TAIWANESE JOURNAL OF MATHEMATICS
Vol. 1, No. 1, pp. 31-37, March 1997

DERIVATIONS COCENTRALIZING MULTILINEAR POLYNOMIALS

Tsai-Lien Wong

Abstract

Let R be a prime ring with center \mathcal{Z} and let $f\left(X_{1}, \ldots, X_{n}\right)$ be a multilinear polynomial which is not central-valued on R. Suppose that d and δ are derivations on R such that $d\left(f\left(x_{1}, \ldots, x_{n}\right)\right) f\left(x_{1}, \ldots, x_{n}\right)-$ $f\left(x_{1}, \ldots, x_{n}\right) \delta\left(f\left(x_{1}, \ldots, x_{n}\right)\right) \in \mathcal{Z}$ for all x_{1}, \ldots, x_{n} in some nonzero ideal of R. Then either $d=\delta=0$ or $\delta=-d$ and $f\left(X_{1}, \ldots, X_{n}\right)^{2}$ is central-valued on R, except when char $R=2$ and R satisfies the standard identity s_{4} in 4 variables.

Throughout this note K will denote a commutative ring with unity and R will denote a prime K-algebra with center \mathcal{Z}. By d and δ we always mean derivations on R. For $x, y \in R$, let $[x, y]=x y-y x$.

A well-known result proved by Posner [17] states that if $[d(x), x] \in \mathcal{Z}$ for all $x \in R$, then either $d=0$ or R is commutative. In [12], P. H. Lee and T. K. Lee generalized Posner's theorem by showing that if char $R \neq 2$ and $[d(x), x] \in \mathcal{Z}$ for all x in some Lie ideal L of R, then either $d=0$ or L is contained in \mathcal{Z}. As to the case when char $R=2$, Lanski [11] obtained the same conclusion except when R satisfies the standard identity s_{4} in 4 variables. Note that a noncentral Lie ideal of R contains all the commutators $\left[x_{1}, x_{2}\right]$ for x_{1}, x_{2} in some nonzero ideal of R except when char $R=2$ and R satisfies s_{4}. So it is natural to consider the situation when $\left[d\left(\left[x_{1}, x_{2}\right]\right),\left[x_{1}, x_{2}\right]\right] \in \mathcal{Z}$ for x_{1}, x_{2} in some nonzero ideal of R. In a recent paper [13], a full generalization in this vein was proved by Lee and Lee that if $\left[d\left(f\left(x_{1}, \ldots, x_{n}\right)\right), f\left(x_{1}, \ldots, x_{n}\right)\right] \in \mathcal{Z}$ for all x_{1}, \ldots, x_{n} in some nonzero ideal of R, where $f\left(X_{1}, \ldots, X_{n}\right)$ is a multilinear polynomial, then either $d=0$ or $f\left(X_{1}, \ldots, X_{n}\right)$ is central-valued on R, except when char $R=2$ and R satisfies s_{4}.

[^0]On the other hand, Bresar [2] showed that if $d(x) x-x \delta(x) \in \mathcal{Z}$ for all $x \in R$, then either $d=\delta=0$ or R is commutative. Recently we [14] proved that if $d(x) x-x \delta(x) \in \mathcal{Z}$ for all x in some noncentral Lie ideal of R, then either $d=\delta=0$ or R satisfies s_{4}. In the present note, we shall extend these results to the case when $d\left(f\left(x_{1}, \ldots, x_{n}\right)\right) f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right) \delta\left(f\left(x_{1}, \ldots, x_{n}\right)\right) \in \mathcal{Z}$ for all x_{i} in some nonzero ideal of R, where $f\left(X_{1}, \ldots, X_{n}\right)$ is a multilinear polynomial.

First we dispose of the simplest case when R is the matrix ring $M_{m}(F)$ over a field F and d, δ are inner derivations on R.

