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A SPECIAL IDENTITY OF (α, β)-DERIVATIONS
AND ITS CONSEQUENCES

Jui-Chi Chang

Abstract. In this note, we shall give a description of (α, β)-derivations
δ, g and h of a prime ring R satisfying δ(x) = ag(x)+h(x)b for all x ∈ U ,
where a and b are some fixed noncentral elements of R and U a nonzero
ideal of R. This result generalizes some known results.

Recently, Brešar [2] proved a theorem which generalizes a result in Her-
stein’s paper [7]. Indeed, he gave a description of derivations d, g and h of
a prime ring R satisfying d(x) = ag(x) + h(x)b, x ∈ R, where a and b are
some fixed noncentral elernents in R. In [1], Aydin-Kaya proved that if d is a
nonzero (α, β)-derivation of a prime ring, U is an ideal of R and a ∈ R such
that α(a)d(u) − d(u)β(a) = 0 for all u ∈ U , then a ∈ Z provided that char
R 6= 2. In [3], the author proved that if δ 6= 0 is an (α, β)-derivation of a prime
ring R and if a ∈ R is such that [a, δ(R)] = 0, then (i) a ∈ Z provided that
char R 6= 2 and αδ = δα, βδ = δβ; (ii) a2 + ηa ∈ C for some η ∈ C provided
that char R = 2 and αδ = δα (or βδ = δβ). Moreover, if a 6∈ Z, then there
exists an invertible element b in Q and λ ∈ C such that δ(x) = λ[a, x]b for all
x ∈ R.

In this note, we shall give a description of (α, β)-derivations δ, g and h of a
prime ring R satisfying δ(x) = ag(x) + h(x)b for all x ∈ U , where a and b are
some fixed noncentral elernents of R and U a nonzero ideal of R. This result
generalizes those results mentioned above simultaneously.

Throughout, R will be a prime ring with center Z. Q will denote the
symmetric Martindale quotient ring of R and C will be the extended centroid
of R. α, β will be automorphisms of R. In the following, the (α, β)-derivation
f of U into R means f(x+y) = f(x)+f(y) and f(xy) = α(x)f(y)+f(x)β(y)
for all x, y ∈ U .

0Received October 3, 1995.
Communicated by P.-H. Lee.
1991 Mathematics Subject Classification: Primary 16A72.
Key words and phrases: (α, β)-derivation, identity.

21



22 Jui-Chi Chang

We begin with a lemma.

Lemma 1. Let R be a prime ring and U a nonzero ideal of R. Let g and
h be (α, β)-derivations of U into R, f an (α, α)-derivation of U into R and k
an (β, β)-derivation of U into R. Suppose that

f(x)g(y) = h(x)k(y) for all x, y ∈ U.(1)

Then there exists an invertible element u ∈ Q such that β(x) = u−1 α(x)u, h(x)
= f(x)u and g(x) = uk(x) for all x ∈ U .

Proof. From (1) it follows that g = 0 if and only if h = 0. Hence if either
g = 0 or h = 0, then the result follows. So we may assume that both g and h are
not 0. Substituting zy for y in (1), we obtain f(x)α(z)g(y) + f(x)g(z)β(y) =
h(x)β(z)k(y) + h(x)k(z)β(y). Applying (1) we then get

f(x)α(z)g(y) = h(x)β(z)k(y) for all x, y, z,∈ U(2)

Applying α−1 on both sides of (2) and let f1 = α−1f, g1 = α−1g, h1 =
α−1h, k1 = α−1k, and α1 = α−1β, then we have

f1(x)zg1(y) = h1(x)α1(z)k1(y) for all x, y, z ∈ U,(3)

where f1 is a derivation, g1 and h1 are (1, α1)-derivation and k1 is an (α1, α1)-
derivation. Since f 6= 0, k 6= 0, g 6= 0 and h 6= 0, it follows that f, g, h and k are
not 0 on U . Therefore there exists x0, y0 ∈ U such that f(x0) 6= 0, h(x0) 6= 0
and g(y0) 6= 0, k(y0) 6= 0. Consequently, f1(x0) 6= 0, h1(x0) 6= 0 and g1(y0) 6=
0, k1(y0) 6= 0. By Kharchenko’s result [8], (3) cannot hold for such x0 and y0

