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DERIVATIONS COCENTRALIZING MULTILINEAR
POLYNOMIALS

Tsai–Lien Wong

Abstract. Let R be a prime ring with center Z and let f(X1, ..., Xn)
be a multilinear polynomial which is not central-valued on R. Suppose
that d and δ are derivations on R such that d(f(x1, ..., xn))f(x1, ..., xn)−
f(x1, ..., xn) δ(f(x1, ..., xn)) ∈ Z for all x1, ..., xn in some nonzero ideal of
R. Then either d = δ = 0 or δ = −d and f(X1, ..., Xn)2 is central-valued
on R, except when char R = 2 and R satisfies the standard identity s4

in 4 variables.

Throughout this note K will denote a commutative ring with unity and
R will denote a prime K-algebra with center Z. By d and δ we always mean
derivations on R. For x, y ∈ R, let [x, y] = xy − yx.

A well-known result proved by Posner [17] states that if [d(x), x] ∈ Z for all
x ∈ R, then either d = 0 or R is commutative. In [12], P. H. Lee and T. K. Lee
generalized Posner’s theorem by showing that if char R 6= 2 and [d(x), x] ∈ Z
for all x in some Lie ideal L of R, then either d = 0 or L is contained in Z.
As to the case when char R = 2, Lanski [11] obtained the same conclusion
except when R satisfies the standard identity s4 in 4 variables. Note that a
noncentral Lie ideal of R contains all the commutators [x1, x2] for x1, x2 in
some nonzero ideal of R except when char R = 2 and R satisfies s4. So it is
natural to consider the situation when [d([x1, x2]), [x1, x2]] ∈ Z for x1, x2 in
some nonzero ideal of R. In a recent paper [13], a full generalization in this
vein was proved by Lee and Lee that if [d(f(x1, ..., xn)), f(x1, ..., xn)] ∈ Z for
all x1, ..., xn in some nonzero ideal of R, where f(X1, ..., Xn) is a multilinear
polynomial, then either d = 0 or f(X1, ..., Xn) is central-valued on R, except
when char R = 2 and R satisfies s4.
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On the other hand, Bresar [2] showed that if d(x)x − xδ(x) ∈ Z for all
x ∈ R, then either d = δ = 0 or R is commutative. Recently we [14] proved
that if d(x)x−xδ(x) ∈ Z for all x in some noncentral Lie ideal of R, then either
d = δ = 0 or R satisfies s4. In the present note, we shall extend these results
to the case when d(f(x1, ..., xn))f(x1, ..., xn)−f(x1, ..., xn)δ(f(x1, ..., xn)) ∈ Z
for all xi in some nonzero ideal of R, where f(X1, ..., Xn) is a multilinear
polynomial.

First we dispose of the simplest case when R is the matrix ring Mm(F )
over a field F and d, δ are inner derivations on R.

Lemma 1. Let F be a field and R = Mm(F ), the m × m matrix al-
gebra over F. Suppose that a, b ∈ R and that f(X1, ..., Xn) is a multilinear
polynomial over F such that

[a, f(x1, ..., xn)]f(x1, ..., xn)− f(x1, ..., xn)[b, f(x1, ..., xn)] ∈ Z
for all xi ∈ R. Then either a + b ∈ Z or f(X1, ..., Xn) is central-valued on R.

Proof. If m = 1, there is nothing to prove; so we assume that m ≥ 2
and proceed to show that a + b ∈ Z if f(X1, ..., Xn) is not central-valued on
R. For simplicity, we write f(x1, ..., xn) = f(x) for x = (x1, ..., xn) ∈ Rn =
R× · · · ×R (n times). Then the hypothesis can be written as [a, f(x)]f(x)−
f(x)[b, f(x)] = af(x)2 − f(x)(a + b)f(x) + f(x)2b ∈ Z for all x ∈ Rn. Since
f(X1, ..., Xn) is assumed to be noncentral on R, by [6, Lemma 1] and [15,
Lemma 2] there exists a sequence of matrices r = (r1, ..., rn) in R such that
f(r) = f(r1, ..., rn) = αest 6= 0 where α ∈ F , s 6= t and est is the matrix with 1
as the (s, t)-entry and 0′s elsewhere. Thus af(r)2− f(r)(a+ b)f(r)+ f(r)2b =
−α2est(a + b)est = −α2(a + b)tsest ∈ Z, where (a + b)ts is the (t, s)-entry of
a + b. Hence, (a + b)ts = 0. For distinct h, k, let σ be a permutation in
the symmetric group Sm such that σ(t) = h and σ(s) = k, and let ψ be the
F -automorphism on R defined by


