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SOME E-OPTIMAL REGULAR GRAPH DESIGNS

Chwen-Ming Chang

Abstract. In the list of optimal regular graph designs (RGDs) provided
by J. A. John and Mitchell, the E-optimality of some designs is still
unknown. We have found the answers for some parameter sets including
type of (v, v, 2), (v, v, v − 2). These E-optimal regular graph designs
added by BIBDs are again E-optimal under certain domain.

1. Introduction

Let Dv,b,k be the class of incomplete block designs which are arrangements
of v treatments into b blocks of k experimental units each. The subset of
equireplicate designs, in which each treatment appears the same number of
times, r, will be denoted by D∗v,b,k.

Among the designs, balanced incomplete block designs (BIBDs) are proved
to be A, D and E-optimal [7]. The candidate that is closest to the BIBD is the
regular graph design (RGD) of which every pair of treatments appears in the
same block λ or λ+1 times [4]. J. A. John and Mitchell perform a systematic
search to find the A, D and E-optimal design in the set of RGDs within the
range of v ≤ 12, r ≤ 10 and v ≤ b [3, 4]. There are 209 sets of parameters in
their list. Among them, it was proved that most of the E-optimal designs in
the set of RGD are really optimal in Dv,b,k or D∗v,b,k. However, still 33 sets of
parameters were completely unknown [1]. Let (v, b, k) represent a design in
Dv,b,k. We have solved some of the parameter sets including

(7, 7, 2)(8, 8, 2)(9, 9, 2)(10, 10, 2)(11, 11, 2)(12, 12, 2)

(7, 7, 5)(8, 8, 6)(9, 9, 7)(10, 10, 8)(11, 11, 9)(12, 12, 10).
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The cyclic designs (v, v, 2) for v > 6 are proved to be E-optimal in D∗v,b,k but
not E-optimal in Dv,b,k. We have found unequireplicate designs which have
better E-values than the cyclic designs. The E-values of these unequireplicate
designs are derived. For v = 6, we found that cyclic (6, 6, 2) is E-optimal
in D6,6,2 by enumerating all possible designs. However, it is not the only
E-optimal design, some of the unequireplicate designs are also E-optimal.

In the complementary space, we show that cyclic (v, v, v − 2) with v ≥ 5
are E-optimal for the binary designs in Dv,b,k. By adding BIBDs to the E-
optimal RGD, we obtain new designs that are the E-optimal designs in the
set of RGD. This is confirmed by the following designs in J. A. John and
Mitchell’s list:

(6, 21, 2)(7, 28, 2)(8, 36, 2)(9, 45, 2).

It is also proved that they are not E-optimal in Dv,b,k. As we take the com-
plementary space, we obtain the following designs that are E-optimal in the
set of RGDs.

(6, 21, 4)(7, 28, 5)(8, 36, 6)(9, 45, 7).

It is shown that these designs have better E-values than any unequireplicate
designs in the (v, b, k) parameter sets.

We now introduce notations which will be used throughout this paper. For
each design d, let C be its information matrix and µd be the smallest positive
eigenvalue of C. Based on [6, 7], an E-optimal design is the design d∗ such
that

µd∗ = max
d∈D

µd.

If d is not equireplicate, we let r = [bk/v] be the integral part of bk/v.

2. The Optimal (v, v, 2) Designs

Before we state two theorems about the properties of optimal (v, v, 2)
designs, we give the definition of a connected design below.

A design can be converted to a graph by two steps.
1. Each treatment is a point.
2. If a pair of treatments appear in the same block we draw a line joining

those two points.
A and B are connected if we can start at point A and proceed to point B
following existing line segments on the graph. A design is called a connected
design if every pair of the treatments is connected.

Theorem 2.1 For v ≥ 4, a connected equireplicate design with (v, b, k) =
(v, v, 2) is cyclic and unique. Moreover, it is an RGD.
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Proof. Here is a cyclic (v, v, 2) which has the initial block (1, 2):

(1, 2)(2, 3) · · · (v − 1, v)(v, 1)

We call it d0. It can be easily checked that d0 is an RGD. Let d1 be any
connected equireplicate design of (v, v, 2). Since r = 2 and k = 2, any
block in d1 must have (two) different treatments; otherwise, the design will be
disconnected.

