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Abstract. Anm-coloring of a graphG is a mapping f : V (G) → {1, 2, . . . , m}
such that f(x) �= f(y) for any two adjacent vertices x and y in G. The
chromatic number χ(G) of G is the minimum number m such that G is m-
colorable. An equitablem-coloring of a graph G is an m-coloring f such that
any two color classes differ in size by at most one. The equitable chromatic
number χ=(G) of G is the minimum number m such that G is equitably
m-colorable. The equitable chromatic threshold χ∗

=
(G) of G is the minimum

number m such that G is equitably r-colorable for all r ≥ m. It is clear that
χ(G) ≤ χ=(G) ≤ χ∗

=
(G). For n ≥ 2k + 1, the Kneser graph KG(n, k) has

the vertex set consisting of all k-subsets of an n-set. Two distinct vertices are
adjacent in KG(n, k) if they have empty intersection as subsets. The Kneser
graph KG(2k+1, k) is called the Odd graph, denoted by Ok. In this paper, we
study the equitable colorings of Kneser graphs KG(n, k). Mainly, we obtain
that χ=(KG(n, k)) ≤ χ∗

=
(KG(n, k)) ≤ n − k + 1 and χ(Ok) = χ=(Ok) =

χ∗
=
(Ok) = 3. We also show that χ=(KG(n, k)) = χ∗

=
(KG(n, k)) for k = 2

or 3 and obtain their exact values.

1. INTRODUCTION

An m-coloring of a graph G is a mapping f : V (G) → {1, 2, . . . , m} such that
f(x) �= f(y) for any two adjacent vertices x and y in G. A color class f−1(i)
under f is a subset of V (G) in which every vertex is assigned the same color i. A
graph G is m-colorable if it admits an m-coloring. The chromatic number χ(G) of
G is the minimum numberm such that G is m-colorable. The well-known Brooks’
Theorem is stated as following.
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Theorem 1. ([2]). Suppose G is a graph different from a complete graph and
an odd cycle. Then χ(G) ≤ ∆(G).

An equitable m-coloring of a graph G is an m-coloring such that any two
color classes differ in size by at most one. A graph G is equitablym-colorable if it
admits an equitablem-coloring. The equitable chromatic number χ=(G) of G is the
minimum number m such that G is equitably m-colorable. One can also consider
the minimum number m such that G is equitably r-colorable for all r ≥ m. Such
a number m is called the equitable chromatic threshold of G, denoted by χ∗

=
(G).

It is clear that χ(G) ≤ χ=(G) ≤ χ∗
=
(G). Since χ(G) ≤ χ=(G), Meyer then posed

the following conjecture which, if true, is stronger than the Brooks’ Theorem.

Conjecture 1. ([15]). Suppose G is a connected graph different from a complete
graph and an odd cycle. Then χ=(G) ≤ ∆(G).

One well-known result of Hajnal and Szemerédi, when rephrased in terms of
the equitable colorability, has already been shown as follows.

Theorem 2. ([6, 9]). A graph G, not necessary connected, is equitably m-
colorable if m ≥ ∆(G) + 1.

Theorem 2 says that χ=(G) ≤ χ∗
=
(G) ≤ ∆(G) + 1 for all graphs G. Since the

graphs G that require at least ∆(G) + 1 colors to color the vertices equitably are
complete graphs and odd cycles, Chen, Lih and Wu put forth the following.

Conjecture 2. ([4]). Equitable ∆-Coloring Conjecture.
A connected graph G is equitably ∆(G)-colorable if and only if G is different

from the complete graph Kn, the odd cycle C2n+1 and the complete bipartite graph
K2n+1,2n+1 for all n ≥ 1.

They also verified this conjecture for a graph with ∆(G) ≥ |V (G)|/2 or
∆(G) ≤ 3. Yap and Zhang [18] obtained a finer bound when |V (G)|/2 >
∆(G) ≥ (|V (G)|/3)+ 1. Moreover, some particular cases have been studied, such
as trees [1, 3], bipartite graphs [13], d-degenerate graphs [11, 12] and planar graphs
[10, 16, 17]. However, Conjecture 1 and Conjecture 2 are still open in general.

For n ≥ 2k + 1, the Kneser graph KG(n, k) has the vertex set consisting of all
k-subsets of an n-set. Two distinct vertices are adjacent in KG(n, k) if they have
empty intersection as subsets. The Odd graph Ok is the Kneser graph KG(2k+1, k).
The chromatic number of KG(n, k) was obtained by Lovász.

Theorem 3. ([14]). χ(KG(n, k)) = n − 2k + 2.
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In this paper, we study the equitable colorings of KG(n, k). Since KG(n, 1) =
Kn, it is easy to see that χ(KG(n, 1)) = χ=(KG(n, 1)) = χ∗

=
(KG(n, 1)) = n.

