THE EQUITABLE COLORINGS OF KNESER GRAPHS

Bor-Liang Chen and Kuo-Ching Huang
Dedicated to Professor Ko-Wei Lih on the occasion of his 60 th birthday.

Abstract

An m-coloring of a graph G is a mapping $f: V(G) \rightarrow\{1,2, \ldots, m\}$ such that $f(x) \neq f(y)$ for any two adjacent vertices x and y in G. The chromatic number $\chi(G)$ of G is the minimum number m such that G is m colorable. An equitable m-coloring of a graph G is an m-coloring f such that any two color classes differ in size by at most one. The equitable chromatic number $\chi_{=}(G)$ of G is the minimum number m such that G is equitably m-colorable. The equitable chromatic threshold $\chi_{=}^{*}(G)$ of G is the minimum number m such that G is equitably r-colorable for all $r \geq m$. It is clear that $\chi(G) \leq \chi_{=}(G) \leq \chi_{=}^{*}(G)$. For $n \geq 2 k+1$, the Kneser graph $\mathrm{KG}(n, k)$ has the vertex set consisting of all k-subsets of an n-set. Two distinct vertices are adjacent in $\mathrm{KG}(n, k)$ if they have empty intersection as subsets. The Kneser graph $\mathrm{KG}(2 k+1, k)$ is called the Odd graph, denoted by O_{k}. In this paper, we study the equitable colorings of Kneser graphs $\mathrm{KG}(n, k)$. Mainly, we obtain that $\chi_{=}(\mathrm{KG}(n, k)) \leq \chi_{=}^{*}(\mathrm{KG}(n, k)) \leq n-k+1$ and $\chi\left(O_{k}\right)=\chi_{=}\left(O_{k}\right)=$ $\chi_{=}^{*}\left(O_{k}\right)=3$. We also show that $\chi_{=}(\mathrm{KG}(n, k))=\chi_{=}^{*}(\mathrm{KG}(n, k))$ for $k=2$ or 3 and obtain their exact values.

1. Introduction

An m-coloring of a graph G is a mapping $f: V(G) \rightarrow\{1,2, \ldots, m\}$ such that $f(x) \neq f(y)$ for any two adjacent vertices x and y in G. A color class $f^{-1}(i)$ under f is a subset of $V(G)$ in which every vertex is assigned the same color i. A graph G is m-colorable if it admits an m-coloring. The chromatic number $\chi(G)$ of G is the minimum number m such that G is m-colorable. The well-known Brooks' Theorem is stated as following.

[^0]Theorem 1. ([2]). Suppose G is a graph different from a complete graph and an odd cycle. Then $\chi(G) \leq \Delta(G)$.

An equitable m-coloring of a graph G is an m-coloring such that any two color classes differ in size by at most one. A graph G is equitably m-colorable if it admits an equitable m-coloring. The equitable chromatic number $\chi_{=}(G)$ of G is the minimum number m such that G is equitably m-colorable. One can also consider the minimum number m such that G is equitably r-colorable for all $r \geq m$. Such a number m is called the equitable chromatic threshold of G, denoted by $\chi_{=}^{*}(G)$. It is clear that $\chi(G) \leq \chi_{=}(G) \leq \chi_{=}^{*}(G)$. Since $\chi(G) \leq \chi_{=}(G)$, Meyer then posed the following conjecture which, if true, is stronger than the Brooks' Theorem.

Conjecture 1. ([15]). Suppose G is a connected graph different from a complete graph and an odd cycle. Then $\chi_{=}(G) \leq \Delta(G)$.

One well-known result of Hajnal and Szemerédi, when rephrased in terms of the equitable colorability, has already been shown as follows.

Theorem 2. ([6, 9]). A graph G, not necessary connected, is equitably m colorable if $m \geq \Delta(G)+1$.

Theorem 2 says that $\chi_{=}(G) \leq \chi_{=}^{*}(G) \leq \Delta(G)+1$ for all graphs G. Since the graphs G that require at least $\Delta(G)+1$ colors to color the vertices equitably are complete graphs and odd cycles, Chen, Lih and Wu put forth the following.

Conjecture 2. ([4]). Equitable Δ-Coloring Conjecture.
A connected graph G is equitably $\Delta(G)$-colorable if and only if G is different from the complete graph K_{n}, the odd cycle $C_{2 n+1}$ and the complete bipartite graph $K_{2 n+1,2 n+1}$ for all $n \geq 1$.

They also verified this conjecture for a graph with $\Delta(G) \geq|V(G)| / 2$ or $\Delta(G) \leq 3$. Yap and Zhang [18] obtained a finer bound when $|V(G)| / 2>$ $\Delta(G) \geq(|V(G)| / 3)+1$. Moreover, some particular cases have been studied, such as trees $[1,3]$, bipartite graphs [13], d-degenerate graphs $[11,12]$ and planar graphs $[10,16,17]$. However, Conjecture 1 and Conjecture 2 are still open in general.

For $n \geq 2 k+1$, the Kneser graph $\mathrm{KG}(n, k)$ has the vertex set consisting of all k-subsets of an n-set. Two distinct vertices are adjacent in $\mathrm{KG}(n, k)$ if they have empty intersection as subsets. The Odd graph O_{k} is the Kneser graph $\operatorname{KG}(2 k+1, k)$. The chromatic number of $\operatorname{KG}(n, k)$ was obtained by Lovász.

Theorem 3. ([14]). $\chi(\operatorname{KG}(n, k))=n-2 k+2$.

In this paper, we study the equitable colorings of $\mathrm{KG}(n, k)$. Since $\mathrm{KG}(n, 1)=$ K_{n}, it is easy to see that $\chi(\operatorname{KG}(n, 1))=\chi_{=}(\mathrm{KG}(n, 1))=\chi_{=}^{*}(\mathrm{KG}(n, 1))=n$. Throughout this paper, we assume $k \geq 2$. For convenience, we introduce some notation. For integers $i<j$, let $[i, j]$ be the set of all integers $i, i+1, \ldots, j$ and $[n]=[1, n]$. If X is a set, then the collection of all k-subsets of X is denoted by $\binom{X}{k}$. Hence, the vertex set $V(\mathrm{KG}(n, k))$ is denoted by $\binom{[n]}{k}$ and $|V(\mathrm{KG}(n, k))|=$ $C(n, k)=\binom{n}{k}$. An i-flower \mathcal{F} of $\binom{X}{k}$ is a subcollection of $\binom{X}{k}$ in which all k subsets have a common element i, i.e., $i \in \bigcap_{A \in \mathcal{F}} A$. It is clear that every i-flower is an independent set of $\mathrm{KG}(n, k)$. An independent set \mathcal{F} of $\mathrm{KG}(n, k)$ is also called an intersection family of $\binom{[n]}{k}$, i.e., $A \cap B \neq \emptyset$ for all A and B in \mathcal{F}. The independence number $\alpha(\mathrm{KG}(n, k))$ of $\mathrm{KG}(n, k)$ was obtained by Erdoss, Ko and Rado.

Theorem 4. ([5]). Suppose \mathcal{F} is an intersection family of $\binom{[n]}{k}$. Then $|\mathcal{F}| \leq$ $C(n-1, k-1)$. Moreover, the equality holds if and only if $\mathcal{F}=\left\{A \in\binom{[n]}{k}: i \in A\right\}$ for some $i \in[n]$.