Next we want to show that d1 is equivalent to d0. Pick one of the treatments
in the first block from d1, relabel it as treatment l, relabel the other one, say
treatment j, as treatment 2. Relabel the other block that contains treatment
j as block 2. In block 2, change treatment j as treatment 2 and change the
other treatment, say treatment p, as treatment 3. Let this relabeling process
continue. Suppose that in the middle of relabeling,

Snew = {1, 2, · · · , i}, 2 ≤ i < v

is the set which contains the treatments that have been assigned so far. Let
Sold = {i+1, · · · , v} be the set of the treatments which have not been relabeled
yet. At the current stage, the first i blocks are (1, 2) · · · (i, t).

We now prove that t ∈ Sold, t /∈ Snew. By contradiction, suppose t ∈ Snew,
i.e., 1 ≤ t < i, then treatment t has already occurred twice in the first i blocks.
However, r = 2 which means that treatment t is disconnected from the rest
of the treatments, i.e. disconnected from {i + 1, · · · , v}. Therefore the design
cannot be connected.

It is clear now that, after relabeling, d1 and d0 are identical. 2

Theorem 2.2 The cyclic design d = (v, v, 2) with v ≥ 4 has µd =
1− cos(2π/v). For v > 6, µd < 0.5.

Proof. Let θi, 1 ≤ i < v, be the eigenvalues of the concordance matrix NN′

of d. According to [5], if the first row of NN′ has the elements a0, · · · , av−1,
then θi is given by

θi = a0 + a1ωi + a2ω
2
i + · · ·+ av−1ω

v−1
i ,

where
ωi = e2πij/v, i = 1, 2, · · · , v; j2 = −1.

We have proved that the connected cyclic (v, v, 2) is unique in Theorem 2.1.
Without loss of generality, assume that the initial block is (1, 2). Then the
(a0, · · · , av−1) is (2, 1, 0, · · · , 0, 1). This implies

θi = 2 + ωi + ωv−1
i

= 2 + 2 cos
(

2πi

v

)
for i = 1, · · · , v.
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Then θv = 4 is corresponding to eigenvalue 0 of C and

µd = 2− 1
2

max
1≤i≤v−1

θi

= 2−
(

1 + max
1≤i≤v−1

cos
2πi

v

)

= 2−
(

1 + cos
2π

v

)

= 1− cos
2π

v
.

Since cos(2π/v) > 0.5 for v > 6, µd < 0.5 for v ≥ 7. 2

The bound in Theorem 2.2 [1] can be calculated.

max[{r(k − 1)− λ− 2}v/{(v − 2)k}, {r(k − 1) + λ− 1}/k,

{(r − 1)(k − 1)}v/{(v − 1)k}]
= max[1/2, v/{2(v − 1)}]
= v/{2(v − 1)}.

The bound equals 0.667 and 0.625 for v = 4 and v = 5, respectively. Now,
1−cos(2π/4) = 1 and 1−cos(2π/5) = 0.691 which exceed the bound, therefore
the cyclic (4, 4, 2) and (5, 5, 2) are optimal in D according to Theorem 2.2
[1]. However, cos(2π/v) ≥ 1/2 and v/(v − l) > 1 for v ≥ 6, hence

1− cos(2π/v) ≤ 1/2 < v/{2(v − 1)}

for v > 6. In this situation, the E-value is below the bound specified by
Theorem 2.2 [1], so we do not know whether the cyclic designs are E-optimal
in Dv,v,2 when v is greater than or equal to 6. Indeed three counterexamples
are found. For v ≥ 4,

• Design 1: (1, 2) (1, 2) (1, 3) · · · (1, v).

• Design 2: (1, 2) (1, 3) · · · (1, v) (2, 3).

• Design 3: (1, 1) (1, 2) (1, 3) · · · (1, v). Note that this is a nonbinary
design.

We can prove that for each design d in our counterexamples, µd is equal
to 0.5. In fact, all the eigenvalues may be derived.
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Theorem 2.3 The eigenvalues of the information matrix of Design 1
are 0 with multiplicity 1, 0.5 with multiplicity v − 3 as well as [(v + 3) ±√

v2 − 2v + 9]/4.

Proof. See the Appendix A.

From the above result, the value of E-criterion for Design 1 is µd = 0.5.
Using similar deriving technique, we find all eigenvalues of the information

matrices of Design 2 and 3. We now state two theorems in the following and
omit their proofs.