∑

i,j

ξijeij




ψ

=
∑

i,j

ξijeσ(i),σ(j).

Then f(rψ) = f(rψ
1 , ..., rψ

n ) = f(r)ψ = αekh 6= 0 and we have as above (a +
b)hk = 0 for h 6= k. Thus a+b is a diagonal matrix. For any F -automorphism θ
of R, aθ and bθ enjoy the same property as a and b do, namely, [aθ, f(x)]f(x)−
f(x)[bθ, f(x)] ∈ Z for all x ∈ Rn. Hence, (a + b)θ = aθ + bθ must be also

diagonal. Write a + b =
m∑

i=1

αieii; then for each j 6= 1, we have

(1 + e1j)(a + b)(1− e1j) =
m∑

i=1

αieii + (αj − α1)e1j
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diagonal. Therefore, αj = α1 and so a + b is a scalar matrix.
We are now ready to prove the main theorem.

Theorem 1. Let R be a prime K-algebra with center Z and let f(X1, ..., Xn)
be a multilinear polynomial over K which is not central-valued on R. Suppose
that d and δ are derivations on R such that

d(f(x1, ..., xn))f(x1, ..., xn)− f(x1, ..., xn)δ(f(x1, ..., xn)) ∈ Z
for all xi in some nonzero ideal I of R. Then either d = δ = 0 or δ = −d and
f(X1, ..., Xn)2 is central-valued on R, except when char R = 2 and R satisfies
s4.

Proof. First note that if δ = −d, then d(f(x1, ..., xn)2) ∈ Z for all
xi ∈ I. Let A be the additive subgroup generated by all the elements of
the form f(x1, ..., xn)2 with xi ∈ I. By a theorem due to Chuang [3], either
f(X1, ..., Xn)2 is central-valued on R or A contains a noncentral Lie ideal L
of R, except when R = M2(GF (2)), the ring of 2 × 2 matrices over the field
of 2 elements. If L ⊆ A, then d(L) ⊆ Z and it follows from [1, Lemma 6] and
[8, Lemma 2] that d = 0 unless char R = 2 and R satisfies s4. So it suffices to
show that either d = δ = 0 or δ = −d on condition that either char R 6= 2 or
R does not satisfy s4.

Assume first that both d and δ are Q-inner, that is, d(x) = ada(x) = [a, x]
and δ(x) = adb(x) = [b, x] for all x ∈ R, where a and b are elements in the
symmetric quotient ring Q of R [9]. Then

g(x1, ..., xn+1) = [[a, f(x1, ..., xn)]f(x1, ..., xn)

−f(x1, ..., xn)[b, f(x1, ..., xn)], xn+1] = 0

for all xi ∈ I. By [4, Theorem 2], this generalized polynomial identity (GPI)
g(X1, ..., Xn+1) is also satisfied by Q. In case the center C of Q is infinite,
we have g(x1, ..., xn+1) = 0 for all xi ∈ Q

⊗

C

C̄ where C̄ is the algebraic

closure of C. Since both Q and Q
⊗

C

C̄ are prime and centrally closed [5,

Theorems 2.5 and 3.5] we may replace R by Q or Q
⊗

C

C̄ according as C is

finite or infinite respectively. Thus we may assume further that a, b ∈ R and
R is centrally closed over C which is either finite or algebraically closed and
g(x1, ..., xn+1) = 0 for all xi ∈ R.