There are independent sets of $\mathrm{KG}(n, k)$ which are not flowers. Denote by $\alpha_{2}(\mathrm{KG}(n, k))$, or simply by $\alpha_{2}(n, k)$, the maximum size of independent sets \mathcal{H} of $\mathrm{KG}(n, k)$ satisfying $\bigcap_{A \in \mathcal{H}} A=\emptyset$. The following result was obtained by Hilton and Milner.

Theorem 5. ([8]). Suppose \mathcal{H} is an intersection family of $\binom{[n]}{k}$ with $\bigcap_{A \in \mathcal{H}} A=\emptyset$. Then $|\mathcal{H}| \leq C(n-1, k-1)-C(n-k-1, k-1)+1$. Moreover, the equality holds if and only if $\mathcal{H} \cong\left\{A \in\binom{[n]}{3}:|A \cap[1,3]| \geq 2\right\}$ or $\mathcal{H} \cong\left\{A \in\binom{[n]}{k}: 1 \in\right.$ $A,|A \cap[2, k+1]| \geq 1\} \cup\{[2, k+1]\}$.

We also need the following to prove our main results.
Theorem 6. ([7]). A bipartite graph $G=G(X, Y)$ with bipartition (X, Y) has a matching that saturates every vertex in X if and only if $|N(S)| \geq|S|$ for all $S \subseteq X$, where $N(S)$ denotes the set of neighbors of vertices in S.

2. General Bounds

In this section, let $n \geq 2 k+1$. Since every flower of $\binom{[n]}{k}$ is an independent set of $\mathrm{KG}(n, k)$, it is natural to partition flowers to form an equitable coloring of $\operatorname{KG}(n, k)$. In this case, every k-subset of $[n]$ is in some flower. Hence, if f is an equitable m-coloring of $\mathrm{KG}(n, k)$ such that every color class under f is
contained in some flower, then $m \geq n-k+1$. Otherwise, suppose $m \leq n-k$ and each color classe $f^{-1}(i)$ is contained in some t_{i}-flower for $1 \leq i \leq m$, respectively. Since $\left|[n] \backslash\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}\right| \geq n-m \geq k$, we may choose a k subset $A \subseteq[n] \backslash\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$. Since f is an equitable m-coloring, $A \in f^{-1}(i)$ for some i, i.e., $t_{i} \in A$. It is a contradiction. Hence, we have the following.

Lemma 7. If f is an equitable m-coloring of $\mathrm{KG}(n, k)$ such that every color class under f is contained in some flower of $\binom{[n]}{k}$, then $m \geq n-k+1$.

In what follows, we should show that $\mathrm{KG}(n, k)$ is equitably m-colorable for all $m \geq n-k+1$ by partitioning flowers of $\binom{[n]}{k}$ into m equitably independent sets. Precisely, letting $m=q n+r, 0 \leq r<n$, we will partition $\binom{[n]}{k}$ into m subcollections $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{m}$ with $a_{i}=\left|\mathcal{V}_{i}\right|=\lceil(C(n, k)-i+1) / m\rceil, 1 \leq i \leq$ m, such that \mathcal{V}_{i} is contained in a $\pi(i)$-flower, where $\pi(i)=i(\bmod n)$ if $1 \leq i \leq q n$ and $\pi(i)=i+n-m$ if $q n+1 \leq i \leq m$. The notation $i(\bmod n)$ denotes the residue of i modulo n taken in the set $[n]$. To do this, we construct a bipartite graph $G=G(X, Y)$ with bipartition (X, Y), where X is the disjoint union of the sets $X_{i}=\left\{x_{i, j}: 1 \leq j \leq a_{i}\right\}, 1 \leq i \leq m$, and $Y=\binom{[n]}{k}$. Two vertices $x_{i, j} \in X$ and $A \in Y$ are adjacent if and only if $\pi(i) \in A$. It is easy to see that $|X|=|Y|=\binom{n}{k}$. If G has a perfect matching $M=\left\{\left\{x_{i, j}, A_{i, j}\right\}: 1 \leq i \leq m, 1 \leq j \leq a_{i}\right\}$, letting $\mathcal{V}_{i}=\left\{A_{i, j}: 1 \leq j \leq a_{i}\right\}, 1 \leq i \leq m$, then the partition $\left(\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{m}\right)$ forms an equitable m-coloring of $\mathrm{KG}(n, k)$. By Theorem $6, G$ has a perfect matching if $|N(S)| \geq|S|$ for all $S \subseteq X$. Hence, we need to show the inequality $|N(S)| \geq|S|$. Suppose $S \subseteq X$. Let $I(S)=\left\{\pi(j): S \cap X_{j} \neq \emptyset\right\}$. Note that if $|I(S)| \geq$ $n-k+1$, then $N(S)=Y$ and $|N(S)| \geq|S|$. For $|I(S)|=i \leq n-k$, let $S_{i}=\bigcup_{\pi(j)=n-r+1}^{n-r+i} X_{j}$ if $i \leq r$ and $S_{i}=\left(\bigcup_{\pi(j)=n-r+1}^{n} X_{j}\right) \cup\left(\bigcup_{\pi(j)=1}^{i-r} X_{j}\right)$ if $i>r$. Then $|S| \leq\left|S_{i}\right|$. Moreover, the set $I\left(S_{i}\right)=\left\{\pi(j): S_{i} \cap X_{j} \neq \emptyset\right\}$ has the same size as $I(S)$. It follows that $|N(S)|=\left|N\left(S_{i}\right)\right|=C(n, k)-C(n-i, k)$ and then $|N(S)|-|S| \geq\left|N\left(S_{i}\right)\right|-\left|S_{i}\right|$. The following lemmas are used to show the inequality $\left|N\left(S_{i}\right)\right| \geq\left|S_{i}\right|$ that implies $|N(S)|-|S| \geq 0$.

Lemma 8. Suppose $m=q n+r$, where $q \geq 1$ and $0<r<n$. Let S_{i} be defined as above. Then $\left|S_{i}\right| \leq \frac{2 i}{n+i} C(n, k)$.

$$
\text { Proof. For } 1 \leq j \leq n \text {, let } W_{j}=\bigcup_{\pi(t)=j, t \leq q n} X_{t} \text {. Then }\left|W_{j+1}\right| \leq\left|W_{j}\right| \leq\left|W_{j+1}\right|+1 \text {, }
$$

$$
\left|X_{q n+t}\right| \leq\left|W_{n-r+t}\right| \text { and }\left|W_{j}\right| \leq\left|W_{n-r+t}\right|+\left|X_{q n+t}\right| \text { for } 1 \leq j \leq n \text { and } 1 \leq t \leq r .
$$

$$
\text { If } i \leq r \text {, then }\left|S_{i}\right|=\sum_{j=1}^{i}\left(\left|W_{n-r+j}\right|+\left|X_{q n+j}\right|\right) \leq 2 \sum_{j=1}^{i}\left|W_{n-r+j}\right| \leq 2 i\left|W_{n-r+1}\right| \text {, }
$$

or $\frac{\left|S_{i}\right|}{2 i} \leq\left|W_{n-r+1}\right|$. On the other hand, $C(n, k)-\left|S_{i}\right|=\sum_{j=1}^{n-r}\left|W_{j}\right|+\sum_{j=i+1}^{n}\left(\left|W_{n-r+j}\right|\right.$ $\left.+\left|X_{q n+j}\right|\right) \geq(n-i)\left|W_{n-r}\right|$, or $\frac{C(n, k)-\left|S_{i}\right|}{n-i} \geq\left|W_{n-r}\right|$. Hence, $\frac{\left|S_{i}\right|}{2 i} \leq\left|W_{n-r+1}\right|$ $\leq\left|W_{n-r}\right| \leq \frac{C(n, k)-\left|S_{i}\right|}{n-i}$. It follows that $\frac{\left|S_{i}\right|}{2 i} \leq \frac{\left|S_{i}\right|+C(n, k)-\left|S_{i}\right|}{2 i+n-i}=$ $\frac{C(n, k)}{n+i}$.

