)

]
.

Suppose now that |S| = 0. Then a is a non-square in GF (q) and n is odd. So
k = 0,

∑
θ∈S

∑m−1
i=0 λ(q+1)i(θ) = 0 in the equation (3.6), and

∑
θ∈S

∑�−1
i=0 µ(q−1)i

(θα−n) = 0 in the equation (3.7). In this case, δ = 0 and so, |VDn(x,a)| = q−1
2m + q+1

2�
as desired.

Finally suppose |S| �= 0. Then S = {√an} if q is even and S = {±√
an}

if q is odd. Note that θ = ±√
an is an mth power in GF (q)∗ if and only if

1 = (±√
an)

q−1
m = (±1)

q−1
m (a

q−1
2 )

n
m , while θα−n = ±√

anα−n is an �th power in
U if and only if 1 = (±√anα−n)

q+1
� = (±1)

q+1
� (a

q−1
2 )

n
� . Note also that a

q−1
2 = 1

if a is a square, and a
q−1
2 = −1 if a ia a non-square. So, there are only two cases

to be considered.

(1) a is quadratic in GF (q)∗. Then a
q−1
2 = 1 and so θ =

√
an is an mth

power in GF (q)∗ and an �th power in U . So
∑m−1

i=0 λ(q+1)i(
√

an) = m and∑�−1
i=0 µ(q−1)i(

√
anα−n) = �. From equations (3.5), (3.6) and (3.7), if q is

even, we have |VDn(x,a)| = q−1
2m + q+1

2� (i.e., δ = 0), because k = 1. Assume
now q odd. From the above results, −√an is an mth power in GF (q)∗ if
and only if q−1

m is even, and −√
anα−n is an �th power in U if and only if
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q+1
� is even. If t ≥ r − 1, then both q−1

m and q+1
� are odd and so, k = 1. In

this case, |VDn(x,a)| = q−1−m
2m + q+1−�

2� + 1 = q−1
2m + q+1

2� (i.e., δ = 0), from
equations (3.5), (3.6) and (3.7). If t < r − 1, then k = 2. If t = 0, then
|VDn(x,a)| = q−1−2m

2m + q+1−2�
2� +2 = q−1

2m + q+1
2� (i.e., δ = 0), from equations

(3.5), (3.6) and (3.7). If 1 ≤ t ≤ r − 2, then one of q−1
m and q+1

� is even
and the other is odd. In this case, we have |VDn(x,a)| = q−1

2m + q+1
2� + 1

2 from
equations (3.5), (3.6) and (3.7).

(2) a is a non-square in GF (q)∗. Then q is odd and a
q−1
2 = −1. Moreover,

θ = ±√
an ∈ S if and only if n is even. So, if n is odd, then |S| = 0 = k

and so |VDn(x,a)| = q−1
2m + q+1

2� from equations (3.5), (3.6) and (3.7). From
now on, let n be even. Then S = {±√an}. From the above results, θ =
±√

an is an mth power in GF (q)∗ if and only if 1 = (±1)
q−1
m (−1)

n
m , while

θα−n = ±√
anα−n is an �th power in U if and only if 1 = (±1)

q+1
� (−1)

n
� .

If t = 1, then both n
m and n

� are odd and exactly one of
q−1
m + n

m and
q+1

� + n
� is odd. In this case, k = 1 and, from equations (3.5), (3.6) and (3.7),

|VDn(x,a)| = q−1
2m + q+1

2� + 1
2 . If 2 ≤ t ≤ r − 2, then exactly one of n

m and n
�

is odd and both q−1
m + n

m and q+1
� + n

� are odd. So, we also have k = 1 and
|VDn(x,a)| = q−1

2m + q+1
2� + 1

2 in this case. If t = r − 1, then exactly one of n
m

and n
� is even, exactly one of

n
m and n

m + q−1
m is even, and exactly one of n

�

and n
� + q+1

� is even. In this case, we have k = 2 and, from equations (3.5),
(3.6) and (3.7), |VDn(x,a)| = q−1

2m + q+1
2� + 1. Finally, if t ≥ r, then both n

m

and n
� are even and both

q−1
m + n

m and q+1
� + n

� are odd. So, we have that
k = 1 and, from equations (3.5), (3.6) and (3.7), |VDn(x,a)| = q−1

2m + q+1
2� in

this case. This completes the proof.