Lemma 1. Let F be a field and $R=M_{m}(F)$, the $m \times m$ matrix algebra over F. Suppose that $a, b \in R$ and that $f\left(X_{1}, \ldots, X_{n}\right)$ is a multilinear polynomial over F such that

$$
\left[a, f\left(x_{1}, \ldots, x_{n}\right)\right] f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)\left[b, f\left(x_{1}, \ldots, x_{n}\right)\right] \in \mathcal{Z}
$$

for all $x_{i} \in R$. Then either $a+b \in \mathcal{Z}$ or $f\left(X_{1}, \ldots, X_{n}\right)$ is central-valued on R.
Proof. If $m=1$, there is nothing to prove; so we assume that $m \geq 2$ and proceed to show that $a+b \in \mathcal{Z}$ if $f\left(X_{1}, \ldots, X_{n}\right)$ is not central-valued on R. For simplicity, we write $f\left(x_{1}, \ldots, x_{n}\right)=f(x)$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}=$ $R \times \cdots \times R$ (n times). Then the hypothesis can be written as $[a, f(x)] f(x)-$ $f(x)[b, f(x)]=a f(x)^{2}-f(x)(a+b) f(x)+f(x)^{2} b \in \mathcal{Z}$ for all $x \in R^{n}$. Since $f\left(X_{1}, \ldots, X_{n}\right)$ is assumed to be noncentral on R, by [6, Lemma 1] and [15, Lemma 2] there exists a sequence of matrices $r=\left(r_{1}, \ldots, r_{n}\right)$ in R such that $f(r)=f\left(r_{1}, \ldots, r_{n}\right)=\alpha e_{s t} \neq 0$ where $\alpha \in F, s \neq t$ and $e_{s t}$ is the matrix with 1 as the (s, t)-entry and 0^{\prime} 's elsewhere. Thus $a f(r)^{2}-f(r)(a+b) f(r)+f(r)^{2} b=$ $-\alpha^{2} e_{s t}(a+b) e_{s t}=-\alpha^{2}(a+b)_{t s} e_{s t} \in \mathcal{Z}$, where $(a+b)_{t s}$ is the (t, s)-entry of $a+b$. Hence, $(a+b)_{t s}=0$. For distinct h, k, let σ be a permutation in the symmetric group S_{m} such that $\sigma(t)=h$ and $\sigma(s)=k$, and let ψ be the F-automorphism on R defined by

$$
\left(\sum_{i, j} \xi_{i j} e_{i j}\right)^{\psi}=\sum_{i, j} \xi_{i j} e_{\sigma(i), \sigma(j)} .
$$

Then $f\left(r^{\psi}\right)=f\left(r_{1}^{\psi}, \ldots, r_{n}^{\psi}\right)=f(r)^{\psi}=\alpha e_{k h} \neq 0$ and we have as above $(a+$ $b)_{h k}=0$ for $h \neq k$. Thus $a+b$ is a diagonal matrix. For any F-automorphism θ of R, a^{θ} and b^{θ} enjoy the same property as a and b do, namely, $\left[a^{\theta}, f(x)\right] f(x)-$ $f(x)\left[b^{\theta}, f(x)\right] \in \mathcal{Z}$ for all $x \in R^{n}$. Hence, $(a+b)^{\theta}=a^{\theta}+b^{\theta}$ must be also diagonal. Write $a+b=\sum_{i=1}^{m} \alpha_{i} e_{i i}$; then for each $j \neq 1$, we have

$$
\left(1+e_{1 j}\right)(a+b)\left(1-e_{1 j}\right)=\sum_{i=1}^{m} \alpha_{i} e_{i i}+\left(\alpha_{j}-\alpha_{1}\right) e_{1 j}
$$

diagonal. Therefore, $\alpha_{j}=\alpha_{1}$ and so $a+b$ is a scalar matrix.
We are now ready to prove the main theorem.
Theorem 1. Let R be a prime K-algebra with center \mathcal{Z} and let $f\left(X_{1}, \ldots, X_{n}\right)$ be a multilinear polynomial over K which is not central-valued on R. Suppose that d and δ are derivations on R such that

$$
d\left(f\left(x_{1}, \ldots, x_{n}\right)\right) f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right) \delta\left(f\left(x_{1}, \ldots, x_{n}\right)\right) \in \mathcal{Z}
$$

for all x_{i} in some nonzero ideal I of R. Then either $d=\delta=0$ or $\delta=-d$ and $f\left(X_{1}, \ldots, X_{n}\right)^{2}$ is central-valued on R, except when char $R=2$ and R satisfies s_{4}.