If $i>r$, then $\left|S_{i}\right|=\sum_{j=1}^{i-r}\left|W_{j}\right|+\sum_{j=1}^{r}\left(\left|W_{n-r+j}\right|+\left|X_{q n+j}\right|\right) \leq(i-r)\left(\left|W_{n-r+1}\right|+\right.$ $\left.\left|X_{q n+1}\right|\right)+r\left(\left|W_{n-r+1}\right|+\left|X_{q n+1}\right|\right) \leq 2 i\left|W_{n-r+1}\right|$, or $\frac{\left|S_{i}\right|}{2 i} \leq\left|W_{n-r+1}\right|$. On the other hand, $C(n, k)-\left|S_{i}\right|=\sum_{j=i-r+1}^{n-r}\left|W_{j}\right| \geq(n-i)\left|W_{n-r}\right|$, or $\frac{C(n, k)-\left|S_{i}\right|}{n-i} \geq$ $\left|W_{n-r}\right|$. Hence, $\frac{\left|S_{i}\right|}{2 i} \leq\left|W_{n-r+1}\right| \leq\left|W_{n-r}\right| \leq \frac{C(n, k)-\left|S_{i}\right|}{n-i}$. It follows that $\frac{\left|S_{i}\right|}{2 i} \leq \frac{\left|S_{i}\right|+C(n, k)-\left|S_{i}\right|}{2 i+n-i}=\frac{C(n, k)}{n+i}$.

Therefore, $\left|S_{i}\right| \leq \frac{2 i}{n+i} C(n, k)$ as desired.
Lemma 9. Suppose that $k \leq n-i$.
(1) $C(n, k-1) \geq C(n-i, k-1)+i k$ for $k \geq 3$.
(2) $C(n, k)-C(n-i, k) \geq \frac{2 i}{n+i} C(n, k)$ for $k \geq 2$.

Proof.

(1) By direct computation, we have

$$
\begin{aligned}
C(n, k-1)= & C(n-1, k-1)+C(n-1, k-2) \\
= & C(n-i, k-1)+C(n-i, k-2)+C(n-i+1, k-2) \\
& +\cdots+C(n-1, k-2) \\
\geq & C(n-i, k-1)+i C(k, 1) \\
= & C(n-i, k-1)+i k .
\end{aligned}
$$

(2) By direct computation, we have

$$
\begin{aligned}
\frac{C(n, k)}{C(n-i, k)} & =\frac{n(n-1) \cdots(n-k+1)}{(n-i)(n-i-1) \cdots(n-i-k+1)} \\
& =\left(1+\frac{i}{n-i}\right)\left(1+\frac{i}{n-i-1}\right) \cdots\left(1+\frac{i}{n-i-k+1}\right) \\
& >\left(1+\frac{i}{n-i}\right)^{k} \\
& \geq\left(1+\frac{i}{n-i}\right)^{2} \\
& >\left(1+\frac{2 i}{n-i}\right) \\
& =\frac{n+i}{n-i} .
\end{aligned}
$$

Hence, $C(n, k)-C(n-i, k) \geq \frac{2 i}{n+i} C(n, k)$ as desired.
Now, we are ready to show our main results.
Lemma 10. Suppose that $n-k+1 \leq m \leq n$. Then $\mathrm{KG}(n, k)$ is equitably m-colorable.

Proof. Let the bipartite graph $G=G(X, Y), S$ and S_{i} be defined as before. It suffices to show that $\left|N\left(S_{i}\right)\right|-\left|S_{i}\right| \geq 0$ for $i \leq n-k$. First, we consider $k=2$. Then $m=n-1$ or n and $i \leq n-2$. If $i=n-2$, then $\left|S_{i}\right|=$ $|X|-\left|X_{m}\right|$ for $m=n-1$ or $\left|S_{i}\right|=|X|-\left|X_{m-1}\right|-\left|X_{m}\right|$ for $m=n$. Hence, $\left|N\left(S_{i}\right)\right|-\left|S_{i}\right| \geq C(n, 2)-1-\left(C(n, 2)-\left\lfloor\frac{C(n, 2)}{n-1}\right\rfloor\right)=\left\lfloor\frac{n}{2}\right\rfloor-1>0$. If $i \leq n-3$, then $\left|N\left(S_{i}\right)\right|-\left|S_{i}\right| \geq C(n, 2)-C(n-i, 2)-i\left\lfloor\frac{C(n, 2)}{m}\right\rfloor-i \geq$ $C(n, 2)-C(n-i, 2)-i\left\lfloor\frac{C(n, 2)}{n-1}\right\rfloor-i \geq \frac{i}{2}(n-i-3) \geq 0$.

Suppose $k \geq 3$. Then, $\left|S_{i}\right|=\sum_{j=1}^{i}\left\lceil\frac{C(n, k)-j+1}{m}\right\rceil \leq i\left(\frac{C(n, k)}{n-k+1}+1\right)$. By Lemma 9(1), we have

$$
\begin{aligned}
|N(S)|-|S| & \geq\left|N\left(S_{i}\right)\right|-\left|S_{i}\right| \\
& \geq \frac{n-k+1-i}{k}(C(n, k-1)-C(n-i, k-1))-i \\
& \geq \frac{n-k+1-i}{k} i k-i \\
& =(n-k-i) i \geq 0 .
\end{aligned}
$$

Therefore, we complete the proof.
Lemma 11. Suppose that $m>n$. Then $\mathrm{KG}(n, k)$ is equitably m-colorable.
Proof. First, consider $m=q n, q \geq 1$. By Lemma 10, $\binom{[n]}{k}$ can be partitioned equitably into n subcollections $\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{n}$, where each \mathcal{X}_{i} is an i-flower. For each $i \geq 1$, we can partition \mathcal{X}_{i} into q equitable subcollections $\mathcal{X}_{i, 1}, \mathcal{X}_{i, 2}, \ldots, \mathcal{X}_{i, q}$. Hence the collection $\left\{\mathcal{X}_{i, j}: 1 \leq i \leq n, 1 \leq j \leq q\right\}$ forms an equitable m-coloring of KG (n, k).

Now, suppose m is not divisible by n. Let the bipartite graph $G=G(X, Y)$, S and S_{i} be defined as before. It suffices to show that $\left|N\left(S_{i}\right)\right|-\left|S_{i}\right| \geq 0$ for $i \leq n-k$. By Lemma 8 and Lemma 9(2), $\left|N\left(S_{i}\right)\right|-\left|S_{i}\right| \geq C(n, k)-C(n-i, k)-$ $\frac{\overline{2} i}{n+i} C(n, k) \geq 0$.

Therefore, we complete the proof.
Combining Lemma 10 and Lemma 11, the following is easy to see.
Theorem 12. Suppose that $m \geq n-k+1$. Then $\mathrm{KG}(n, k)$ is equitably m-colorable, i.e., $\chi_{=}(\mathrm{KG}(n, k)) \leq \chi_{=}^{*}(\mathrm{KG}(n, k)) \leq n-k+1$.