4. AN EQUATION INVOLVING DICKSON POLYNOMIALS

In this section, let k, n1, . . . , nk ≥ 2 be fixed positive integers, c1, . . . , ck ∈
GF (q)∗, and a1, . . . , ak, c ∈ GF (q). We are going to estimate the number Nk of
solutions in GF (q) of the equation (1.1); namely, the number of solutions in GF (q)
of the equation c1Dn1(x1, a1) + c2Dn2(x2, a2) + · · ·+ ckDnk

(xk, ak) = c, where
each Dni(xi, ai) is a Dickson polynomial of degree ni with parameter ai. For this
purpose, we need the following two lemmas.

Lemma 8. (Theorem 10, Chapter 6, [2]) Let χ be a non-trivial additive charac-
ter of GF (q). Suppose either λ is a non-trivial multiplicative character of GF (q) ∗

or b, c ∈ GF (q) are not equal to zero simultaneously. Then∣∣ ∑
θ∈GF (q)∗

χ(bθ +
c

θ
)λ(θ)

∣∣ ≤ 2
√

q.
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In the following lemma, let U be the subset of GF (q2) defined at the begining
of Section 2. That is, every element of U has multiplicative order dividing q + 1.
So, U is the set of elements in GF (q2) which have norm 1 in GF (q).

Lemma 9. (Corollary 8, Chapter 6, [2]) For either χ a non-trivial additive
character of GF (q2) or λ a non-trivial multiplicative character of GF (q 2) of
order dividing q + 1, one has

∣∣ ∑
θ∈U

χ(θ)λ(θ)
∣∣ ≤ 2

√
q.

We now estimate Nk. It is easy to see that

Nk =
∑

u1∈GF (q)

· · ·
∑

uk∈GF (q)

1
q

∑
χ

χ(c1Dn1(u1, a1) + · · ·+ ckDnk
(uk, ak) − c)

=
1
q

∑
χ

χ(c)−1
∑

u1∈GF (q)

χ(c1Dn1(u1, a1)) · · ·
∑

uk∈GF (q)

χ(ckDnk
(uk, ak)),

where χ runs over all the additive characters. Let χ0 be the trivial additive character
over GF (q). Then the last equation becomes

(4.8)
Nk − qk−1 =

1
q

∑
χ �=χ0

χ(c)−1

∑
u1∈GF (q)

χ(c1Dn1(u1, a1)) · · ·
∑

uk∈GF (q)

χ(ckDnk
(uk, ak)).

Let χ be any non-trivial additive character and take any 1 ≤ j ≤ k. Let χcj be
the additive character satisfying χcj (u) = χ(cju) for all u ∈ GF (q). Then

(4.9)

∑
uj∈GF (q)

χ(cjDnj(uj, aj)) =
∑

uj∈GF (q)

χcj (Dnj(uj, aj))

=
∑

u∈GF (q)

χcj (u)N (Dnj(xj, aj) = u).

Let mj = gcd(nj, q − 1) and �j = gcd(nj, q + 1). Assume that λj and µj are
multiplicative characters on GF (q2) of orders mj(q+1) and �j(q−1), respectively.