Throughout this paper, we assume k ≥ 2. For convenience, we introduce some
notation. For integers i < j, let [i, j] be the set of all integers i, i + 1, . . . , j and
[n] = [1, n]. If X is a set, then the collection of all k-subsets of X is denoted by(X

k

)
. Hence, the vertex set V (KG(n, k)) is denoted by

([n]
k

)
and |V (KG(n, k))| =

C(n, k) =
(n
k

)
. An i-flower F of

(X
k

)
is a subcollection of

(X
k

)
in which all k-

subsets have a common element i, i.e., i ∈
⋂

A∈F
A. It is clear that every i-flower is

an independent set of KG(n, k). An independent set F of KG(n, k) is also called an
intersection family of

([n]
k

)
, i.e., A∩B �= ∅ for all A and B in F . The independence

number α(KG(n, k)) of KG(n, k) was obtained by Erd"os, Ko and Rado.

Theorem 4. ([5]). Suppose F is an intersection family of
([n]

k

)
. Then |F | ≤

C(n−1, k−1). Moreover, the equality holds if and only if F = {A ∈
([n]

k

)
: i ∈ A}

for some i ∈ [n].

There are independent sets of KG(n, k) which are not flowers. Denote by
α2(KG(n, k)), or simply by α2(n, k), the maximum size of independent sets H of
KG(n, k) satisfying

⋂
A∈H

A = ∅. The following result was obtained by Hilton and

Milner.

Theorem 5. ([8]). SupposeH is an intersection family of
([n]

k

)
with

⋂
A∈H

A = ∅.

Then |H| ≤ C(n − 1, k − 1) − C(n − k − 1, k − 1) + 1. Moreover, the equality
holds if and only if H ∼= {A ∈

(
[n]
3

)
: |A ∩ [1, 3]| ≥ 2} or H ∼= {A ∈

([n]
k

)
: 1 ∈

A, |A∩ [2, k + 1]| ≥ 1} ∪ {[2, k + 1]}.

We also need the following to prove our main results.

Theorem 6. ([7]). A bipartite graph G = G(X, Y ) with bipartition (X, Y ) has
a matching that saturates every vertex in X if and only if |N (S)| ≥ |S| for all
S ⊆ X , where N (S) denotes the set of neighbors of vertices in S.

2. GENERAL BOUNDS

In this section, let n ≥ 2k + 1. Since every flower of
([n]

k

)
is an independent

set of KG(n, k), it is natural to partition flowers to form an equitable coloring
of KG(n, k). In this case, every k-subset of [n] is in some flower. Hence, if
f is an equitable m-coloring of KG(n, k) such that every color class under f is
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contained in some flower, then m ≥ n − k + 1. Otherwise, suppose m ≤ n − k

and each color classe f−1(i) is contained in some ti-flower for 1 ≤ i ≤ m,
respectively. Since |[n] \ {t1, t2, . . . , tm}| ≥ n − m ≥ k, we may choose a k-
subset A ⊆ [n] \ {t1, t2, . . . , tm}. Since f is an equitable m-coloring, A ∈ f−1(i)
for some i, i.e., ti ∈ A. It is a contradiction. Hence, we have the following.

Lemma 7. If f is an equitable m-coloring of KG(n, k) such that every color
class under f is contained in some flower of

(
[n]
k

)
, then m ≥ n − k + 1.

In what follows, we should show that KG(n, k) is equitably m-colorable for
all m ≥ n − k + 1 by partitioning flowers of

(
[n]
k

)
into m equitably independent

sets. Precisely, letting m = qn + r, 0 ≤ r < n, we will partition
([n]

k

)
into m

subcollections V1, V2, . . . ,Vm with ai = |Vi| = �(C(n, k) − i + 1)/m�, 1 ≤ i ≤
m, such that Vi is contained in a π(i)-flower, where π(i) = i(mod n) if 1 ≤ i ≤ qn
and π(i) = i + n − m if qn + 1 ≤ i ≤ m. The notation i(mod n) denotes the
residue of i modulo n taken in the set [n]. To do this, we construct a bipartite graph
G = G(X, Y ) with bipartition (X, Y ), where X is the disjoint union of the sets
Xi = {xi,j : 1 ≤ j ≤ ai}, 1 ≤ i ≤ m, and Y =

([n]
k

)
. Two vertices xi,j ∈ X and

A ∈ Y are adjacent if and only if π(i) ∈ A. It is easy to see that |X | = |Y | =
(
n
k

)
.