Suppose $m \leq n-k$ and $\operatorname{KG}(n, k)$ is equitably m-colorable. Let f be an equitable m-coloring of $\operatorname{KG}(n, k)$. By Lemma 7, there is some color class $f^{-1}(i)$ which is contained in no flowers of $\binom{[n]}{k}$. Moreover, the particular $f^{-1}(i)$ must satisfy that $\left|f^{-1}(i)\right| \leq \alpha_{2}(n, k)=C(n-1, k-1)-C(n-k-1, k-1)+1$. Using this fact, we have the following.

Lemma 13. Suppose that $m \leq n-k$ and $\left\lfloor\frac{C(n, k)}{m}\right\rfloor>\alpha_{2}(n, k)$. Then $\mathrm{KG}(n, k)$ is not equitably r-colorable for all $r \leq m$, i.e., $\chi_{=}^{*}(\mathrm{KG}(n, k)) \geq \chi_{=}(\mathrm{KG}(n$, $k)) \geq m+1$.

Proof. Suppose $\mathrm{KG}(n, k)$ has an equitable r-coloring f for some $r \leq m$. Then there is some color class $f^{-1}(i)$ satisfying that $\left|f^{-1}(i)\right| \leq \alpha_{2}(n, k)$. Since f is an equitable r-coloring, $\left|f^{-1}(i)\right| \geq\left\lfloor\frac{C(n, k)}{m}\right\rfloor>\alpha_{2}(n, k)$ which is a contradiction. Hence, $\mathrm{KG}(n, k)$ is not equitably r-colorable for all $r \leq m$ and then $\chi_{=}^{*}(\mathrm{KG}(n, k)) \geq \chi_{=}(\mathrm{KG}(n, k)) \geq m+1$.

Theorem 14. If $\left\lfloor\frac{C(n, k)}{n-k}\right\rfloor>\alpha_{2}(n, k)$. Then $\chi_{=}(\mathrm{KG}(n, k))=\chi_{=}^{*}(\mathrm{KG}(n, k))=$ $n-k+1$.

Proof. It follows from Theorem 12 and Lemma 13.

3. CASES FOR $k=2,3$

By the same argument as in the proof of Lemma 10, the following is not difficult to see.

Lemma 15. Suppose that $1 \leq t \leq m$. Then the collectiom $\binom{[m]}{t}$ can be partitioned equitably into m subcollections $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{m}$, such that each \mathcal{F}_{i} is an i-flower.

By Lemma 13, Theorem 14 and Lemma 15, we can show that $\chi_{=}(\operatorname{KG}(n, k))=$ $\chi_{=}^{*}(\mathrm{KG}(n, k))$ for $k=2$ or 3 and obtain their exact values.

Theorem 16. For $n \geq 5$,

$$
\chi_{=}(\mathrm{KG}(n, 2))=\chi_{=}^{*}(\mathrm{KG}(n, 2))= \begin{cases}n-1 & \text { if } n \geq 7 \\ n-2 & \text { if } n=5 \text { or } 6 .\end{cases}
$$

Proof. By Theorem 3 and Theorem 12,

$$
n-2=\chi(\mathrm{KG}(n, 2)) \leq \chi_{=}(\mathrm{KG}(n, 2)) \leq \chi_{=}^{*}(\mathrm{KG}(n, 2)) \leq n-1
$$

By direct computation, $\left\lfloor\frac{C(n, 2)}{n-2}\right\rfloor>\alpha_{2}(n, 2)=3$ if and only if $n \geq 7$. Hence, by Theorem 14, $\chi_{=}(\operatorname{KG}(n, 2))=\chi_{=}^{*}(\operatorname{KG}(n, 2))=n-1$ if $n \geq 7$.

For convenience, we use $i j$ to denote the 2 -subset $\{i, j\}$. It is easy to see that the partition $(\{12,13,14,15\},\{23,24,25\},\{34,35,45\})$ forms an equitable 3 -coloring of $\operatorname{KG}(5,2)$ and the partition $(\{12,14,15,16\},\{23,24,25,26\},\{13,34,35,36\},\{45$, $46,56\})$ forms an equitable 4-coloring of $\operatorname{KG}(6,2)$. Hence, $\chi(\operatorname{KG}(n, 2))=\chi_{=}(\mathrm{KG}$ $(n, 2))=\chi_{=}^{*}(\mathrm{KG}(n, 2))=n-2$ if $5 \leq n \leq 6$.

Lemma 17. For $7 \leq n \leq 15$, $\chi_{=}(\mathrm{KG}(n, 3)) \leq \chi_{=}^{*}(\mathrm{KG}(n, 3)) \leq n-3$. Moreover, $\chi_{=}(\operatorname{KG}(n, 3))=\chi_{=}^{*}(\operatorname{KG}(n, 3))=n-3$ if $14 \leq n \leq 15$.

Proof. Let $\mathcal{H}=\left\{A \in\binom{[n]}{3}:|A \cap\{n-2, n-1, n\}| \geq 2\right\}$. Then $\binom{[n-3, n]}{3} \subseteq \mathcal{H}$ and $|\mathcal{H}|=3 n-8 \geq\left\lfloor\frac{C(n, 3)}{n-3}\right\rfloor \geq 4$ for $n \leq 15$. Note that if $A \notin \mathcal{H}$, then A is in some i-flower, $1 \leq i \leq n-4$. Let $\mathcal{F}=\bigcup_{i=1}^{n-4}\left(\left\{A \in\binom{[n]}{3}: i \in A\right\} \backslash \mathcal{H}\right)$
and $\left.\mathcal{G}_{t}=\{\underset{n}{n}, j, t\}: 1 \leq i<j \leq n-4\right\}$ for $n-3 \leq t \leq n$. Then $\mathcal{F}=$ $\binom{[n-4]}{3} \cup\left(\bigcup_{t=n-3}^{n} \mathcal{G}_{t}\right)$. By Lemma 15, $\binom{[n-4]}{3}$ can be partitioned equitably into $n-4$ subcollections $\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{n-4}$ such that each \mathcal{X}_{i} is an i-flower. Since $\{A \backslash\{t\}$: $\left.A \in \mathcal{G}_{t}\right\}=\binom{[n-4]}{2}$ for $n-3 \leq t \leq n$, by Lemma $15, \mathcal{G}_{t}$ can be partitioned equitably into $n-4$ subcollections $\mathcal{X}_{1, t}, \mathcal{X}_{2, t}, \ldots, \mathcal{X}_{n-4, t}$ such that each $\mathcal{X}_{i, t}$ is an i-flower. By adjusting the sizes of \mathcal{X}_{i} and $\mathcal{X}_{i, t}, \mathcal{F}$ can be partitioned equitably into $n-4$ subcollections $\mathcal{V}_{i}=\mathcal{X}_{i} \cup\left(\bigcup_{t=n-3}^{n} \mathcal{X}_{i, t}\right), 1 \leq i \leq n-4$ such that each \mathcal{V}_{i} is an i-flower.

