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A SPECIAL IDENTITY OF («,3)-DERIVATIONS
AND ITS CONSEQUENCES

Jui-Chi Chang

Abstract. In this note, we shall give a description of («, 3)-derivations
d, g and h of a prime ring R satisfying 6(z) = ag(x)+h(z)b for all x € U,
where a and b are some fixed noncentral elements of R and U a nonzero
ideal of R. This result generalizes some known results.

Recently, Bresar [2] proved a theorem which generalizes a result in Her-
stein’s paper [7]. Indeed, he gave a description of derivations d,g and h of
a prime ring R satisfying d(x) = ag(z) + h(z)b, * € R, where a and b are
some fixed noncentral elernents in R. In [1], Aydin-Kaya proved that if d is a
nonzero («, )-derivation of a prime ring, U is an ideal of R and a € R such
that a(a)d(u) — d(u)B(a) = 0 for all w € U, then a € Z provided that char
R # 2. In [3], the author proved that if § # 0 is an («, §)-derivation of a prime
ring R and if a € R is such that [a,0(R)] = 0, then (i) a € Z provided that
char R # 2 and ad = da, 3§ = 64; (ii) a? + na € C for some n € C provided
that char R = 2 and ad = da (or $0 = 6(3). Moreover, if a ¢ Z, then there
exists an invertible element b in ) and A € C such that §(z) = A[a, z]b for all
r € R.

In this note, we shall give a description of («, 3)-derivations d, g and h of a
prime ring R satisfying 6(x) = ag(z) + h(z)b for all x € U, where a and b are
some fixed noncentral elernents of R and U a nonzero ideal of R. This result
generalizes those results mentioned above simultaneously.

Throughout, R will be a prime ring with center Z. () will denote the
symmetric Martindale quotient ring of R and C will be the extended centroid
of R. a, 3 will be automorphisms of R. In the following, the (a, 3)-derivation

fofUinto R means f(z+y) = f(z)+ f(y) and f(zy) = () f(y) + f(2)B(y)
forall z,y € U.
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We begin with a lemma.

Lemma 1. Let R be a prime ring and U a nonzero ideal of R. Let g and
h be («a, B)-derivations of U into R, f an («, a)-derivation of U into R and k
an (B3, B)-derivation of U into R. Suppose that

(1) f(2)g(y) = h(z)k(y) forall z,y € U.

Then there exists an invertible element u € Q such that 3(x) = u=! a(x)u, h(x)
= f(z)u and g(x) = uk(z) for allz € U.

Proof. From (1) it follows that g = 0 if and only if A = 0. Hence if either
g = 0or h = 0, then the result follows. So we may assume that both g and h are
not 0. Substituting zy for y in (1), we obtain f(x)a(z)g(y) + f(z)g(2)B(y) =
h(x)B(2)k(y) + h(z)k(2)B(y). Applying (1) we then get

(2) f(@)a(z)g(y) = h(x)B(2)k(y) for all z,y,z,€ U

Applying o' on both sides of (2) and let f; = a~'f,g1 = a"lg,hy =
ath, ki = o 'k, and a1 = a3, then we have

(3) fi(@)zg1(y) = hi()aa(2)k1(y)  for all 2,y,z € U,

where f; is a derivation, g; and h; are (1, ay)-derivation and k; is an (aq, ag)-
derivation. Since f # 0,k # 0,9 # 0 and h # 0, it follows that f, g, h and k are
not 0 on U. Therefore there exists x,yo € U such that f(xg) # 0, h(zg) # 0

and g(yo) # 0,k(yo) # 0. Consequently, fi(zo) # 0,h1(zo) # 0 and g1(yo) #

0,k1(yo) # 0. By Kharchenko’s result [8], (3) cannot hold for such zy and yg

unless oy is Q-inner. This says, there exists s € @ such that a;(z) = s lzs

for all x € R. Then (3) becomes
f1(x)zg1(y) = hi(z)s Lzski(y) forall 2,9,z €U,
and thus
fi(x)zg1(y)s™ = hi(z)s tzsky(y)s™t for all z,y,2 € U

Note that fi,g1s~ !, his~! and sk;s~! are derivations of QQ which maps some
nonzero ideal I of R into R. Let K = I NU, then K is a nonzero ideal of R
and we have

(4) fi(@)zg1(y)s ™t = hy(x)s Lzski(y)s™t  for all 2,3,z € K.