If G has a perfect matching M = {{xi,j, Ai,j} : 1 ≤ i ≤ m, 1 ≤ j ≤ ai}, letting
Vi = {Ai,j : 1 ≤ j ≤ ai}, 1 ≤ i ≤ m, then the partition (V1, V2, . . . ,Vm) forms
an equitable m-coloring of KG(n, k). By Theorem 6, G has a perfect matching if
|N (S)| ≥ |S| for all S ⊆ X . Hence, we need to show the inequality |N (S)| ≥ |S|.
Suppose S ⊆ X . Let I(S) = {π(j) : S ∩ Xj �= ∅}. Note that if |I(S)| ≥
n − k + 1, then N (S) = Y and |N (S)| ≥ |S|. For |I(S)| = i ≤ n − k, let

Si =
n−r+i⋃

π(j)=n−r+1

Xj if i ≤ r and Si = (
n⋃

π(j)=n−r+1

Xj) ∪ (
i−r⋃

π(j)=1

Xj) if i > r.

Then |S| ≤ |Si|. Moreover, the set I(Si) = {π(j) : Si ∩ Xj �= ∅} has the same
size as I(S). It follows that |N (S)| = |N (Si)| = C(n, k) − C(n − i, k) and
then |N (S)| − |S| ≥ |N (Si)| − |Si|. The following lemmas are used to show the
inequality |N (Si)| ≥ |Si| that implies |N (S)| − |S| ≥ 0.

Lemma 8. Suppose m = qn + r, where q ≥ 1 and 0 < r < n. Let Si be
defined as above. Then |Si| ≤

2i

n + i
C(n, k).

Proof. For 1≤j≤n, letWj =
⋃

π(t)=j, t≤qn

Xt. Then |Wj+1|≤|Wj|≤|Wj+1|+1,

|Xqn+t| ≤ |Wn−r+t| and |Wj| ≤ |Wn−r+t|+ |Xqn+t| for 1 ≤ j ≤ n and 1 ≤ t ≤ r.

If i ≤ r, then |Si| =
i∑

j=1

(|Wn−r+j |+|Xqn+j|) ≤ 2
i∑

j=1

|Wn−r+j | ≤ 2i|Wn−r+1|,
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or
|Si|
2i

≤ |Wn−r+1|. On the other hand, C(n, k)−|Si| =
n−r∑
j=1

|Wj|+
n∑

j=i+1

(|Wn−r+j |

+|Xqn+j |) ≥ (n−i)|Wn−r|, or
C(n, k) − |Si|

n − i
≥ |Wn−r |. Hence,

|Si|
2i

≤ |Wn−r+1|

≤ |Wn−r| ≤ C(n, k) − |Si|
n − i

. It follows that
|Si|
2i

≤ |Si| + C(n, k)− |Si|
2i + n − i

=

C(n, k)
n + i

.

If i > r, then |Si| =
i−r∑
j=1

|Wj|+
r∑

j=1

(|Wn−r+j |+|Xqn+j |) ≤ (i−r)(|Wn−r+1|+

|Xqn+1|) + r(|Wn−r+1| + |Xqn+1|) ≤ 2i|Wn−r+1|, or
|Si|
2i

≤ |Wn−r+1|. On the

other hand, C(n, k) − |Si| =
n−r∑

j=i−r+1

|Wj| ≥ (n − i)|Wn−r|, or
C(n, k) − |Si|

n − i
≥

|Wn−r |. Hence,
|Si|
2i

≤ |Wn−r+1| ≤ |Wn−r | ≤
C(n, k) − |Si|

n − i
. It follows that

|Si|
2i

≤ |Si|+ C(n, k) − |Si|
2i + n − i

=
C(n, k)
n + i

.

Therefore, |Si| ≤
2i

n + i
C(n, k) as desired.

Lemma 9. Suppose that k ≤ n − i.

(1) C(n, k − 1) ≥ C(n − i, k − 1) + ik for k ≥ 3.

(2) C(n, k) − C(n − i, k) ≥ 2i

n + i
C(n, k) for k ≥ 2.

Proof.

(1) By direct computation, we have

C(n, k − 1) = C(n − 1, k − 1) + C(n − 1, k − 2)

= C(n − i, k − 1) + C(n − i, k − 2) + C(n − i + 1, k − 2)

+ · · ·+ C(n − 1, k − 2)

≥ C(n − i, k − 1) + iC(k, 1)

= C(n − i, k − 1) + ik.

(2) By direct computation, we have
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C(n, k)
C(n − i, k)

=
n(n − 1) · · · (n − k + 1)

(n − i)(n − i − 1) · · · (n − i − k + 1)

=
(

1 +
i

n − i

)(
1 +

i

n − i − 1

)
· · ·

(
1 +

i

n − i− k + 1

)

>

(
1 +

i

n − i

)k

≥
(

1 +
i

n − i

)2

>

(
1 +

2i

n − i

)

=
n + i

n − i
.