It is easy to see that the set $\{i, s, t\} \in \mathcal{H}$ for $1 \leq i \leq n-4$ and $n-2 \leq$ $s<t \leq n$. For each pair (s, t), remove the sets $\{i, s, t\}$ from \mathcal{H} and add them one by one into \mathcal{V}_{i} to obtain new \mathcal{V}_{i}^{\prime}, respectively, and preserve the equality of sizes of $\mathcal{V}_{i}^{\prime \prime}$'s. Continuing this process, \mathcal{H} can be reduced to \mathcal{H}^{\prime} such that $\left|\mathcal{H}^{\prime}\right|=$ $\left|\frac{C(n, 3)}{n-3}\right|$. In this case, the \mathcal{V}_{i}^{\prime} 's satisfy $\| \mathcal{V}_{i}^{\prime}\left|-\left|\mathcal{V}_{j}^{\prime}\right|\right| \leq 1$. Hence, the partition $\left(\mathcal{V}_{1}^{\prime}, \mathcal{V}_{2}^{\prime}, \ldots, \mathcal{V}_{n-4}^{\prime}, \mathcal{H}^{\prime}\right)$ forms an equitable $(n-3)$-coloring of $\mathrm{KG}(n, 3)$. Therefore, $\chi_{=}(\mathrm{KG}(n, 3)) \leq \chi_{=}^{*}(\mathrm{KG}(n, 3)) \leq n-3$ for $7 \leq n \leq 15$.

Moreover, since $\left\lfloor\frac{C(n, 3)}{n-4}\right\rfloor>\alpha_{2}(n, 3)=3 n-8$ if and only if $n \geq 14$, by Lemma 13, $\chi_{=}^{*}(\operatorname{KG}(n, 3)) \geq \chi_{=}(\operatorname{KG}(n, 3)) \geq n-3$ if $n \geq 14$. Therefore, $\chi_{=}(\mathrm{KG}(n, 3))=\chi_{=}^{*}(\mathrm{KG}(n, 3))=n-3$ for $14 \leq n \leq 15$.

Lemma 18. For $7 \leq n \leq 13, \chi(\mathrm{KG}(n, 3))=\chi_{=}(\mathrm{KG}(n, 3))=\chi_{=}^{*}(\mathrm{KG}(n, 3))=$ $n-4$.

Proof. By Theorem 3 and Lemma 17,

$$
n-4=\chi(\mathrm{KG}(n, 3)) \leq \chi_{=}(\mathrm{KG}(n, 3)) \leq \chi_{=}^{*}(\mathrm{KG}(n, 3)) \leq n-3 .
$$

It suffices to show that $\mathrm{KG}(n, 3)$ is equitably $(n-4)$-colorable for $7 \leq n \leq 13$.
Let $\mathcal{H}_{1}=\left\{A \in\binom{[n]}{3}:|A \cap\{n-2, n-1, n\}| \geq 2\right\}$ and $\mathcal{H}_{2}=\left\{A \in\binom{[n]}{3}:\right.$ $|A \cap\{n-5, n-4, n-3\}| \geq 2\}$. Then $\left|\mathcal{H}_{1}\right|=\left|\mathcal{H}_{2}\right|=3 n-8 \geq\left\lfloor\left.\frac{C(n, 3)}{n-4} \right\rvert\, \geq\right.$ $\frac{1}{2}\left|\binom{[n-5, n]}{3}\right|=\frac{C(6,3)}{2}=10$ for $7 \leq n \leq 13$. By the same argument as in Lemma 17, \mathcal{H}_{1} and \mathcal{H}_{2} can be reduced to \mathcal{H}_{1}^{\prime} and \mathcal{H}_{2}^{\prime} such that $\left|\mathcal{H}_{1}^{\prime}\right|=$ $\left\lceil\frac{C(n, 3)-(n-5)+1}{n-4}\right\rceil$ and $\left|\mathcal{H}_{2}^{\prime}\right|=\left\lceil\frac{C(n, 3)-(n-4)+1}{n-4}\right\rceil$. Moreover, $\binom{[n]}{3} \backslash$ $\left(\mathcal{H}_{1}^{\prime} \cup \mathcal{H}_{2}^{\prime}\right)$ can be partitioned equitably into $n-6$ subcollections $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{n-6}$ such that each \mathcal{V}_{i} is an i-flower and $\left|\mathcal{V}_{i}\right|=\left\lceil\frac{C(n, 3)-i+1}{n-4}\right\rceil$. Hence, $\operatorname{KG}(n, 3)$ is
equitably $(n-4)$-colorable. Therefore, $\chi(\mathrm{KG}(n, 3))=\chi_{=}(\mathrm{KG}(n, 3))=\chi_{=}^{*}(\mathrm{KG}(n$, $3)$) $=n-4$ for $7 \leq n \leq 13$.

Theorem 19. For $n \geq 7$,

$$
\chi_{=}(\mathrm{KG}(n, 3))=\chi_{=}^{*}(\mathrm{KG}(n, 3))= \begin{cases}n-2 & \text { if } n \geq 16 \\ n-3 & \text { if } 14 \leq n \leq 15 \\ n-4 & \text { if } 7 \leq n \leq 13\end{cases}
$$

Proof. By Theorem 3 and Theorem 12,

$$
n-4=\chi(\mathrm{KG}(n, 3)) \leq \chi_{=}(\mathrm{KG}(n, 3)) \leq \chi_{=}^{*}(\mathrm{KG}(n, 3)) \leq n-2
$$

Since $\left\lfloor\frac{C(n, 3)}{n-3}\right\rfloor>\alpha_{2}(n, 3)=3 n-8$ if and only if $n \geq 16$, by Theorem 14, $\chi_{=}(\mathrm{KG}(n, 2))=\chi_{=}^{*}(\mathrm{KG}(n, 2))=n-2$ if $n \geq 16$. The remaining two cases follow from Lemma 17 and Lemma 18.

4. The Odd Graphs

Since $O_{1}=K_{3}$, we have $\chi\left(O_{1}\right)=\chi_{=}\left(O_{1}\right)=\chi_{=}^{*}\left(O_{1}\right)=3$. By Theorem 16 and Theorem 19, $\chi\left(O_{k}\right)=\chi_{=}\left(O_{k}\right)=\chi_{=}^{*}\left(O_{k}\right)=3$ for $k=2$ or 3 . Suppose $k \geq 4$.