Substltutmg zsk:l (w)s™! for z in (4), where z,w € K, we get fi(x)zski(w)s
g1(y)s™ hi(z)s tzski(w)s tski(y)s™!. By (4), hi(z)s tzski(w)s™! =
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Identity of («, 3)-derivations 23

f1(2)zg1(w)s~! and so we have f1(z)z[sk1(w)s g1 (y)s™ —gl( )sLsky(y)s™]
= 0. Since f; # 0 on K and R is prime, we have skj(w)s 1gi(y)s~! = g1(w)s*
ski(y)s~! forallw,y € K. Note that Lemma 2.2 in [2] stlll holds if one replaces
the condition given there by the following one

d(x)g(y) = g(z)d(y) for all z,y € K,

K a nonezero ideal of R. By this result, we see that there exists n € C
such that g;(w)s™! = nski(w)s~! for all w € K. Hence nfi(x)zski(w)s™! =
hi(z)s tzski(w)s™! and (nfi(x) — hi(z)s1)2zski(w)s™ = 0 for all z,2,w €
K. Therefore, hy(x)s~! = nfi(z) for all x € K and hence hi(z)s~! = nfi(x)
for all z € R. Thus h(x)t™! = A\f(z) for x € R, where t = a(s), A\ = a(n).
Similarly, from g;(w)s™' = nsk(w)s™ we get t~1g(x) = Mk(x) for all x € R.
Also, t~ta(z)t = a(s)ta(x)a(s) = a(s7tws) = ala™!p(x)) = B(z). Now,

set u = At, we obtain our lemma.
Now we are ready to prove our main result.

Theorem 1. Let R be a prime ring, U a nonzero ideal of R, Q the symmet-
ric Martindale quotient ring of R and C the extended centroid of R. Further,
let 6, g and h be (o, 3 )-derivations of U into R and a,b € Q \ C. Suppose that
either g # 0 or h # 0. Then the following conditions are equivalent:

(i) 6(x) = ag(z) + h(z)b forallx € U.
(ii) There exists an invertible element s € Q such that
Bz) = s~ a(z)s,
§(z) = [asbs™ !, a(z)]s,
sb, B(x)] = [sbs™", a(x)]s,
[a, az)]s

g(x) =
h(x) =
forallz e U.

Proof. 1t is easy to see that (ii) implies (i). So we only need to show that
(i) implies (ii). Asumme (i) holds. Replacing = by zy in (i), we have

ac(z)g(y) + ag(x)B(y) + c(@)h(y)b + h(z)B(y)b
= ag(zy) + h(zy)b = d(zy) = a(z)i(y) + (z)B(y)
= a(z)ag(y) + () h(y)b + ag(x)B(y) + h(x)bB(y).

Hence
[0, a(2))g(y) = h()[b, B(y)] for all 2,y € U.
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Since a ¢ C and b ¢ C, without loss of generality, we may assume that
f(z) = [a,a(z)] is a nonzero (a, a)-derivation of U into R and k(y) = [b, B(y)]
is a nonzero (3, [)-derivation of U into R. By Lemma 1, there exists an
invertible element s € @ such that g(xz) = s[b, B(2)], h(z) = [a,a(z)]s and
s la(z)s = B(x) for all z € U. Substituting these into (i) we have

6(x) = ag(z) + h(x)b
= as(b, B(x)] + [a, ()] sb
= asb, B(x)]s™ s + [a, ax)]sbs ™!

(a[sbs™1, s8(z)s™ ] + [a, a(x)]sbs1)s
= (a[sbs™! ( )] + [a, a(z)]sbs™1)s

= [asbs™! ,a(x)]s
So §(x) = [asbs™!, a(z)]s for all x € U.

The first corollary of this theorem is to generalize Theorem 1 in [3] men-
tioned in the introduction.