Proof. First note that if $\delta=-d$, then $d\left(f\left(x_{1}, \ldots, x_{n}\right)^{2}\right) \in \mathcal{Z}$ for all $x_{i} \in I$. Let A be the additive subgroup generated by all the elements of the form $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ with $x_{i} \in I$. By a theorem due to Chuang [3], either $f\left(X_{1}, \ldots, X_{n}\right)^{2}$ is central-valued on R or A contains a noncentral Lie ideal L of R, except when $R=M_{2}(G F(2))$, the ring of 2×2 matrices over the field of 2 elements. If $L \subseteq A$, then $d(L) \subseteq \mathcal{Z}$ and it follows from [1, Lemma 6] and [8, Lemma 2] that $d=0$ unless char $R=2$ and R satisfies s_{4}. So it suffices to show that either $d=\delta=0$ or $\delta=-d$ on condition that either char $R \neq 2$ or R does not satisfy s_{4}.

Assume first that both d and δ are Q-inner, that is, $d(x)=a d_{a}(x)=[a, x]$ and $\delta(x)=a d_{b}(x)=[b, x]$ for all $x \in R$, where a and b are elements in the symmetric quotient ring Q of R [9]. Then

$$
\begin{aligned}
g\left(x_{1}, \ldots, x_{n+1}\right)= & {\left[\left[a, f\left(x_{1}, \ldots, x_{n}\right)\right] f\left(x_{1}, \ldots, x_{n}\right)\right.} \\
& \left.-f\left(x_{1}, \ldots, x_{n}\right)\left[b, f\left(x_{1}, \ldots, x_{n}\right)\right], x_{n+1}\right]=0
\end{aligned}
$$

for all $x_{i} \in I$. By [4, Theorem 2], this generalized polynomial identity (GPI) $g\left(X_{1}, \ldots, X_{n+1}\right)$ is also satisfied by Q. In case the center C of Q is infinite, we have $g\left(x_{1}, \ldots, x_{n+1}\right)=0$ for all $x_{i} \in Q \bigotimes_{C} \bar{C}$ where \bar{C} is the algebraic closure of C. Since both Q and $Q \bigotimes_{C} \bar{C}$ are prime and centrally closed [5, Theorems 2.5 and 3.5] we may replace R by Q or $Q \bigotimes_{C} \bar{C}$ according as C is finite or infinite respectively. Thus we may assume further that $a, b \in R$ and R is centrally closed over C which is either finite or algebraically closed and $g\left(x_{1}, \ldots, x_{n+1}\right)=0$ for all $x_{i} \in R$.