Theorem 2.4 The eigenvalues of the information matrix of Design 2 are
0 with multiplicity 1, 0.5 with multiplicity v − 3, 1.5 with multiplicity 1 and
v/2 with multiplicity 1.

Therefore, we have µd = 0.5 for Design 2.

Theorem 2.5 The eigenvalues of the information matrix of Design 3 are
0 with multiplicity 1, 0.5 with multiplicity v − 2, and v/2 with multiplicity 1.

Hence, for Design 3 we also have µd = 0.5.
We can verify that Designs 1-3 are E-optimal designs in Dv,v,2 for v = 6.

By counting all the cases, we obtain 28 different designs for (6, 6, 2). The
largest value of µd among those designs is 0.5. Although we can not prove
that Designs 1-3 are E-optimal in Dv,v,2 for v > 6, we can show that they are
close for large value of v.

Theorem 2.6 For (v, v, 2) designs, as v becomes large enough, the
Designs 1− 3 are close to E-optimal.

Proof. We have shown in Theorem 2.1 that the (v, v, 2) equireplicate
design is cyclic and has µd < 0.5 for v ≥ 7. Moreover, our Designs 1-3 have
µd = 0.5. Therefore for v ≥ 7 the E-optimal design in Dv,v,2 must be a design
without equal replication.

Let rd be the smallest number of replicates in all treatments. Since r = 2
for an equireplicate (v, v, 2) design, rd = 1 if the design is not equireplicate.
Hence

µd ≤ v

2(v − 1)
= 0.5

v

v − 1
.

Moreover, lim
v→∞ v/(v − l) = 1. So for large v, 0.5 is the upper bound of µd in

(v, v, 2) according to Theorem 3.2 [2]. 2
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3. Extending the Optimal (v, v, 2) to the Complementary Space

The result in the previous section can be extended and hence we can solve
the E-optimality of more parameter sets.

We first introduce the complementary design [5]. Let d be a binary design
with parameters v and b. A design dc can be obtained from d by replacing
the treatments that appear in any block by the treatments that do not appear
in that block. The dc is called the complementary design of d. Let d be a
proper, binary and equireplicate design and µ be a positive eigenvalue of the
information matrix of d. Then, for each µ, we have [k/(v − k)]µ + (b − r) −
kr/(v − k) as an eigenvalue of the information matrix of dc.

We prove the following theorem.

Theorem 3.1 The cyclic designs of (v, v, v−2) for v ≥ 5 are E-optimal
for the binary designs in Dv,v,v−2.

Proof. We carry out the proof in two steps. First, we show that the cyclic
(v, v, v−2) is unique in D∗v,v,v−2. Second, we show that the cyclic (v, v, v−2)
has larger E-value than any unequireplicate design in Dv,v,v−2.

Let d be the cyclic (v, v, 2) which has the initial block (1, 2) and dc be
its complementary design. It can be verified that every cyclic (v, v, v − 2) is
isomorphic to dc by the following two arguments:

• A design is cyclic if and only if its complementary design is cyclic.

• Design d is the unique cyclic design in D∗v,v,2.

Next we derive the E-value for dc and compare it with the E-values of
unequireplicate designs. Let µd and µdc be the smallest nonzero eigenvalues
of the information matrices of d and dc respectively. Then

µdc =
k

v − k
µd + (b− r)− kr

v − k
.

Since µd = 1 − cos(2π/v) is always positive, µdc is greater than (b − r) −
[kr/(v − k)]. In our case b = v and r = k = 2, so that

µdc > (v − 2)− [4/(v − 2)].(1)

Let µ1 be the smallest nonzero eigenvalue of any block design with unequal
replication in Dv,v,v−2. Let r1 be the smallest number of replicates in all
treatments. Then r1 < v − 2. By Theorem 3.2 [2],

µ1 ≤ [(v − 2)− 1]v r1

(v − 2)(v − 1)
≤ (v − 3)2v

(v − 2)(v − 1)
.(2)
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It can be proved algebraically that

(v − 2)− 4
v − 2

≥ (v − 3)2v
(v − 2)(v − 1)

if and only if v ≥ 5.