Corollary. Let R be a prime ring, U a nonzero ideal of R, g and h (v, 3)-
derivations of U into R and a,b € Q\ C. Suppose that either g # 0 or h # 0.
Then the following conditions are equivalent:

(i) ag(z) +h(z)b=0 for all z € U.
(ii) There exists an invertible element s € Q) such that
Bz) = s a(z)s,
g(x) = slb, B(x)] = [sbs™", a(2)]s,
h(z) = [a, a(z)]s,
a Ya)p~t(b) € C

forallz € U.

Proof. (i)==-(ii). The first part follows immediately from Theorem 1.
Setting §(z) = ag(x) + h(z)b,z € U, we see that § = 0 and so asbs™! € C
by Theorem 1. As B(z) = s ta(z)s, 37 Hz) = al(sxs7!) for all z € U.
Therefore

a1 a)p7t(b) = at(asbs™t) € C

The inverse implication is obvious.
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Theorem 2. Let R be a prime ring, U a nonzero ideal of R, @ the
symmetric Martindale quotient ring of R and C' the extended centroid of R.
Further, let 6: U — R be an («,)-derivation and a € Q\C. Then the
following conditions are equivalent:

(i) [a,0(x)] =0 for all x € U.

(ii) There exists an invertible element s € Q such that
(a)d0(x) = [a, a(m)]s forall x €U;
(b)a~t(a)+ 7 (a) € C (1 =a+ sas™! € C equivalently);
(c)a=t(a)3~ ( ) € C (1= asas™! € C equivalently);

(

d)a® — ta+ p = 0.(In particular, if char R =2, then T = [a,s]s™1).

Proof. (i)==(ii). Since ad(z) —d(x)a = [a,d(x)] = 0 for all x € U, we can
appeal to Corollary 1 to conclude that a~!(a)B~!(a) € C and s[—a, 3(z)] =
§(x) = [a, a(x)]s for all x € U. The first part implies u = asas~! € C and the
last part, as before, implies

[a+ sas™!, a(x)]s =0
for all z € U. Since s is invertible in Q, we get [a + sas™! a(z)] = 0 for

all z € U. Therefore, a + sas™' € C. But again, sas™! = af (a), so
a+afl(a) € C and hence a™1(a) + 371(a) € C. Put 7 = a + sas~'. Then

a’ - 1a = a® — ala + sas_l) = a? —a® —asas™! = —asas™! = —u and
hence a? — 7a + p = 0. In particular, if char R = 2, then 7 = a + sas™! =
(as —sa)s~! = [a, s]s7L.

The inverse implication is obvious.
Remarks:
1. In Theorem 2 we don’t need to assume any commutativity between ¢

and «, § as it did in [3] mentioned above.

2. Example 1 in [3] shows that a3~ 1(a) =0 € Z and a+ 3~ 1(a) = I, € Z.
Moreover, a> —a =0 € Z.

3. If, in addition, we assume that § commutes with « and (3, then it is easy
to show that 37 1a(a) — a € C. But then we have 2a € C. If char # 2,
then a € C, which is contrary to the assumption that a ¢ C. So char
R=2.
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The following result is a generalization of Theorem 1 in [1]. Before statting
this theorem, we set [z,y]a.8 = a(z)y — yB(x).

Theorem 3. Let R be a prime ring, U a nonzero ideal of R, Q the
symmetric Martindale quotient ring of R and C' the extended centroid of R.
Further, let 6 be an («,3)-derivation of U into R and a € Q\C. Then the
following conditions are equivalent:

(1) [z,Y]as =0 forallz € U.

(ii) char R =2, a® € C and a(a?) = B(a?). Moreover, there exists an invert-
ible element t € Q such that B(x) = t La(x)t and 6(z) = [a(a), a(z)]t
forallx e U.

Proof. (i)== (ii). Setting h(z) = a~1(6(z)),z € U, v = o~ 13, we note
that h : U — R is an (1,7)-derivation of U into R and [a, h(z)]1y = 0 for all
x € U. Since ah(x) — h(z)y(a) = [a, h(x)]1, = 0, by Corollary 1, there exists
an invertible element s € ) such that

Y(z) = s s,
h(z) = s[=v(a),y(2)] = [-s7(a)s™", 2]s = [-a, a]s,
h(zx) = la, z]s,

for all z € U. Tt follows that a? € C and [a + a,z] = [2a,2] = 0 for all z € U.
If char R # 2, then a € C which is not the case. Therefore, char R = 2. Since

a*h(z) = a(ah(x)) = a(h(z)y(a)) = (ah(z))y(a) = h(z)y(a®)

for all x € R and since a? € C, it follows that h(x)(a? — v(a?)) = 0 for all
x € U and so a? = v(a?). Therefore a(a?) = B(a?). Clearly, 3(x) =t la(z)t
and d(z) = [a(a), a(x)]t for all z € U, where t = a(s).