Hence, C(n, k) − C(n − i, k) ≥ 2i

n + i
C(n, k) as desired.

Now, we are ready to show our main results.

Lemma 10. Suppose that n − k + 1 ≤ m ≤ n. Then KG(n, k) is equitably
m-colorable.

Proof. Let the bipartite graph G = G(X, Y ), S and Si be defined as before.
It suffices to show that |N (Si)| − |Si| ≥ 0 for i ≤ n − k. First, we consider
k = 2. Then m = n − 1 or n and i ≤ n − 2. If i = n − 2, then |Si| =
|X | − |Xm| for m = n − 1 or |Si| = |X | − |Xm−1| − |Xm| for m = n. Hence,

|N (Si)| − |Si| ≥ C(n, 2) − 1 −
(

C(n, 2)−
⌊

C(n, 2)
n − 1

⌋)
=

⌊n

2

⌋
− 1 > 0. If

i ≤ n − 3, then |N (Si)| − |Si| ≥ C(n, 2) − C(n − i, 2) − i

⌊
C(n, 2)

m

⌋
− i ≥

C(n, 2) − C(n − i, 2)− i

⌊
C(n, 2)
n − 1

⌋
− i ≥ i

2
(n − i− 3) ≥ 0.

Suppose k ≥ 3. Then, |Si| =
i∑

j=1

⌈
C(n, k) − j + 1

m

⌉
≤ i

(
C(n, k)

n − k + 1
+ 1

)
.

By Lemma 9(1), we have

|N (S)| − |S| ≥ |N (Si)| − |Si|

≥ n − k + 1 − i

k
(C(n, k − 1)− C(n − i, k − 1)) − i

≥ n − k + 1 − i

k
ik − i

= (n − k − i)i ≥ 0.
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Therefore, we complete the proof.

Lemma 11. Suppose that m > n. Then KG(n, k) is equitably m-colorable.

Proof. First, consider m = qn, q ≥ 1. By Lemma 10,
([n]

k

)
can be partitioned

equitably into n subcollections X1,X2, . . . ,Xn, where each Xi is an i-flower. For
each i ≥ 1, we can partition Xi into q equitable subcollections Xi,1,Xi,2, . . . ,Xi,q.
Hence the collection {Xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ q} forms an equitable m-coloring
of KG(n, k).

Now, suppose m is not divisible by n. Let the bipartite graph G = G(X, Y ),
S and Si be defined as before. It suffices to show that |N (Si)| − |Si| ≥ 0 for
i ≤ n−k. By Lemma 8 and Lemma 9(2), |N (Si)|−|Si| ≥ C(n, k)−C(n−i, k)−

2i

n + i
C(n, k) ≥ 0.

Therefore, we complete the proof.

Combining Lemma 10 and Lemma 11, the following is easy to see.

Theorem 12. Suppose that m ≥ n − k + 1. Then KG(n, k) is equitably
m-colorable, i.e., χ=(KG(n, k)) ≤ χ∗

=
(KG(n, k)) ≤ n − k + 1.

Suppose m ≤ n − k and KG(n, k) is equitably m-colorable. Let f be an
equitable m-coloring of KG(n, k). By Lemma 7, there is some color class f−1(i)
which is contained in no flowers of

([n]
k

)
. Moreover, the particular f−1(i) must

satisfy that |f−1(i)| ≤ α2(n, k) = C(n−1, k−1)−C(n−k−1, k−1)+1. Using
this fact, we have the following.

Lemma 13. Suppose that m ≤ n − k and
⌊

C(n, k)
m

⌋
> α2(n, k). Then

KG(n, k) is not equitably r-colorable for all r ≤ m, i.e., χ ∗
=
(KG(n, k)) ≥ χ=(KG(n,

k)) ≥ m + 1.

Proof. Suppose KG(n, k) has an equitable r-coloring f for some r ≤ m.
Then there is some color class f−1(i) satisfying that |f−1(i)| ≤ α2(n, k). Since

f is an equitable r-coloring, |f−1(i)| ≥
⌊

C(n, k)
m

⌋
> α2(n, k) which is a con-

tradiction. Hence, KG(n, k) is not equitably r-colorable for all r ≤ m and then
χ∗

=
(KG(n, k)) ≥ χ=(KG(n, k)) ≥ m + 1.

Theorem 14. If
⌊

C(n, k)
n − k

⌋
> α2(n, k). Then χ=(KG(n, k)) = χ∗

=
(KG(n, k)) =

n − k + 1.
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Proof. It follows from Theorem 12 and Lemma 13.

3. CASES FOR k = 2, 3

By the same argument as in the proof of Lemma 10, the following is not difficult
to see.