By the transition property of the inequality on Equation l and Equation 2, we
have µ1 < µdc if and only if v ≥ 5. Therefore any block design with unequal
replicates is inferior to our dc by the E-criterion. This proves that our dc is
the E-optimal design for the binary designs in Dv,v,v−2. 2

4. Adding BIBDs to E-optimal Regular Graph Designs

Sometimes when a BIBD is added to an optimal design, the new design is
optimal too. Suppose two designs have the same number of treatments and
the same size of block. We can obtain a new design d+ by putting the two
designs together.

Theorem 4.1 If d1 = (v, b1, k) is E-optimal in the set of RGDs and v ≥ 4,
d2 = (v, b2, k) is a BIBD, then d+ = (v, b = b1 + b2, k) is also an RGD and is
E-optimal in the set of RGD.

Proof. Let Ni be the incidence matrix for design di, i = 1, 2. Suppose
the off-diagonal elements of N1N′

1 take exactly two values, λ1 or λ1 + 1.
Suppose each treatment pair appears λ2 times for d2. Then for design d+,
each treatment pair appears either λ1 + λ2 or λ1 + λ2 + 1 times and so d+

is an RGD. Let d be an arbitrary RGD in D∗v,b,k. The concordance matrix of
d can be decomposed to N2N′

2 + M, where M is also a concordance matrix.
Let C and C2 be the information matrices of d and d2 respectively. Let Cm

be the information matrix associated with M. Then C = C2 + Cm. Since d2

is a BIBD,

C2 = λ2

(
v

k
I− 1

k
J
)

.

If µm is a positive eigenvalue of Cm with vector xm, then 1′xm = 0 and we
have

Cxm = (C2 + Cm)xm

= λ2

(
v

k
I− 1

k
J
)

xm + Cmxm

=
λ2v

k
xm + µmxm

=
(

µm +
λ2v

k

)
xm.
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So µ = µm +λ2v/k is an eigenvalue of C. Since d1 is E-optimal, µd1 ≥ minµm

and so

µd+ = µd1 + λ2v/k

≥ minµm + λ2v/k

≥ minµ.

(3)

This implies that d+ is E-optimal in the set of RGD. 2

The above proof is confirmed by the E-optimal RGDs for the parameter
sets

• (6, 6, 2) + (6, 15, 2) = (6, 21, 2),

• (7, 7, 2) + (7, 21, 2) = (7, 28, 2),

• (8, 8, 2) + (8, 28, 2) = (8, 36, 2),

• (9, 9, 2) + (9, 36, 2) = (9, 45, 2)

in J. A. John and Mitchell’s list. However, they are not E-optimal in D for
v ≥ 7. If we add our Designs 1-3 to the BIBDs, the new designs have larger
values for E. For example, when v = 7, the above (7, 28, 2) design is

(1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7) (7, 1)

(1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (2, 3)

(2, 4) (2, 5) (2, 6) (2, 7) (3, 4) (3, 5) (3, 6)

(3, 7) (4, 5) (4, 6) (4, 7) (5, 6) (5, 7) (6, 7).

The E-value of the cyclic (7, 7, 2) is 0.377, so the design has the E-value equal
to 0.377 + 1× 7/2 = 3.877 according to Equation 3. When we add our Design
1 to the BIBD (7, 21, 2), we obtain the following design:

(1, 2) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)

(1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (2, 3)

(2, 4) (2, 5) (2, 6) (2, 7) (3, 4) (3, 5) (3, 6)

(3, 7) (4, 5) (4, 6) (4, 7) (5, 6) (5, 7) (6, 7).

and the E-value of the whole design equal to 0.5 + 1× 7/2 = 4.0.
Since the complementary design of a BIBD is a BIBD too, and a comple-

mentary design of an RGD is also an RGD, the following designs are E-optimal
in the set of RGDs:
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• (6, 6, 4) + (6, 15, 4) = (6, 21, 4),

• (7, 7, 5) + (7, 21, 5) = (7, 28, 5),

• (8, 8, 6) + (8, 28, 6) = (8, 36, 6),

• (9, 9, 7) + (9, 36, 7) = (9, 45, 7).

These designs are again confirmed in J. A. John and Mitchell’s list.
Furthermore, we can show that the above designs have better values of E

than any design without equal replication.

Theorem 4.2 Let d1 be the cyclic (v, v, v − 2) with v ≥ 5 and d2 be the
BIBD of parameters (v, v(v − 1)/2, v − 2). Then d+ = (v, b = v(v + 1)/2, k =
v − 2) has a larger value of E than any unequireplicate design in Dv,b,k.