(ii)==(i). We have
[, 4]as = ala)[afa), a(z)]t — [ala), a(x)]tB(a).
Since 3(a) =t ta(a)t,a® € C and char R = 2, we see that

[ Ylap = ala)la(a), a(@)]t - [a(a), a(z)]a(a)t
= [a(a), [a(a), a()]]t = [a(a?), a(2)]t
=0
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for all x € U. The proof is complete.
The next corollary generalizes Theorem 2 (ii) in [3].

Corollary. Let R be a prime ring of characteristic 2, U a nonzero ideal of
R and § a nonzero (o, 3)-derivation of R. If [6(x),d(y)] =0 for all z,y € U,
then R is an S4-ring.

Proof. The argument used in [3] works as well here.

The following example shows that we can not strengthen Theorem 2(i) in
3]

Example 2. Let R be the complete matrix ring of 2 x 2 matrices over

10 01 01
a field F. Leta-(o()),b—(l()), [a,b]-(_lo). Define

B(x) = b~twb and §(z) = [a,z]b for all x € R. Then § is an (1, 3)-derivation
of R such that [0(z),0(y)] =0 for all x € R. If char F' # 2, then (6 # 3.

Before proving the next result, we need the following lemmas.

Lemma 2. Let R be a prime ring, f,g be («, 3)-derivations of R. Suppose
that

(4) f(x)g(y) = g(x)f(y) for all z,y €U,

where U is a nonzero ideal of R. If f # 0, then there exists A € C' such that
g(x) = Af(x) for all x € R.

Proof. Substituting zy for y in (4), where y,z € U, we get
f@)a(2)g(y) + f(x)g9(2)B(y) = g(@)a(2)f(y) + 9(x) f(2)B(y)-

According to (4), this relation reduces to

(5) f(@)ug(y) = g(x)uf(y) foralz,yel,

where u = a(z),z € U. Hence if f(z) # 0, then we have that g(z) = A(z) f(z)
for some A\(z) € C' by Lemma 1.3.2 in [6]. Thus if f(z) # 0 and f(y) # 0,
then it follows from (5) that

Ax) = Aw) f(x)uf(y) =0 forall u e a(U).

Since R is prime, this relation implies that A(x) = A(y). Thus we have proved
that there exists A € C such that the relation g(x) = A\f(x) holds for all x € U
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with the property f(z) # 0. On the other hand, if f(z) = 0, then we see from
(4), since f # 0 and R is prime, that g(z) = 0 as well. Thus g(z) = A\ f(z) for
all z € R.

Lemma 3. Let R be a prime ring, U a nonzero ideal of R, d1 a nonzero
(a1, B1)-derivation of U into R and of d2 an (aq, B2)-derivation of U into R.
Then the following conditions are equivalent:

(1) 01(z) = d2(x) forall xz e U.

(ii) Either ay = ag and (B = (2, or there exists an invertible element u €
Q such that Ba(x) = v tag(z)u, B1(z) = utas(x)u, 81(z) = (a1(x) —
(ag(z))u and do(x) = u(Ba2(x) — B1(x)) for all x € U.

Proof. (i)= (ii). For z,y € U, we have aj(z)d1(y) + 91 (z)01(y) =
01(zy) = d2(xy) = as(x)d2(y) + d2(x)B2(y) and hence

6)  (oa(x) — az(2)dr(y) = da(x)(Ba(y) — r(y)) for all z,y € U.

Substituting yz for y into (6), we obtain (ai(x) — as(z))a1(y)d1(z) + (a1 (x) —

a2(2))01(y)B1(2) = d2(2)02(y) (B2(2) = P1(2)) +02(z) (B2(y) =1 (y)) (). Using
(6) and letting 6 = 0 = da, we have

(z1 — o) taa(z))ya; '6(2) = ay '6(z)ar Ba(y) (o) ' Ba(z) — ay ' Bu(2))
for all x,y,z € U.