Lemma 20. O_{k} is equitably 3-colorable.
Proof. Let $\mathcal{F}_{1}=\{A: 1 \in A, 2 \notin A\}, \mathcal{F}_{2}=\{A: 1 \notin A, 2 \in A\}, \mathcal{F}_{12}=\{A:$ $1 \in A, 2 \in A\}$ and $\mathcal{F}_{3}=\{A: 1 \notin A, 2 \notin A\}$. Then $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{12}, \mathcal{F}_{3}\right)$ forms a partition(or 4-coloring) of $O_{k},\left|\mathcal{F}_{1}\right|=\left|\mathcal{F}_{2}\right|=C(2 k-1, k-1)=C(2 k-1, k)=$ $\left|\mathcal{F}_{3}\right|,\left|\mathcal{F}_{12}\right|=C(2 k-1, k-2)$ and $C(2 k+1, k)=3 C(2 k-1, k-1)+C(2 k-1, k-2)$. Let $a_{i}=\left\lfloor\frac{C(n, k)+i-1}{3}\right\rfloor, i=1,2,3$ and $t=\frac{1}{3} C(2 k+1, k)-C(2 k-1, k-$ 1) $=\frac{1}{3} C(2 k-1, k-2)$. Consider the two collections $\mathcal{H}_{1}=\left\{A \in \mathcal{F}_{3}: 3 \in\right.$ $A, 4 \in A\}$ and $\mathcal{H}_{2}=\left\{A \in \mathcal{F}_{12}:|A \cap[3,4]|=1\right\}$. By direct computation, $\frac{\left|\mathcal{H}_{1}\right|}{t}=\frac{3(k+1) k}{(2 k-1)(2 k-2)}>1$ for $k \leq 8$ and $\frac{\left|\mathcal{H}_{2}\right|}{t}=\frac{3(k-2)(k+1)}{(2 k-1)(k-1)}>1$ for $k \geq 4$. For $4 \leq k \leq 8$, choose $\mathcal{S} \subseteq \mathcal{H}_{1}$ with $|\mathcal{S}|=\lfloor t\rfloor=a_{1}-C(2 k-1, k-1)$ and $\mathcal{T} \subseteq \mathcal{H}_{2}$ with $|\mathcal{T}|=a_{2}-C(2 k-1, k-1)$. Let $\mathcal{S}_{1}=\left\{A \in \mathcal{F}_{1}:[3,2 k+1] \backslash A \in \mathcal{S}\right\}$ and $\mathcal{S}_{2}=\left\{A \in \mathcal{F}_{2}:[3,2 k+1] \backslash A \in \mathcal{S}\right\}$. Then $|\mathcal{S}|=\left|\mathcal{S}_{1}\right|=\left|\mathcal{S}_{2}\right|$. Moreover, if $A \in \mathcal{F}_{i}$ where $i=1,2$, then $A \cap B \neq \emptyset$ for all $B \in \mathcal{F}_{3}$ except $B=[3,2 k+1] \backslash A$. Hence, $\left(\mathcal{F}_{3} \backslash \mathcal{S}\right) \cup \mathcal{S}_{1} \cup \mathcal{S}_{2},\left(\mathcal{F}_{2} \backslash \mathcal{S}_{2}\right) \cup \mathcal{S} \cup \mathcal{T}$ and $\left(\mathcal{F}_{1} \backslash \mathcal{S}_{1}\right) \cup\left(\mathcal{F}_{12} \backslash \mathcal{T}\right)$ are
independent sets of sizes a_{1}, a_{2} and a_{3}, respectively. Thus, the partition $\left(\left(\mathcal{F}_{1} \backslash\right.\right.$ $\left.\left.\mathcal{S}_{1}\right) \cup\left(\mathcal{F}_{12} \backslash \mathcal{T}\right),\left(\mathcal{F}_{2} \backslash \mathcal{S}_{2}\right) \cup \mathcal{S} \cup \mathcal{T},\left(\mathcal{F}_{3} \backslash \mathcal{S}\right) \cup \mathcal{S}_{1} \cup \mathcal{S}_{2}\right)$ forms an equitable 3-coloring of O_{k}. Hence, O_{k} is equitably 3-colorable for $4 \leq k \leq 8$.

Now, suppose $k \geq 9$. Consider the two collections $\mathcal{H}_{3}=\left\{A \in \mathcal{F}_{3}: \mid A \cap\right.$ $[3,5] \mid=2\}$ and $\mathcal{H}_{4}=\left\{A \in \mathcal{F}_{12}:|A \cap[3,5]| \geq 2\right\}$. By direct computation, $\frac{\left|\mathcal{H}_{3}\right|}{t}=$ $\frac{9(k+1) k}{2(2 k-1)(2 k-3)}>1$ and $\frac{\left|\mathcal{H}_{4}\right|}{t}=\frac{12 k^{3}-63 k^{2}+87 k-18}{8 k^{3}-24 k^{2}+22 k-6}>1$. Choose $\mathcal{P} \subseteq$ \mathcal{H}_{3} with $|\mathcal{P}|=\lfloor t\rfloor=a_{1}-C(2 k-1, k-1)$ and $\mathcal{Q} \subseteq \mathcal{H}_{4}$ with $|\mathcal{Q}|=a_{2}-C(2 k-$ $1, k-1)$. Let $\mathcal{P}_{1}=\left\{A \in \mathcal{F}_{1}:[3,2 k+1] \backslash A \in \mathcal{P}\right\}$ and $\mathcal{P}_{2}=\left\{A \in \mathcal{F}_{2}:\right.$ $[3,2 k+1] \backslash A \in \mathcal{P}\}$. Then $|\mathcal{P}|=\left|\mathcal{P}_{1}\right|=\left|\mathcal{P}_{2}\right|$. By the same argument as above, $\left(\mathcal{F}_{3} \backslash \mathcal{P}\right) \cup \mathcal{P}_{1} \cup \mathcal{P}_{2},\left(\mathcal{F}_{2} \backslash \mathcal{P}_{2}\right) \cup \mathcal{P} \cup \mathcal{Q}$ and $\left(\mathcal{F}_{1} \backslash \mathcal{P}_{1}\right) \cup\left(\mathcal{F}_{12} \backslash \mathcal{Q}\right)$ are independent sets of sizes a_{1}, a_{2} and a_{3}, respectively. Thus, the partition $\left(\left(\mathcal{F}_{1} \backslash \mathcal{P}_{1}\right) \cup\left(\mathcal{F}_{12} \backslash\right.\right.$ $\left.\mathcal{Q}),\left(\mathcal{F}_{2} \backslash \mathcal{P}_{2}\right) \cup \mathcal{P} \cup \mathcal{Q},\left(\mathcal{F}_{3} \backslash \mathcal{P}\right) \cup \mathcal{P}_{1} \cup \mathcal{P}_{2}\right)$ forms an equitable 3-coloring of O_{k}. Hence, O_{k} is equitably 3 -colorable for $k \geq 9$. Therefore, we complete the proof.