Lemma 15. Suppose that 1 ≤ t ≤ m. Then the collectiom
(
[m]
t

)
can be

partitioned equitably into m subcollections F 1,F2, . . . ,Fm, such that each Fi is
an i-flower.

By Lemma 13, Theorem 14 and Lemma 15, we can show that χ=(KG(n, k)) =
χ∗

=
(KG(n, k)) for k = 2 or 3 and obtain their exact values.

Theorem 16. For n ≥ 5,

χ=(KG(n, 2)) = χ∗
=
(KG(n, 2)) =

{
n − 1 if n ≥ 7,

n − 2 if n = 5 or 6.

Proof. By Theorem 3 and Theorem 12,

n − 2 = χ(KG(n, 2)) ≤ χ=(KG(n, 2)) ≤ χ∗
=
(KG(n, 2)) ≤ n − 1.

By direct computation,
⌊

C(n, 2)
n − 2

⌋
> α2(n, 2) = 3 if and only if n ≥ 7. Hence, by

Theorem 14, χ=(KG(n, 2)) = χ∗
=
(KG(n, 2)) = n − 1 if n ≥ 7.

For convenience, we use ij to denote the 2-subset {i, j}. It is easy to see that the
partition ({12, 13, 14, 15}, {23, 24, 25}, {34, 35, 45}) forms an equitable 3-coloring
of KG(5, 2) and the partition ({12, 14, 15, 16}, {23, 24, 25, 26}, {13, 34, 35, 36}, {45,
46, 56}) forms an equitable 4-coloring of KG(6, 2). Hence, χ(KG(n, 2)) = χ=(KG
(n, 2)) = χ∗

=
(KG(n, 2)) = n − 2 if 5 ≤ n ≤ 6.

Lemma 17. For 7 ≤ n ≤ 15, χ=(KG(n, 3)) ≤ χ∗
=
(KG(n, 3)) ≤ n − 3.

Moreover, χ=(KG(n, 3)) = χ∗
=
(KG(n, 3)) = n − 3 if 14 ≤ n ≤ 15.

Proof. Let H = {A ∈
([n]

3

)
: |A∩{n−2, n−1, n}| ≥ 2}. Then

([n−3,n]
3

)
⊆ H

and |H| = 3n − 8 ≥
⌊

C(n, 3)
n − 3

⌋
≥ 4 for n ≤ 15. Note that if A �∈ H, then

A is in some i-flower, 1 ≤ i ≤ n − 4. Let F =
n−4⋃
i=1

({A ∈
(

[n]
3

)
: i ∈ A} \ H)
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and Gt = {{i, j, t} : 1 ≤ i < j ≤ n − 4} for n − 3 ≤ t ≤ n. Then F =([n−4]
3

)
∪ (

n⋃
t=n−3

Gt). By Lemma 15,
([n−4]

3

)
can be partitioned equitably into n− 4

subcollections X1,X2, . . . ,Xn−4 such that each Xi is an i-flower. Since {A \ {t} :
A ∈ Gt} =

(
[n−4]

2

)
for n−3 ≤ t ≤ n, by Lemma 15, Gt can be partitioned equitably

into n − 4 subcollections X1,t,X2,t, . . . ,Xn−4,t such that each Xi,t is an i-flower.
By adjusting the sizes of Xi and Xi,t, F can be partitioned equitably into n − 4

subcollections Vi = Xi∪(
n⋃

t=n−3

Xi,t), 1 ≤ i ≤ n−4 such that each Vi is an i-flower.

It is easy to see that the set {i, s, t} ∈ H for 1 ≤ i ≤ n − 4 and n − 2 ≤
s < t ≤ n. For each pair (s, t), remove the sets {i, s, t} from H and add them
one by one into Vi to obtain new V ′

i, respectively, and preserve the equality of
sizes of V ′

i’s. Continuing this process, H can be reduced to H′ such that |H′| =⌊
C(n, 3)
n − 3

⌋
. In this case, the V ′

i’s satisfy ||V ′
i| − |V ′

j|| ≤ 1. Hence, the partition

(V ′
1, V ′

2, . . . ,V ′
n−4,H′) forms an equitable (n−3)-coloring of KG(n, 3). Therefore,

χ=(KG(n, 3)) ≤ χ∗
=
(KG(n, 3)) ≤ n − 3 for 7 ≤ n ≤ 15.

Moreover, since
⌊

C(n, 3)
n − 4

⌋
> α2(n, 3) = 3n − 8 if and only if n ≥ 14,

by Lemma 13, χ∗
=
(KG(n, 3)) ≥ χ=(KG(n, 3)) ≥ n − 3 if n ≥ 14. Therefore,

χ=(KG(n, 3)) = χ∗
=
(KG(n, 3)) = n − 3 for 14 ≤ n ≤ 15.