If a; !By is Q-outer, then by Kharchenko’s result [8], we have from (7) that
a; = ag and (B = [y If aflﬁg is @-inner, then there exists an invertible
element s € @ such that ozl_lﬁz(x) = s lzs for all x € R. In this case,
we have Bo(x) = u tai(x)u for all z € R, where u = ay(s). From (7), we
have (x — a7 tag(x))ya;o(2) = agté(x)s  ys(a; fB2(z) — ay ' Bi(2)) for all
z,y,2 € U. By a similar argument we did before, there exists A € C' such that
r—a as(z) = Aa78(z)s™ and a7 ' Be(2) — a7 Bi(2) = AsTlagt6(z) for all
x,z € R. Therefore,

(8) (a1(z) — ag(z))u = §6(x) = u(B2(x) — fi(z)) forall z € R,

where & = a1()\). From (8), we have B2(z) — 81(z) = u (a1 (2) — az(z))u =
u oy ()u — ulag(x)u = Bo(z) — ulas(z)u and hence Bi(z) = ulag(x)u
forall z € U.

The inverse implication is obvious.
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Corollary. Let R be a commutative domain and let 0 # 51 be an (aq, 1)-
derivation, 0 # 02 an (aw, B2)-derivation of R. If 61 = b2, then we have either

a1 =ag B = [ oray = Ba, ax = fi.

Proof. The result follows easily from Lemma 3 since R C C, the center of

Q.

Lemma 4. Let 0 # 6 be an (a, B)-derivation of a commutative domain
R. If o # B3, then there exists A € C such that 6(x) = Na(x) — B(x)) for all
r € R.

Proof. Since R is commutative, we have a(z)d(y) + 6(z)3(y) = d(zy) =
0(yz) = a(y)o(x) + 6(y)B(x) for all z,y € R. Therefore,

(a(x) = B(@))3(y) = 6(z)(aly) — Bly)) for all 2,y € R.

By Lemma 2, there exists n € C such that a(z)—F(x) = nd(x) for all x € R. If
n =0, then a(x) = B(z) forallz € R. Ifn # 0, then §(z) = n~ 1 (a(z)—B(x)) =
Ma(z) — B(x)) for all z € R.

Theorem 4. Let R be a prime ring, U a nonzero ideal of R, and § a
nonzero («, 3)-derwation of R. If [0(U),6(U)]a,p =0, then

(i) if char R # 2, then R is commutative. In this case, if a« # [3, then
a? = 3% af = Ba and §(x) = Ma(x) — B(z)) for some X € C such that
a(\) + B(A\) = 0. Also §2 = 0.

(ii) if char R =2, then R is an Si-ring.

Proof. If char R # 2, then 6(U) C Z by Theorem 3. So R is commutative.
Also, we have a(d(z)) = f(d(z)) for all x € U. By Lemma 3, we have either
a?(z) = Ba(z) and af(z) = B%(z) for all x € U or o?(z) = B*(z) and
af(z) = Pa(z) for all x € U. For the earlier case, a(x) = [(z) for all
x € a(U) and hence o = 3. For the latter case, a®> = 4% and a3 = fa.

Since R is commutative, by Lemma 4, d(z) = A a(z) — B(x)) if a #
B. Note that A # 0. Assume a # (. Since a(dé(z)) = [(d(z)), we have
(a(\) + BO)(a?(z) — aB(z)) = 0 for all z € U. If a(A) + B(A\) # 0 then
a?(z) — af(xz) =0 for all z € U and hence a(x) = 3(x) for all 2 € R which is
not the case. So a(A)+3(A\) = 0. Also, we have §?(x) = Aa(5(z))—B(5(x))) =
0 for all € R and hence §2 = 0.

If char R = 2, then §(u)? € Z for all u € U by Theorem 3 (ii). Now we
can appeal to Theorem A in [4] to conclude that R is an Sy-ring.
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Remark. Q. Deng, M. S. Yenigiil and N. Argac have obtained some
partial result of this theorem in [5] by a different way.
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