Let $\mathcal{U}=\binom{[2 k+1]}{k}$ and $\mathcal{X}=\binom{[4,2 k+1]}{k}$. For $1 \leq i \leq 3$, let $\mathcal{F}_{i}=\{A \in \mathcal{U}: i \in A\}$ and $\mathcal{F}_{i 0}=\{A \in \mathcal{U}:|A \cap\{1,2,3\}|=i\}$. For $1 \leq i<j \leq 3$, let $\mathcal{F}_{i j}=$ $\left\{A \in \mathcal{U}_{3}: A \cap\{1,2,3\}=\{i, j\}\right\}$. Let $\mathcal{F}_{123}=\{A \in \mathcal{U}:\{1,2,3\} \subseteq A\}$. Then $\mathcal{U}=\left(\bigcup_{i=1} \mathcal{F}_{i 0}\right) \cup\left(\bigcup_{1 \leq i<j \leq 3} \mathcal{F}_{i j}\right) \cup \mathcal{F}_{123} \cup \mathcal{X}, \mathcal{F}_{i}=\mathcal{F}_{i 0} \cup \mathcal{F}_{i s} \cup \mathcal{F}_{i t} \cup \mathcal{F}_{123},\{i, s, t\}=$ $\{1,2,3\},|\mathcal{X}|=C(2 k-2, k),\left|\mathcal{F}_{i 0}\right|=C(2 k-2, k-1),\left|\mathcal{F}_{i j}\right|=C(2 k-2, k-2)$ and $\left|\mathcal{F}_{123}\right|=C(2 k-2, k-3)$. It is not difficult to see that $\mathcal{X} \cup \mathcal{F}_{i 0}$ is an independent set. If A and B both are in $\mathcal{F}_{i 0}$, then $|A \cap B| \geq 2 \operatorname{except}(A \backslash\{i\}) \cup(B \backslash\{j\})=[4,2 k+1]$. Hence, each $\mathcal{F}_{i 0}$ can be partitioned into \mathcal{S}_{i} and \mathcal{T}_{i} such that if $A \in \mathcal{S}_{i}$, then $([4,2 k+1] \backslash A) \cup\{i\} \in \mathcal{T}_{i}$. Moreover, we may assume that $\left\{A \backslash\{i\}: A \in \mathcal{S}_{i}\right\}=$ $\left\{A \backslash\{j\}: A \in \mathcal{S}_{j}\right\}$ for $1 \leq i<j \leq 3$. Hence, $\left|\mathcal{S}_{i}\right|=\left|\mathcal{S}_{j}\right|=\left|\mathcal{T}_{i}\right|=\left|\mathcal{T}_{j}\right|=\frac{\left|\mathcal{F}_{i 0}\right|}{2}$ and $\mathcal{S}_{1} \cup \mathcal{S}_{2} \cup \mathcal{S}_{3} \cup \mathcal{X}$ is an independent set. By direct computation, we have the following.
(I1) $|\mathcal{X}|<\frac{|\mathcal{U}|}{m}<\left|\mathcal{X} \cup \mathcal{S}_{i} \cup \mathcal{S}_{j}\right|$ if $4 \leq m \leq 7$.
(I2) $\frac{1}{6}|\mathcal{U}|<\left|\mathcal{X} \cup \mathcal{S}_{i}\right|<\frac{2}{6}|\mathcal{U}| \leq\left|\mathcal{F}_{i} \backslash \mathcal{F}_{123}\right| \leq \frac{2}{5}|\mathcal{U}| \leq\left|\mathcal{F}_{i}\right|$.
The inequalities (I1) and (I2) will be used to guarantee that there are $\mathcal{P}_{i} \subseteq \mathcal{S}_{i}$ (\mathcal{P}_{i} may be empty) for $1 \leq i \leq 3$ such that $\left|\mathcal{X} \cup \mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{P}_{3}\right|=\left\lfloor\frac{|\mathcal{U}|}{m}\right\rfloor$ for $4 \leq m \leq 7$. Then we can partition $\bigcup_{i=1}^{3}\left(\mathcal{F}_{i} \backslash \mathcal{P}_{i}\right)$ equitably into $m-1$ subcollections so that O_{k} is equitably m-colorable.

Theorem 21. $\chi\left(O_{k}\right)=\chi_{=}\left(O_{k}\right)=\chi_{=}^{*}\left(O_{k}\right)=3$ for $k \geq 1$.

Proof. If $k=1,2$ or 3 , then we are done. Suppose $k \geq 4$. By Lemma 20, O_{k} is equitably 3 -colorable. It suffices to show that O_{k} is equitably m-colorable for all $m \geq 4$.

For $m=4$, by (I1), we may choose $\mathcal{P}_{i} \subseteq \mathcal{S}_{i}, 1 \leq i \leq 3$, such that $\| \mathcal{P}_{1}\left|-\left|\mathcal{P}_{2}\right|\right| \leq$ 1 and $\left|\mathcal{X} \cup \mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{P}_{3}\right|=\left\lfloor\frac{|\mathcal{U}|}{4}\right\rfloor$. Partition \mathcal{F}_{123} into three subcollections $\mathcal{R}_{1}, \mathcal{R}_{2}$ and \mathcal{R}_{3} such that $\left|\left|\mathcal{R}_{i}\right|-\left|\mathcal{R}_{j}\right|\right| \leq 1$ and $\left|\left(\mathcal{F}_{i 0} \backslash \mathcal{S}_{i}\right) \cup \mathcal{F}_{i, i+1} \cup \mathcal{R}_{i}\right|=\left\lceil\frac{|\mathcal{U}|-i+1}{4}\right\rceil$ for $1 \leq i \leq 3$. Note that $\mathcal{F}_{34}=\mathcal{F}_{13}$. Hence, O_{k} is equitably 4-colorable.

For $m=5$, by (I1), we may choose $\mathcal{P}_{i} \subseteq \mathcal{S}_{i}, 2 \leq i \leq 3$, such that $\| \mathcal{P}_{2}\left|-\left|\mathcal{P}_{3}\right|\right| \leq$ 1 and $\left|\mathcal{X} \cup \mathcal{P}_{2} \cup \mathcal{P}_{3}\right|=\left\lfloor\frac{|\mathcal{U}|}{5}\right\rfloor$. By (I2), we may choose $\mathcal{R} \subseteq \mathcal{F}_{123}$ such that $\left(\mathcal{F}_{1} \backslash \mathcal{F}_{123}\right) \cup \mathcal{R}=\mathcal{V}_{1} \cup \mathcal{V}_{2}$ with $\left|\mathcal{V}_{1}\right|=\left\lfloor\frac{|\mathcal{U}|+4}{5}\right\rfloor$ and $\left|\mathcal{V}_{1}\right|=\left\lfloor\frac{|\mathcal{U}|+3}{5}\right\rfloor$. It can be done since $\left(\mathcal{F}_{1} \backslash \mathcal{F}_{123}\right) \cup \mathcal{R}$ is a 1-flower. Partition $\left(\mathcal{F}_{123} \backslash \mathcal{R}\right) \cup \mathcal{F}_{23}$ into two subcollections \mathcal{R}_{2} and \mathcal{R}_{3} such that $\left|\left|\mathcal{R}_{2}\right|-\left|\mathcal{R}_{3}\right|\right| \leq 1$ and $\left|\left(\mathcal{F}_{i 0} \backslash \mathcal{P}_{i}\right) \cup \mathcal{R}_{i}\right|=$ $\left\lfloor\frac{|\mathcal{U}|+i-1}{5}\right\rfloor$ for $2 \leq i \leq 3$. Hence, O_{k} is equitably 5 -colorable.

For $m=6$, by (I2), we may choose $\mathcal{P}_{3} \subseteq \mathcal{S}_{3}$ such that $\left|\mathcal{X} \cup \mathcal{P}_{3}\right|=\left\lfloor\frac{|\mathcal{U}|}{6}\right\rfloor$ and choose $\mathcal{Q}_{1} \subseteq \mathcal{F}_{13}$ and $\mathcal{Q}_{2} \subseteq \mathcal{F}_{23}$ such that $\left|\left|\mathcal{Q}_{1}\right|-\left|\mathcal{Q}_{2}\right|\right| \leq 1$ and $\mid \mathcal{F}_{3} \backslash\left(\mathcal{P}_{3} \cup \mathcal{Q}_{1} \cup\right.$ $\left.\mathcal{Q}_{2} \cup \mathcal{F}_{123}\right) \left\lvert\,=\left\lfloor\frac{|\mathcal{U}|+1}{6}\right\rfloor\right.$. Partition $\mathcal{F}_{12} \cup \mathcal{F}_{123}$ into two subcollections \mathcal{R}_{1} and \mathcal{R}_{2} such that $\| \mathcal{R}_{1}\left|-\left|\mathcal{R}_{2}\right|\right| \leq 1$ and $\left\|\mathcal{F}_{10} \cup \mathcal{Q}_{1} \cup \mathcal{R}_{1}|-| \mathcal{F}_{20} \cup \mathcal{Q}_{2} \cup \mathcal{R}_{2}\right\| \leq 1$. Since $\mathcal{F}_{i 0} \cup \mathcal{Q}_{i} \cup \mathcal{R}_{i}$ is an i-flower, it can be partitioned into $\mathcal{V}_{i, 1}$ and $\mathcal{V}_{i, 2}$ such that $\left|\mathcal{V}_{i, j}\right|=\left\lfloor\frac{|\mathcal{U}|+8-2 i-j}{6}\right\rfloor$ for $1 \leq i \leq 2$ and $1 \leq j \leq 2$. Hence, O_{k} is equitably 6-colorable.