Lemma 18. For 7 ≤ n ≤ 13, χ(KG(n, 3)) = χ=(KG(n, 3)) = χ∗
=
(KG(n, 3)) =

n − 4.

Proof. By Theorem 3 and Lemma 17,

n − 4 = χ(KG(n, 3)) ≤ χ=(KG(n, 3)) ≤ χ∗
=
(KG(n, 3)) ≤ n − 3.

It suffices to show that KG(n, 3) is equitably (n − 4)-colorable for 7 ≤ n ≤ 13.
Let H1 = {A ∈

(
[n]
3

)
: |A ∩ {n − 2, n − 1, n}| ≥ 2} and H2 = {A ∈

(
[n]
3

)
:

|A ∩ {n − 5, n − 4, n − 3}| ≥ 2}. Then |H1| = |H2| = 3n − 8 ≥
⌊

C(n, 3)
n − 4

⌋
≥

1
2

∣∣∣∣
(

[n − 5, n]
3

)∣∣∣∣ =
C(6, 3)

2
= 10 for 7 ≤ n ≤ 13. By the same argument

as in Lemma 17, H1 and H2 can be reduced to H′
1 and H′

2 such that |H′
1| =⌈

C(n, 3)− (n − 5) + 1
n − 4

⌉
and |H′

2| =
⌈

C(n, 3)− (n − 4) + 1
n − 4

⌉
. Moreover,

(
[n]
3

)
\

(H′
1 ∪H′

2) can be partitioned equitably into n − 6 subcollections V1, V2, . . . ,Vn−6

such that each Vi is an i-flower and |Vi| =
⌈

C(n, 3) − i + 1
n − 4

⌉
. Hence, KG(n, 3) is
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equitably (n− 4)-colorable. Therefore, χ(KG(n, 3)) = χ=(KG(n, 3)) = χ∗
=
(KG(n,

3)) = n − 4 for 7 ≤ n ≤ 13.

Theorem 19. For n ≥ 7,

χ=(KG(n, 3)) = χ∗
=
(KG(n, 3)) =




n − 2 if n ≥ 16,

n − 3 if 14 ≤ n ≤ 15,

n − 4 if 7 ≤ n ≤ 13.

Proof. By Theorem 3 and Theorem 12,

n − 4 = χ(KG(n, 3)) ≤ χ=(KG(n, 3)) ≤ χ∗
=
(KG(n, 3)) ≤ n − 2.

Since
⌊

C(n, 3)
n − 3

⌋
> α2(n, 3) = 3n − 8 if and only if n ≥ 16, by Theorem 14,

χ=(KG(n, 2)) = χ∗
=
(KG(n, 2)) = n−2 if n ≥ 16. The remaining two cases follow

from Lemma 17 and Lemma 18.

4. THE ODD GRAPHS

Since O1 = K3, we have χ(O1) = χ=(O1) = χ∗
=
(O1) = 3. By Theorem 16

and Theorem 19, χ(Ok) = χ=(Ok) = χ∗
=
(Ok) = 3 for k = 2 or 3. Suppose k ≥ 4.

Lemma 20. Ok is equitably 3-colorable.

Proof. Let F1 = {A : 1 ∈ A, 2 �∈ A}, F2 = {A : 1 �∈ A, 2 ∈ A}, F12 = {A :
1 ∈ A, 2 ∈ A} and F3 = {A : 1 �∈ A, 2 �∈ A}. Then (F1,F2,F12,F3) forms a
partition(or 4-coloring) of Ok, |F1| = |F2| = C(2k − 1, k − 1) = C(2k − 1, k) =
|F3|, |F12| = C(2k−1, k−2) andC(2k+1, k) = 3C(2k−1, k−1)+C(2k−1, k−2).

Let ai =
⌊

C(n, k) + i − 1
3

⌋
, i = 1, 2, 3 and t =

1
3
C(2k + 1, k) − C(2k − 1, k −

1) =
1
3
C(2k − 1, k − 2). Consider the two collections H1 = {A ∈ F3 : 3 ∈

A, 4 ∈ A} and H2 = {A ∈ F12 : |A ∩ [3, 4]| = 1}. By direct computation,
|H1|

t
=

3(k + 1)k
(2k − 1)(2k − 2)

> 1 for k ≤ 8 and
|H2|

t
=

3(k − 2)(k + 1)
(2k − 1)(k − 1)