Suppose that d 6= 0 or δ 6= 0. Then a 6∈ C or b 6∈ C and so the GPI
g(X1, ..., Xn+1) is nontrivial. By Martindale’s theorem [16], R is then a primi-
tive ring having nonzero socle H with C as the associated division ring. In light
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of Jacobson’s theorem [7, p.75], R is isomorphic to a dense ring of linear trans-
formations of some vector space V over C, and H consists of the linear trans-
formations in R of finite rank. Assume first that V is finite-dimensional over
C. Then the density of R on CV implies that R ∼= Mm(C) with m = dimC V .
By Lemma 1, we have a + b ∈ C and so δ = −d. Assume next that V is
infinite-dimensional over C. Suppose that a + b is not central in R; then
it does not centralize the nonzero ideal H of R, so (a + b)h0 6= h0(a + b)
for some h0 ∈ H. Also, f(X1, ..., Xn) is not central-valued on H, for other-
wise R would satisfy the polynomial identity [f(X1, ..., Xn), Xn+1], contrary
to the infinite-dimensionality of CV . So [f(h1, ..., hn), hn+1] 6= 0 for some
h1, ..., hn+1 ∈ H. By Litoff’s theorem [11, p.280], there is an idempotent
e ∈ H such that (a + b)h0, h0(a + b), h0, h1, ..., hn+1 are all in eRe. Note
that we have eRe ∼= Mm(C) with m = dimC V e. Since R satisfies the GPI
eg(eX1e, ..., eXn+1e)e, the subring eRe satisfies the GPI

ge(X1, ..., Xn+1) = [[eae, f(X1, ..., Xn)]f(X1, ..., Xn)

−f(X1, ..., Xn)[ebe, f(X1, ..., Xn)], Xn+1].

By Lemma 1 again, eae + ebe is central in eRe because f(X1, ..., Xn) is not
central-valued on eRe. Thus (a + b)h0 = e(a + b)h0 = e(a + b)eh0 = h0e(a +
b)e = h0(a + b)e = h0(a + b), a contradiction. Hence, a + b is central in R and
so δ = −d.

Now assume that d and δ are not both Q-inner. Suppose first that d and δ
are C-dependent modulo Q-inner derivations, say, δ = λd + ada where λ ∈ C
and a ∈ Q. Then d cannot be Q-inner and d(f(x))f(x) − λf(x)d(f(x)) −
f(x)[a, f(x)] ∈ Z for all x ∈ In. Recall that d can be extended uniquely to
a derivaion d̄ on Q [9]. We denote by fd(X1, ..., Xn) the polynomial obtained
from f(X1, ..., Xn) by replacing each coefficient α with d̄(α · 1). Since

(
fd(x) +

n∑

i=1

f(x1, ..., d(xi), ..., xn)

)
f(x)

−λf(x)

(
fd(x) +

n∑

i=1

f(x1, ..., d(xi), ..., xn)

)
− f(x)[a, f(x)] ∈ Z

for all x = (x1, ..., xn) ∈ In, we have
(

fd(x) +
n∑

i=1

f(x1, ..., yi, ..., xn)

)
f(x)

−λf(x)

(
fd(x) +

n∑

i=1

f(x1, ..., yi, ..., xn)

)
− f(x)[a, f(x)] ∈ Z
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for all x = (x1, ..., xn) and y = (y1, ..., yn) in Rn by Kharchenko’s theorem [10].
In particular,

fd(x)f(x)− λf(x)fd(x)− f(x)[a, f(x)] ∈ Z

and
f(x1, ..., yi, ..., xn)f(x)− λf(x)f(x1, ..., yi, ..., xn) ∈ Z

for all x = (x1, ..., xn) and y = (y1, ..., yn) in Rn and for each i = 1, ..., n.
Choosing b ∈ R with b 6∈ Z, setting yi = [b, xi] in each of the last n relations,
and summing up over i, we have [b, f(x)]f(x) − f(x)[λb, f(x)] ∈ Z for all
x ∈ Rn. By the preceding paragraph, we have (1 + λ)b ∈ Z and so λ = −1.
Also, by the first paragraph, f(x)2 ∈ Z for all x = (x1, ..., xn) ∈ Rn. Thus,
d(f(x))f(x) + f(x)d(f(x)) ∈ Z and so the hypothesis

d(f(x))f(x) + f(x)d(f(x))− f(x)[a, f(x)] ∈ Z

implies f(x)[a, f(x)] ∈ Z for x ∈ Rn. Again, it follows from the inner case
that a ∈ C and so δ = −d as expected. The situation when d = λδ + ada is
slmilar.