Proof. Let d be any block design without equal replication in Dv,b,k. Let
rd be the smallest number of replicates in all treatments. Then we have

rd < bk/v = [v(v + 1)/2](v − 2)/v = (v + 1)(v − 2)/2,

i.e.,

rd ≤ (v + 1)(v − 2)
2

− 1.

By Theorem 3.2 [2],

µd ≤ (v − 2− 1)v rd

(v − 2)(v − 1)

≤ (v − 3)v
(v − 2)(v − 1)

{
(v + 1)(v − 2)

2
− 1

}

=
v(v − 3)(v2 − v − 4)

2(v − 2)(v − 1)
.

Since d2 is a BIBD, all pairs of treatments appear exactly λ times with λ =
(v − 2)(v − 3)/2 and we have λv/k = λv/(v − 2) = v(v − 3)/2. Moreover, by
Equation 1 µd1 > (v − 2)− [4/(v − 2)]. Therefore

µd+ > (v − 2)− 4
v − 2

+
v(v − 3)

2
.

It can be calculated algebraically that

(v − 2)− 4
v − 2

+
v(v − 3)

2
≥ v(v − 3)(v2 − v − 4)

2(v − 2)(v − 1)
and only if v ≥ 5.

This implies that µd+ ≥ µd and hence d+ has better E value than d. 2
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Unfortunately, we still can not prove the E-optimality of design d+ in
D∗v,b,k. If it is E-optimal in D∗v,b,k, then the above theorem will conclude that
d+ is indeed E-optimal in D∗v,b,k.

5. Summary

In J. A. John and Mitchell’s list, the E-optimality of some designs was
unknown before. Fortunately, we have found the answer for some of the pa-
rameter sets.

• We show that the cyclic (v, v, 2) are E-optimal in D∗v,v,2 but not in
Dv,v,2 for v > 6.

• We show that the cyclic (v, v, v − 2) with v ≥ 5 are E-optimal for the
binary designs in Dv,v,v−2.

More research can be done in the field of E-optimality since there are about 30
more unsolved designs. Most of them have block size 2. We also gave Designs
1-3 which are E-optimal in Dv,v,2. Their E-values are shown to be close to the
upper bound when v is large. We suspect that the designs are E-optimal in
Dv,v,2 for v > 6.

By adding BIBDs to the E-optimal RGD, we obtain the new designs,
d+, that are E-optimal in the set of RGD. We suspect that the d+ obtained
from the cyclic (v, v, 2) and the BIBD (v, v(v − 1)/2, 2) is also E-optimal in
D∗v,v(v+1)/2,2. Moreover, if we can prove that the d+ obtained from the cyclic
(v, v, v− 2) and the BIBD (v, v(v− 1)/2, v− 2) is E-optimal in D∗v,v(v+1)/2,v−2,
then our Theorem 4.2 implies that d+ is E-optimal in Dv,v(v+1)/2,v−2.

A Proof of Theorem 2.3

In the proof below, we use v as our subscript for the information matrix C
and identity matrix I, because they are square matrices of order v. We shall
show that

det[2Cv − λIv] = −λ(1− λ)v−3(2v − (v + 3)λ + λ2).(4)

By the method of induction,
( i ) When v = 4, we have

det[2C4 − λI4] = −λ(1− λ)(8− 7λ + λ2),

i.e., direct calculation shows that this is true for v = 4.
(ii) Assume that Equation 4 is true for v = n ≥ 4. Let
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p(λ) = det[2Cn − λIn] = −λ(1− λ)n−3(2n− (n + 3)λ + λ2),(5)

p1(λ) = (2− λ)(1− λ)n−2.(6)

(iii) Consider v = n + 1. Since the element in the first row and the first
column of 2Cn − λIn is n − λ, we can also represent p(λ) by (n − λ)p1(λ) +
p2(λ). Let q(λ) = det[2Cn+1 − λIn+1]. We can write q(λ) as the sum of the
products of the entries in the last column by their corresponding cofactors.
After simplification, we obtain

q(λ) = −λp1(λ) + (1− λ)p(λ).

According to Equations 5 and 6, we obtain

q(λ) = −λ(2− λ)(1− λ)n−2 + (1− λ)[−λ(1− λ)n−3(2n− (n + 3)λ + λ2)]

= −λ(1− λ)v−3[2v − (v + 3)λ + λ2]. 2
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