Suppose that $d \neq 0$ or $\delta \neq 0$. Then $a \notin C$ or $b \notin C$ and so the GPI $g\left(X_{1}, \ldots, X_{n+1}\right)$ is nontrivial. By Martindale's theorem [16], R is then a primitive ring having nonzero socle H with C as the associated division ring. In light
of Jacobson's theorem [7, p.75], R is isomorphic to a dense ring of linear transformations of some vector space V over C, and H consists of the linear transformations in R of finite rank. Assume first that V is finite-dimensional over C. Then the density of R on ${ }_{C} V$ implies that $R \cong M_{m}(C)$ with $m=\operatorname{dim}_{C} V$. By Lemma 1, we have $a+b \in C$ and so $\delta=-d$. Assume next that V is infinite-dimensional over C. Suppose that $a+b$ is not central in R; then it does not centralize the nonzero ideal H of R, so $(a+b) h_{0} \neq h_{0}(a+b)$ for some $h_{0} \in H$. Also, $f\left(X_{1}, \ldots, X_{n}\right)$ is not central-valued on H, for otherwise R would satisfy the polynomial identity $\left[f\left(X_{1}, \ldots, X_{n}\right), X_{n+1}\right]$, contrary to the infinite-dimensionality of ${ }_{C} V$. So $\left[f\left(h_{1}, \ldots, h_{n}\right), h_{n+1}\right] \neq 0$ for some $h_{1}, \ldots, h_{n+1} \in H$. By Litoff's theorem [11, p.280], there is an idempotent $e \in H$ such that $(a+b) h_{0}, h_{0}(a+b), h_{0}, h_{1}, \ldots, h_{n+1}$ are all in $e R e$. Note that we have $e R e \cong M_{m}(C)$ with $m=\operatorname{dim}_{C} V e$. Since R satisfies the GPI $e g\left(e X_{1} e, \ldots, e X_{n+1} e\right) e$, the subring $e R e$ satisfies the GPI

$$
\begin{aligned}
g_{e}\left(X_{1}, \ldots, X_{n+1}\right)= & {\left[\left[\text { eae }, f\left(X_{1}, \ldots, X_{n}\right)\right] f\left(X_{1}, \ldots, X_{n}\right)\right.} \\
& \left.-f\left(X_{1}, \ldots, X_{n}\right)\left[e b e, f\left(X_{1}, \ldots, X_{n}\right)\right], X_{n+1}\right] .
\end{aligned}
$$

By Lemma 1 again, eae + ebe is central in eRe because $f\left(X_{1}, \ldots, X_{n}\right)$ is not central-valued on e Re. Thus $(a+b) h_{0}=e(a+b) h_{0}=e(a+b) e h_{0}=h_{0} e(a+$ $b) e=h_{0}(a+b) e=h_{0}(a+b)$, a contradiction. Hence, $a+b$ is central in R and so $\delta=-d$.

Now assume that d and δ are not both Q-inner. Suppose first that d and δ are C-dependent modulo Q-inner derivations, say, $\delta=\lambda d+a d_{a}$ where $\lambda \in C$ and $a \in Q$. Then d cannot be Q-inner and $d(f(x)) f(x)-\lambda f(x) d(f(x))-$ $f(x)[a, f(x)] \in \mathcal{Z}$ for all $x \in I^{n}$. Recall that d can be extended uniquely to a derivaion \bar{d} on $Q[9]$. We denote by $f^{d}\left(X_{1}, \ldots, X_{n}\right)$ the polynomial obtained from $f\left(X_{1}, \ldots, X_{n}\right)$ by replacing each coefficient α with $\bar{d}(\alpha \cdot 1)$. Since

$$
\begin{aligned}
\left(f^{d}(x)\right. & \left.+\sum_{i=1}^{n} f\left(x_{1}, \ldots, d\left(x_{i}\right), \ldots, x_{n}\right)\right) f(x) \\
& -\lambda f(x)\left(f^{d}(x)+\sum_{i=1}^{n} f\left(x_{1}, \ldots, d\left(x_{i}\right), \ldots, x_{n}\right)\right)-f(x)[a, f(x)] \in \mathcal{Z}
\end{aligned}
$$

for all $x=\left(x_{1}, \ldots, x_{n}\right) \in I^{n}$, we have

$$
\begin{aligned}
\left(f^{d}(x)\right. & \left.+\sum_{i=1}^{n} f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)\right) f(x) \\
& -\lambda f(x)\left(f^{d}(x)+\sum_{i=1}^{n} f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)\right)-f(x)[a, f(x)] \in \mathcal{Z}
\end{aligned}
$$

for all $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ in R^{n} by Kharchenko's theorem [10]. In particular,

$$
f^{d}(x) f(x)-\lambda f(x) f^{d}(x)-f(x)[a, f(x)] \in \mathcal{Z}
$$

and

$$
f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right) f(x)-\lambda f(x) f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right) \in \mathcal{Z}
$$