Finally, assume that d and δ are C-independent modulo Q-inner deriva-
tions. Since neither d nor δ is Q-inner, the relation

(
fd(x) +

n∑

i=1

f(x1, ..., d(xi), ..., xn)

)
f(x)

−f(x)

(
f δ(x) +

n∑

i=1

f(x1, ..., δ(xi), ..., xn)

)
∈ Z

for all x = (x1, ..., xn) ∈ In yields
(

fd(x) +
n∑

i=1

f(x1, ..., yi, ..., xn)

)
f(x)

−f(x)

(
f δ(x) +

n∑

i=1

f(x1, ..., zi, ..., xn)

)
∈ Z

for all x = (x1, ..., xn), y = (y1, ..., yn) and z = (z1, ..., zn) in Rn. In particular,
fd(x)f(x)−f(x)f δ(x) ∈ Z, f(x1, ..., yi, ..., xn)f(x) ∈ Z and f(x)f(x1, ..., zi, ...,
xn) ∈ Z for all x, y, z ∈ Rn, and for each i = 1, ..., n. As before, choosing
b ∈ R, b 6∈ Z, setting zi = [b, xi] in the last n relations and summing up over
i, we obtain that f(x)[b, f(x)] ∈ Z for all x ∈ Rn, a contradiction again. This
completes the proof.
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It was proved in [13] that if [d(f(x1, ..., xn)), f(x1, ..., xn)]k = 0 for all xi

in some nonzero ideal of R then either d = 0 or f(X1, ..., Xn) is central-valued
on R except when char R = 2 and R satisfies s4. The case when k = 1 follows
easily from our Theorem 1. A fact about power-central polynomial is needed
for our purpose.

Lemma 2. LetRbe a primeK-algebra of characteristic 2 and f(X1, ..., Xn)
a multilinear polynomial over K. Subppose that f(X1, ..., Xn)2

r
is central-

valued on R for some r. Then f(X1, ..., Xn) is central-valued on R unless
R satisfies s4.

Proof. Since R satisfies the polynomial identity (PI)[f(X1, ..., Xn)2
r
, Xn+1],

the central quotient RZ of R is a finite-dimensional central simple algebra sat-
isfying the same PI’s as R does. Without loss of generality, we may assume
that R = Mm(D) for some division algebra D which is finite-dimensional over
its center. Suppose first that D is a field; then m > 2 if R does not satisfy s4.
Since char D = 2, the field D contains no 2r-th roots of unity other than 1, so
f(X1, ..., Xn) is central-valued on R by [15, Theorem 10]. Suppose next that
D is not a field; then the center Z must be infinite and so R

⊗

Z
K ∼= Mk(K)

satisfies the same PI’s as R does, where K is a maximal subfield of D and
k = (dimZ R)1/2 > 2 if R does not satisfy s4. Thus f(X1, ..., Xn) is central-
valued on R

⊗

Z
K as well as R.

Theorem 2. LetRbe a primeK-algebra with centerZ and let f(X1, ..., Xn)
be a multilinear polynomial over K. Suppose that d is a derivation on R such
that [d(f(x1, ..., xn)), f(x1, ..., xn)] ∈ Z for all xi in some nonzero ideal I of R.
Then either d = 0 or f(X1, ..., Xn) is central-valued on R except when char
R = 2 and R satisfies s4.

Proof. Assume that f(X1, ..., Xn) is not central-valued on R and either
char R 6= 2 or R does not satisfy s4. By Theorem 1, either d = 0 or d = −d
and f(X1, ..., Xn)2 is central-valued on R. In the later case, char R = 2 if
d 6= 0, and so f(X1, ..., Xn) must be central-valued on R by the preceding
lemma. With this contradiction the theorem is proved.
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