At first, we consider all aj �= 0. Write u = θ+
a

nj
j

θ with θ ∈ GF (q)∗∪M(anj

j )
and take a fixed αj ∈ M(aj). Then from Theorem 4, the equation (4.9) becomes∑

uj∈GF (q)

χ(cjDnj (uj, aj))
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=
∑

u∈GF (q)

χcj (u)Nq(Dnj(xj, aj) = u)

=
1
2

∑
θ∈GF (q)∗∪M (a

nj
j )

χcj (θ +
a

nj

j

θ
)


 1

q + 1

mj(q+1)−1∑
i=0

λi
j(θ) +

1
q − 1

�j(q−1)−1∑
i=0

µi
j(θα

−nj

j )




Since each θ ∈ GF (q) is a (q + 1)th power of some element in GF (q2) and each
θα

−nj

j with θ ∈ M(anj

j ) is a (q − 1)th power of some element in GF (q2), we may
consider λ to be of order mj and µ to be of order �. Then the last equation can be
rewritten as

(4.10)

∑
uj∈GF (q)

χ(cjDnj(uj, aj))

=
1
2

mj−1∑
i=0

∑
θ∈GF (q)∗

χcj (θ +
a

nj

j

θ
)λi

j(θ)

+
1
2

�j−1∑
i=0

∑
θ∈M (a

nj
j )

χcj (θ +
a

nj

j

θ
)µi

j(θα
−nj

j ).

In the equation (4.10), the sum
∑

θ∈GF (q)∗ χcj (θ+
a

nj
j

θ )λi
j(θ) is a twisted Kloost-

erman sum. From Lemma 8, we have

(4.11)
∣∣∣ ∑

θ∈GF (q)∗
χcj (θ +

a
nj

j

θ
)λi

j(θ)
∣∣∣ ≤ 2

√
q.

For estimating the sum
∑

θ∈M (a
nj
j )

χcj (θ +
a

nj
j

θ )µi
j(θα

−nj

j ) in the equation
(4.10), we have to modify some notation. Let χ′j = χcj ◦ Trq2/q, where Trq2/q

is the trace function from GF (q2) onto GF (q). Then χ′
j is a non-trivial addi-

tive character of GF (q2). For any θ ∈ M(anj

j ), we have θq+1 = a
nj

j and thus

θ +
a

nj
j

θ = Trq2/q(θ). This implies χcj (θ +
a

nj
j

θ ) = χ′
j(θ). Furthermore, let

χ′
α

nj
j

(u) = χ′
j(α

nj

j u) for all u in GF (q2). Then χ′
α

nj
j

is a non-trivial additive

character of GF (q2) and χ′
α

nj
j

(θα−nj

j ) = χ′
j(θ). Notice that θα

−nj

j ∈ U from the

definition of U . By Lemma 9,
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(4.12)
∣∣∣ ∑

θ∈M (a
nj
j )

χcj (θ +
a

nj

j

θ
)µi

j(θα
−nj

j )
∣∣∣ =

∣∣∣ ∑
θ∈U

χ′
α

nj
j

(θ)µi
j(θ)

∣∣∣ ≤ 2
√

q.

Substituting both inequalities (4.11) and (4.12) into (4.10) and simplifying, we
have

(4.13)
∣∣∣ ∑

uj∈GF (q)

χ(cjDnj(uj, aj))
∣∣∣ ≤ (mj + �j)

√
q.

Suppose that aj = 0. Then the equation (4.9) becomes∑
uj∈GF (q)

χ(cjDnj (uj, aj)) =
∑

u∈GF (q)

χ(cju
nj ).

From Theorem 5.30, [4], the last equation becomes

∑
uj∈GF (q)

χ(cjDnj (uj, aj)) =
mj−1∑
i=1

λ−i
j (cj)G(χ, λi

j),

where G(χ, λi
j) =

∑
u∈GF (q)∗ χ(u)λi

j(u) is a Gauss sum. Since |G(χ, λi
j)| =

√
q

(Theorem 5.11, [4]), we have

(4.14)
∣∣∣ ∑
uj∈GF (q)

χ(cjDnj (uj, aj))
∣∣∣ ≤ (mj − 1)

√
q.

Suppose now that there exists 0 ≤ t ≤ k such that a1 = · · · = at = 0 (t = 0
means that no such t exists) and aj �= 0 for all t < j ≤ k (t = k means the equation
(1.1) is a diagonal equation). Substituting both bounds (4.13) and (4.14) into (4.8)
and simplifying, we have

(4.15)
∣∣Nk − qk−1

∣∣ ≤ q
k−2

2 (q − 1)
t∏

j=1

(mj − 1)
k∏

j=t+1

(mj + �j).