for all $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ in R^{n} and for each $i=1, \ldots, n$. Choosing $b \in R$ with $b \notin \mathcal{Z}$, setting $y_{i}=\left[b, x_{i}\right]$ in each of the last n relations, and summing up over i, we have $[b, f(x)] f(x)-f(x)[\lambda b, f(x)] \in \mathcal{Z}$ for all $x \in R^{n}$. By the preceding paragraph, we have $(1+\lambda) b \in \mathcal{Z}$ and so $\lambda=-1$. Also, by the first paragraph, $f(x)^{2} \in \mathcal{Z}$ for all $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$. Thus, $d(f(x)) f(x)+f(x) d(f(x)) \in \mathcal{Z}$ and so the hypothesis

$$
d(f(x)) f(x)+f(x) d(f(x))-f(x)[a, f(x)] \in \mathcal{Z}
$$

implies $f(x)[a, f(x)] \in \mathcal{Z}$ for $x \in R^{n}$. Again, it follows from the inner case that $a \in C$ and so $\delta=-d$ as expected. The situation when $d=\lambda \delta+a d_{a}$ is slmilar.

Finally, assume that d and δ are C-independent modulo Q-inner derivations. Since neither d nor δ is Q-inner, the relation

$$
\begin{aligned}
\left(f^{d}(x)\right. & \left.+\sum_{i=1}^{n} f\left(x_{1}, \ldots, d\left(x_{i}\right), \ldots, x_{n}\right)\right) f(x) \\
& -f(x)\left(f^{\delta}(x)+\sum_{i=1}^{n} f\left(x_{1}, \ldots, \delta\left(x_{i}\right), \ldots, x_{n}\right)\right) \in \mathcal{Z}
\end{aligned}
$$

for all $x=\left(x_{1}, \ldots, x_{n}\right) \in I^{n}$ yields

$$
\begin{aligned}
\left(f^{d}(x)\right. & \left.+\sum_{i=1}^{n} f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)\right) f(x) \\
& -f(x)\left(f^{\delta}(x)+\sum_{i=1}^{n} f\left(x_{1}, \ldots, z_{i}, \ldots, x_{n}\right)\right) \in \mathcal{Z}
\end{aligned}
$$

for all $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$ and $z=\left(z_{1}, \ldots, z_{n}\right)$ in R^{n}. In particular, $f^{d}(x) f(x)-f(x) f^{\delta}(x) \in \mathcal{Z}, f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right) f(x) \in \mathcal{Z}$ and $f(x) f\left(x_{1}, \ldots, z_{i}, \ldots\right.$, $\left.x_{n}\right) \in \mathcal{Z}$ for all $x, y, z \in R^{n}$, and for each $i=1, \ldots, n$. As before, choosing $b \in R, b \notin \mathcal{Z}$, setting $z_{i}=\left[b, x_{i}\right]$ in the last n relations and summing up over i, we obtain that $f(x)[b, f(x)] \in \mathcal{Z}$ for all $x \in R^{n}$, a contradiction again. This completes the proof.

It was proved in $[13]$ that if $\left[d\left(f\left(x_{1}, \ldots, x_{n}\right)\right), f\left(x_{1}, \ldots, x_{n}\right)\right]_{k}=0$ for all x_{i} in some nonzero ideal of R then either $d=0$ or $f\left(X_{1}, \ldots, X_{n}\right)$ is central-valued on R except when char $R=2$ and R satisfies s_{4}. The case when $k=1$ follows easily from our Theorem 1. A fact about power-central polynomial is needed for our purpose.

Lemma 2. Let R be a prime K-algebra of characteristic 2 and $f\left(X_{1}, \ldots, X_{n}\right)$ a multilinear polynomial over K. Subppose that $f\left(X_{1}, \ldots, X_{n}\right)^{2^{r}}$ is centralvalued on R for some r. Then $f\left(X_{1}, \ldots, X_{n}\right)$ is central-valued on R unless R satisfies s_{4}.