> 1 for

k ≥ 4. For 4 ≤ k ≤ 8, choose S ⊆ H1 with |S| = t� = a1−C(2k−1, k−1) and
T ⊆ H2 with |T | = a2−C(2k−1, k−1). Let S1 = {A ∈ F1 : [3, 2k+1]\A ∈ S}
and S2 = {A ∈ F2 : [3, 2k + 1] \ A ∈ S}. Then |S| = |S1| = |S2|. Moreover, if
A ∈ Fi where i = 1, 2, then A∩B �= ∅ for all B ∈ F3 except B = [3, 2k + 1] \A.
Hence, (F3 \ S) ∪ S1 ∪ S2, (F2 \ S2) ∪ S ∪ T and (F1 \ S1) ∪ (F12 \ T ) are
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independent sets of sizes a1, a2 and a3, respectively. Thus, the partition ((F1 \
S1)∪(F12\T ), (F2\S2)∪S ∪T , (F3\S)∪S1∪S2) forms an equitable 3-coloring
of Ok. Hence, Ok is equitably 3-colorable for 4 ≤ k ≤ 8.

Now, suppose k ≥ 9. Consider the two collections H3 = {A ∈ F3 : |A ∩
[3, 5]| = 2} and H4 = {A ∈ F12 : |A∩ [3, 5]| ≥ 2}. By direct computation, |H3|

t
=

9(k + 1)k
2(2k − 1)(2k − 3)

> 1 and
|H4|

t
=

12k3 − 63k2 + 87k − 18
8k3 − 24k2 + 22k − 6

> 1. Choose P ⊆
H3 with |P| = t� = a1 −C(2k − 1, k− 1) and Q ⊆ H4 with |Q| = a2 −C(2k−
1, k − 1). Let P1 = {A ∈ F1 : [3, 2k + 1] \ A ∈ P} and P2 = {A ∈ F2 :
[3, 2k + 1] \ A ∈ P}. Then |P| = |P1| = |P2|. By the same argument as above,
(F3 \ P)∪P1 ∪P2, (F2 \ P2)∪P ∪Q and (F1 \ P1)∪ (F12 \Q) are independent
sets of sizes a1, a2 and a3, respectively. Thus, the partition ((F1 \ P1) ∪ (F12 \
Q), (F2 \ P2) ∪ P ∪Q, (F3 \ P) ∪ P1 ∪ P2) forms an equitable 3-coloring of Ok.
Hence, Ok is equitably 3-colorable for k ≥ 9. Therefore, we complete the proof.

Let U =
([2k+1]

k

)
and X =

([4,2k+1]
k

)
. For 1 ≤ i ≤ 3, let Fi = {A ∈ U : i ∈ A}

and Fi0 = {A ∈ U : |A ∩ {1, 2, 3}| = i}. For 1 ≤ i < j ≤ 3, let Fij =
{A ∈ U : A ∩ {1, 2, 3} = {i, j}}. Let F123 = {A ∈ U : {1, 2, 3} ⊆ A}. Then

U = (
3⋃

i=1

Fi0)∪ (
⋃

1≤i<j≤3

Fij)∪ F123 ∪X ,Fi = Fi0 ∪ Fis ∪Fit ∪ F123, {i, s, t} =

{1, 2, 3}, |X | = C(2k−2, k), |Fi0| = C(2k−2, k−1), |Fij| = C(2k−2, k−2) and
|F123| = C(2k−2, k−3). It is not difficult to see that X ∪Fi0 is an independent set.
If A and B both are in Fi0, then |A∩B| ≥ 2 except (A\{i})∪(B\{j}) = [4, 2k+1].
Hence, each Fi0 can be partitioned into Si and Ti such that if A ∈ Si, then
([4, 2k + 1] \ A) ∪ {i} ∈ Ti. Moreover, we may assume that {A \ {i} : A ∈ Si} =

{A \ {j} : A ∈ Sj} for 1 ≤ i < j ≤ 3. Hence, |Si| = |Sj| = |Ti| = |Tj| =
|Fi0|

2
and S1 ∪ S2 ∪ S3 ∪ X is an independent set. By direct computation, we have the
following.

(I1) |X | <
|U|
m

< |X ∪ Si ∪ Sj| if 4 ≤ m ≤ 7.

(I2)
1
6
|U| < |X ∪ Si| <

2
6
|U| ≤ |Fi \ F123| ≤

2
5
|U| ≤ |Fi|.

The inequalities (I1) and (I2) will be used to guarantee that there are Pi ⊆ Si

(Pi may be empty) for 1 ≤ i ≤ 3 such that |X ∪ P1 ∪ P2 ∪ P3| =
⌊
|U|
m

⌋
for

4 ≤ m ≤ 7. Then we can partition
3⋃

i=1

(Fi \Pi) equitably into m−1 subcollections

so that Ok is equitably m-colorable.
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Theorem 21. χ(Ok) = χ=(Ok) = χ∗
=
(Ok) = 3 for k ≥ 1.