We summarize all of these results above in the following

Theorem 10. Let k, n1, . . . , nk ≥ 2 be fixed positive integers, c1, . . . , ck ∈
GF (q)∗, and a1, . . . , ak, c ∈ GF (q). Moreover, suppose that there exists 0 ≤ t ≤ k
such that a1 = · · · = at = 0 and aj �= 0 for all t < j ≤ k. Let Nk be the number
of solutions in GF (q) of the equation

c1Dn1(x1, a1) + c2Dn2(x2, a2) + · · ·+ ckDnk
(xk, ak) = c.
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Then ∣∣Nk − qk−1
∣∣ ≤ q

k−2
2 (q − 1)

t∏
j=1

(mj − 1)
k∏

j=t+1

(mj + �j),

where mj = gcd(nj , q − 1) and �j = gcd(nj, q + 1) for 1 ≤ j ≤ k.

Note that the main term qk−1 in the last theorem is reasonable. For instance,
if some nj is relatively prime to q2 − 1, then the equation (1.1) has exactly qk−1

solutions in GF (q) becauseDnj(xj, aj) is a permutation polynomial on GF (q) and
so, for each ui ∈ GF (q), 1 ≤ i ≤ k and i �= j, cjDnj(xj, aj) = c−c1D1(u1, a1)−
· · ·− cj−1Dj−1(uj−1, aj−1)− cj+1Dj+1(uj+1, aj+1)− · · ·− ckDk(uk, ak) has ex-
actly one solution in GF (q).

From the last theorem, we have the following existence result for k ≥ 3.

Theorem 11. Let k, n1, . . . , nk ≥ 2 be fixed positive integers, c1, . . . , ck ∈
GF (q)∗, and a1, . . . , ak, c ∈ GF (q). Moreover, suppose that there exists 0 ≤ t ≤ k

such that a1 = · · · = at = 0 and aj �= 0 for all t < j ≤ k. If k ≥ 3 and
q > (

∏k
j=1(nj + 2))

2
k−2 , then Nk > 0.

Proof. From Theorem 10, we have

(4.16) Nk ≥ qk−1 − q
k−2
2 (q − 1)

t∏
j=1

(mj − 1)
k∏

j=t+1

(mj + �j).

For any 1 ≤ j ≤ k, both mj − 1 ≤ nj + 2 and mj + �j ≤ nj + 2 hold. Since
q > (

∏k
j=1(nj + 2))

2
k−2 , the right hand side of the inequality (4.16) is positive and

so Nk > 0.

Note that the last theorem cannot hold for k = 1 or 2. When k = 1, it is easy to
see that no matter how large the prime power q is, Nk may be zero from Theorem
7. For k = 2, we give an example as following:

Example. Let n1, n2 ≥ 2 be relatively prime odd integers. Take any prime
number q of the form q = 8n1n2s + (4n1n2 + 1). We now consider the equation

(4.17) D4n1(x1, 1) + D4n2(x2, 1) = 0.

Take any c ∈ GF (q). Suppose that ρ is a root of x2−cx+1 = 0. Then −ρ is a root
of x2 + cx + 1 = 0. If D4n1(x1, 1) = c has a solution in GF (q), then ρ ∈ GF (q)
is a 4n1th power in GF (q) and so −ρ ∈ GF (q) is only a square but not a 4th
power. Hence D4n2(x2, 1) = −c has no solution in this case. On the other hand, if
D4n1(x1, 1) = c has a solution in U = {u ∈ GF (q2)|uq+1 = 1}, then ρ ∈ U is a
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square in U and so −ρ ∈ U is a non-square. This implies that D4n2(x2, 1) = −c

has no solution in this case. Combining all the arguments together, the equation
(4.17) has no solution in GF (q).
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