Proof. Since R satisfies the polynomial identity (PI) $\left[f\left(X_{1}, \ldots, X_{n}\right)^{2^{r}}, X_{n+1}\right]$, the central quotient $R_{\mathcal{Z}}$ of R is a finite-dimensional central simple algebra satisfying the same PI's as R does. Without loss of generality, we may assume that $R=M_{m}(D)$ for some division algebra D which is finite-dimensional over its center. Suppose first that D is a field; then $m>2$ if R does not satisfy s_{4}. Since char $D=2$, the field D contains no 2^{r}-th roots of unity other than 1 , so $f\left(X_{1}, \ldots, X_{n}\right)$ is central-valued on R by [15, Theorem 10]. Suppose next that D is not a field; then the center \mathcal{Z} must be infinite and so $R \bigotimes_{\mathcal{Z}} K \cong M_{k}(K)$ satisfies the same PI's as R does, where K is a maximal subfield of D and $k=\left(\operatorname{dim}_{\mathcal{Z}} R\right)^{1 / 2}>2$ if R does not satisfy s_{4}. Thus $f\left(X_{1}, \ldots, X_{n}\right)$ is centralvalued on $R \bigotimes_{\mathcal{Z}} K$ as well as R.

Theorem 2. Let R be a prime K-algebra with center \mathcal{Z} and let $f\left(X_{1}, \ldots, X_{n}\right)$ be a multilinear polynomial over K. Suppose that d is a derivation on R such that $\left[d\left(f\left(x_{1}, \ldots, x_{n}\right)\right), f\left(x_{1}, \ldots, x_{n}\right)\right] \in \mathcal{Z}$ for all x_{i} in some nonzero ideal I of R. Then either $d=0$ or $f\left(X_{1}, \ldots, X_{n}\right)$ is central-valued on R except when char $R=2$ and R satisfies s_{4}.

Proof. Assume that $f\left(X_{1}, \ldots, X_{n}\right)$ is not central-valued on R and either char $R \neq 2$ or R does not satisfy s_{4}. By Theorem 1 , either $d=0$ or $d=-d$ and $f\left(X_{1}, \ldots, X_{n}\right)^{2}$ is central-valued on R. In the later case, char $R=2$ if $d \neq 0$, and so $f\left(X_{1}, \ldots, X_{n}\right)$ must be central-valued on R by the preceding lemma. With this contradiction the theorem is proved.

References

1. J. Bergen, I. N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259-267.
2. M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
3. C. L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math. 59 (1987), 98-106.
4. C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), 723-728.
5. T. S. Erickson, W. S. Martindale and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), 49-63.
6. B. Felzenszwalb and A. Giambruno, Periodic and nil polynomials in rings, Canad. Math. Bull. 23 (1980), 473-476.
7. N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Pub. 37, Amer. Math. Soc., Providence, 1964.
8. W. F. Ke, On derivations of prime rings of characteristic 2, Chinese J. Math. 13 (1985), 273-290.
9. V. K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), 220-238.
10. V. K. Kharchenko, Differential identities of semiprime rings, Algebra i Logika 18 (1979), 86-119.
11. C. Lanski, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134 (1988), 275-297.
12. P. H. Lee and T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica 11 (1983), 75-80.
13. P. H. Lee and T. K. Lee, Derivations with Engel conditions on multilinear polynomials, Proc. Amer. Math. Soc., to appear.
14. P. H. Lee and T. L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica 23 (1995), 1-5.
15. U. Leron, Nil and power-central polynomials in rings, Trans. Amer. Math. Soc. 202 (1975), 97-103.
16. W. S. Martindale, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
17. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.

Department of Mathematics, National Taiwan University
Taipei, Taiwan

[^0]: Received December 21, 1995.
 Communicated by P.-H. Lee.
 1991 Mathematics Subject Classification: Primary 16W25; Secondary 16N60, 16R50, 16 U80. Key words and phrases: Multilinear polynomial, derivation, generalized polynomial identity.