Proof. If k = 1, 2 or 3, then we are done. Suppose k ≥ 4. By Lemma 20, Ok

is equitably 3-colorable. It suffices to show that Ok is equitablym-colorable for all
m ≥ 4.

Form = 4, by (I1), we may choose Pi ⊆ Si, 1 ≤ i ≤ 3, such that ||P1|−|P2|| ≤
1 and |X ∪P1∪P2∪P3| =

⌊
|U|
4

⌋
. Partition F123 into three subcollectionsR1,R2

and R3 such that ||Ri| − |Rj|| ≤ 1 and |(Fi0 \ Si)∪Fi,i+1∪Ri| =
⌈
|U| − i + 1

4

⌉
for 1 ≤ i ≤ 3. Note that F34 = F13. Hence, Ok is equitably 4-colorable.

Form = 5, by (I1), we may choose Pi ⊆ Si, 2 ≤ i ≤ 3, such that ||P2|−|P3|| ≤
1 and |X ∪ P2 ∪ P3| =

⌊
|U|
5

⌋
. By (I2), we may choose R ⊆ F123 such that

(F1 \ F123) ∪R = V1 ∪ V2 with |V1| =
⌊
|U|+ 4

5

⌋
and |V1| =

⌊
|U| + 3

5

⌋
. It can

be done since (F1 \ F123) ∪ R is a 1-flower. Partition (F123 \ R) ∪ F23 into two
subcollections R2 and R3 such that ||R2| − |R3|| ≤ 1 and |(Fi0 \ Pi) ∪ Ri| =⌊
|U|+ i − 1

5

⌋
for 2 ≤ i ≤ 3. Hence, Ok is equitably 5-colorable.

For m = 6, by (I2), we may choose P3 ⊆ S3 such that |X ∪ P3| =
⌊
|U|
6

⌋
and

choose Q1 ⊆ F13 and Q2 ⊆ F23 such that ||Q1| − |Q2|| ≤ 1 and |F3 \ (P3 ∪Q1 ∪

Q2 ∪ F123)| =
⌊
|U|+ 1

6

⌋
. Partition F12 ∪ F123 into two subcollections R1 and

R2 such that ||R1| − |R2|| ≤ 1 and ||F10 ∪ Q1 ∪ R1| − |F20 ∪ Q2 ∪ R2|| ≤ 1.
Since Fi0 ∪Qi ∪Ri is an i-flower, it can be partitioned into Vi,1 and Vi,2 such that

|Vi,j| =
⌊
|U|+ 8 − 2i − j

6

⌋
for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2. Hence, Ok is equitably

6-colorable.
For m = 7, by (I1), we may choose Pi ⊆ Si, 1 ≤ i ≤ 3, such that ||Pi|−|Pj|| ≤

1 and |X ∪P1∪P2∪P3| =
⌊
|U|
7

⌋
. Partition F123 into three subcollectionsR1,R2

and R3 such that ||Ri| − |Rj|| ≤ 1 and ||(Fi0 \ Pi)∪Fi,i+1 ∪Ri| − |(Fj0 \ Pj)∪
Fj,j+1 ∪Rj|| ≤ 1. Note that F34 = F13. Since each (Fi0 \ Pi)∪Fi,i+1 ∪Ri is an

i-flower, it can partitioned into Vi,1 and Vi,2 such that |Vi,j| =
⌊
|U|+ 9− 2i− j

7

⌋
for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2. Hence, Ok is equitably 7-colorable.

From the foregoing argument, there are Pi ⊆ Fi such that |X ∪P1∪P2∪P3| =⌊
|U|
m

⌋
and Fi \Pi = Vi,1∪Vi,2 (Vi,2 may be empty) with |Vi,j| =

⌊
|U|
m

⌋
or

⌈
|U|
m

⌉
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for 4 ≤ m ≤ 7. Now, for t ≥ 1, we can partition X ∪ P1 ∪ P2 ∪ P3 into t + 1
subcollections, partition Fi\Pi into t+1 or t+2 (if Vi,2 is not empty) subcollections

such that all of the subcollections are of size
⌊

|U|
m + 4t

⌋
or

⌈
|U|

m + 4t

⌉
. Hence, Ok

is equitably (m + 4t)-colorable. Therefore, we complete the proof.

5. A CONJECTURE

In this paper, we have shown that χ=(KG(n, k)) ≤ χ∗
=
(KG(n, k)) ≤ n − k + 1

and χ(Ok) = χ=(Ok) = χ∗
=
(Ok) = 3. We have also shown that χ=(KG(n, k)) =

χ∗
=
(KG(n, k)) for k = 2 or 3 and obtained their exact values. We conclude this

paper by posing the following conjecture.

Conjecture 3. χ=(KG(n, k)) = χ∗
=
(KG(n, k)) for k ≥ 2.
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