For $m=7$, by (I1), we may choose $\mathcal{P}_{i} \subseteq \mathcal{S}_{i}, 1 \leq i \leq 3$, such that $\|\left|\mathcal{P}_{i}\right|-\left|\mathcal{P}_{j}\right| \mid \leq$ 1 and $\left|\mathcal{X} \cup \mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{P}_{3}\right|=\left\lfloor\frac{|\mathcal{U}|}{7}\right\rfloor$. Partition \mathcal{F}_{123} into three subcollections $\mathcal{R}_{1}, \mathcal{R}_{2}$ and \mathcal{R}_{3} such that $\left|\left|\mathcal{R}_{i}\right|-\left|\mathcal{R}_{j}\right|\right| \leq 1$ and $\|\left(\mathcal{F}_{i 0} \backslash \mathcal{P}_{i}\right) \cup \mathcal{F}_{i, i+1} \cup \mathcal{R}_{i}|-|\left(\mathcal{F}_{j 0} \backslash \mathcal{P}_{j}\right) \cup$ $\mathcal{F}_{j, j+1} \cup \mathcal{R}_{j} \| \leq 1$. Note that $\mathcal{F}_{34}=\mathcal{F}_{13}$. Since each $\left(\mathcal{F}_{i 0} \backslash \mathcal{P}_{i}\right) \cup \mathcal{F}_{i, i+1} \cup \mathcal{R}_{i}$ is an i-flower, it can partitioned into $\mathcal{V}_{i, 1}$ and $\mathcal{V}_{i, 2}$ such that $\left|\mathcal{V}_{i, j}\right|=\left\lfloor\frac{|\mathcal{U}|+9-2 i-j}{7}\right\rfloor$ for $1 \leq i \leq 3$ and $1 \leq j \leq 2$. Hence, O_{k} is equitably 7 -colorable.

From the foregoing argument, there are $\mathcal{P}_{i} \subseteq \mathcal{F}_{i}$ such that $\left|\mathcal{X} \cup \mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{P}_{3}\right|=$ $\left\lfloor\frac{|\mathcal{U}|}{m}\right\rfloor$ and $\mathcal{F}_{i} \backslash \mathcal{P}_{i}=\mathcal{V}_{i, 1} \cup \mathcal{V}_{i, 2}\left(\mathcal{V}_{i, 2}\right.$ may be empty) with $\left|\mathcal{V}_{i, j}\right|=\left\lfloor\frac{|\mathcal{U}|}{m}\right\rfloor$ or $\left\lceil\frac{|\mathcal{U}|}{m}\right\rceil$
for $4 \leq m \leq 7$. Now, for $t \geq 1$, we can partition $\mathcal{X} \cup \mathcal{P}_{1} \cup \mathcal{P}_{2} \cup \mathcal{P}_{3}$ into $t+1$ subcollections, partition $\mathcal{F}_{i} \backslash \mathcal{P}_{i}$ into $t+1$ or $t+2$ (if $\mathcal{V}_{i, 2}$ is not empty) subcollections such that all of the subcollections are of size $\left\lfloor\frac{|\mathcal{U}|}{m+4 t}\right\rfloor$ or $\left\lceil\frac{|\mathcal{U}|}{m+4 t}\right\rceil$. Hence, O_{k} is equitably $(m+4 t)$-colorable. Therefore, we complete the proof.

5. A Conjecture

In this paper, we have shown that $\chi_{=}(\mathrm{KG}(n, k)) \leq \chi_{=}^{*}(\mathrm{KG}(n, k)) \leq n-k+1$ and $\chi\left(O_{k}\right)=\chi_{=}\left(O_{k}\right)=\chi_{=}^{*}\left(O_{k}\right)=3$. We have also shown that $\chi_{=}(\operatorname{KG}(n, k))=$ $\chi_{=}^{*}(\mathrm{KG}(n, k))$ for $k=2$ or 3 and obtained their exact values. We conclude this paper by posing the following conjecture.

Conjecture 3. $\chi_{=}(\mathrm{KG}(n, k))=\chi_{=}^{*}(\mathrm{KG}(n, k))$ for $k \geq 2$.

Acknowledgment

The authors would like to thank Professor Ko-Wei Lih for his helpful comments to improve this paper. The authors also would like to thank referee for her/his many constructive suggestions.

References

1. B. Bollobás and R. K. Guy, Equitable and proportional coloring of trees, J. Combin. Theory Ser. B, 34 (1983), 177-186.
2. R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc., $\mathbf{3 7}$ (1941), 194-197.
3. B. L. Chen and K. W. Lih, Equitable coloring of trees, J. Combin. Theory Ser. B, 61 (1994), 83-87.
4. B. L. Chen, K. W. Lih and P. L. Wu, Equitable coloring and the maximum degree, European J. Combin., 15 (1994), 443-447.
5. P. Erdठs, C. Ko and R. Rado, Intersection theorems for systems of the finite sets, Quart. J. Math. Oxford (2), 12 (1961), 313-320.
6. A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdbs, in: Combinatorial Theory and Its Applications, (P. ErdBs, A. Rényi, V. Sós, Eds), 601-623, NorthHolland, London, 1970.
7. P. Hall, On representation of subsets, J. London Math. Soc., 10 (1935), 26-30.
8. A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2), 18 (1967), 369-384.
9. H. A. Kierstead and A. V. Kostochka, A short proof of the Hajnal-Szemerédi theorem on equitable coloring, to appear in Combin. Probab. Comput.
10. A. V. Kostochka, Equitable colorings of the outerplanar graphs, Discrete Math., 258 (2002), 373-377.
11. A. V. Kostochka and K. Nakprasit, Equitable colourings of d-degenerate graphs, Combin. Probab. Comput., 12 (2003), 53-60.
12. A. V. Kostochka, K. Nakprasit and S. V. Pemmaraju, On equitable coloring of d degenerate graphs, SIAM J. Discrete Math., 19 (2005), 83-95.
13. K. W. Lih and P. L. Wu, On equitable coloring of bipartite graphs, Discrete Math., 151 (1996), 155-160.
14. L. Lovász, Kneser's conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A, 25 (1978), 319-324.
15. W. Meyer, Equitable coloring, Amer. Math. Monthly, 80 (1973), 920-922.
16. H. P. Yap and Y. Zhang, The equitable Δ-coloring holds for outplanar graphs, Bull. Inst. Math. Acad. Sin., 5 (1997), 143-149.
17. H. P. Yap and Y. Zhang, Equitable colorings of planar graphs, J. Combin. Math. Combin. Comput., 27 (1998), 97-105.
18. H. P. Yap and Y. Zhang, On the equitable coloring of graphs, manuscript, 1996.

Bor-Liang Chen

Department of Business Administration,
National Taichung Institute of Technology,
Taichung 40401,
Taiwan

Kuo-Ching Huang*
Department of Applied Mathematics,
Providence University,
Shalu 43301,
Taiwan

[^0]: Received January 9, 2008, Accepted March 11, 2008.
 Communicated by Hung-Lin Fu.
 2000 Mathematics Subject Classification: 05C15.
 Key words and phrases: Equitable coloring, Equitable chromatic number, equitable chromatic threshold, Kneser graph, Odd graph, Intersection family.