unless α1 is Q-inner. This says, there exists s ∈ Q such that α1(x) = s−1xs
for all x ∈ R. Then (3) becomes

f1(x)zg1(y) = h1(x)s−1zsk1(y) for all x, y, z ∈ U,

and thus

f1(x)zg1(y)s−1 = h1(x)s−1zsk1(y)s−1 for all x, y, z ∈ U

Note that f1, g1s
−1, h1s

−1 and sk1s
−1 are derivations of Q which maps some

nonzero ideal I of R into R. Let K = I ∩ U , then K is a nonzero ideal of R
and we have

f1(x)zg1(y)s−1 = h1(x)s−1zsk1(y)s−1 for all x, y, z ∈ K.(4)

Substituting zsk1(ω)s−1 for z in (4), where z, ω ∈ K, we get f1(x)zsk1(ω)s−1

g1(y)s−1 = h1(x)s−1zsk1(ω)s−1sk1(y)s−1. By (4), h1(x)s−1zsk1(ω)s−1 =
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f1(x)zg1(ω)s−1 and so we have f1(x)z[sk1(ω)s−1g1(y)s−1−g1(ω)s−1sk1(y)s−1]
= 0. Since f1 6= 0 on K and R is prime, we have sk1(ω)s−1g1(y)s−1 = g1(ω)s−1

sk1(y)s−1 for all ω, y ∈ K. Note that Lemma 2.2 in [2] still holds if one replaces
the condition given there by the following one

d(x)g(y) = g(x)d(y) for all x, y ∈ K,

K a nonezero ideal of R. By this result, we see that there exists η ∈ C
such that g1(ω)s−1 = ηsk1(ω)s−1 for all ω ∈ K. Hence ηf1(x)zsk1(ω)s−1 =
h1(x)s−1zsk1(ω)s−1 and (ηf1(x) − h1(x)s−1)zsk1(ω)s−1 = 0 for all x, z, w ∈
K. Therefore, h1(x)s−1 = ηf1(x) for all x ∈ K and hence h1(x)s−1 = ηf1(x)
for all x ∈ R. Thus h(x)t−1 = λf(x) for x ∈ R, where t = α(s), λ = α(η).
Similarly, from g1(ω)s−1 = ηsk1(ω)s−1 we get t−1g(x) = λk(x) for all x ∈ R.
Also, t−1α(x)t = α(s)−1α(x)α(s) = α(s−1xs) = α(α−1β(x)) = β(x). Now,
set u = λt, we obtain our lemma.

Now we are ready to prove our main result.

Theorem 1. Let R be a prime ring, U a nonzero ideal of R, Q the symmet-
ric Martindale quotient ring of R and C the extended centroid of R. Further,
let δ, g and h be (α, β)-derivations of U into R and a, b ∈ Q \C. Suppose that
either g 6= 0 or h 6= 0. Then the following conditions are equivalent:

( i ) δ(x) = ag(x) + h(x)b for all x ∈ U .

(ii) There exists an invertible element s ∈ Q such that

β(x) = s−1α(x)s,

δ(x) = [asbs−1, α(x)]s,

g(x) = s[b, β(x)] = [sbs−1, α(x)]s,

h(x) = [a, α(x)]s

for all x ∈ U .

Proof. It is easy to see that (ii) implies (i). So we only need to show that
(i) implies (ii). Asumme (i) holds. Replacing x by xy in (i), we have

aα(x)g(y) + ag(x)β(y) + α(x)h(y)b + h(x)β(y)b

= ag(xy) + h(xy)b = δ(xy) = α(x)δ(y) + δ(x)β(y)

= α(x)ag(y) + α(x)h(y)b + ag(x)β(y) + h(x)bβ(y).

Hence
[a, α(x)]g(y) = h(x)[b, β(y)] for all x, y ∈ U.
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Since a 6∈ C and b 6∈ C, without loss of generality, we may assume that
f(x) = [a, α(x)] is a nonzero (α, α)-derivation of U into R and k(y) = [b, β(y)]
is a nonzero (β, β)-derivation of U into R. By Lemma 1, there exists an
invertible element s ∈ Q such that g(x) = s[b, β(x)], h(x) = [a, α(x)]s and
s−1α(x)s = β(x) for all x ∈ U . Substituting these into (i) we have

δ(x) = ag(x) + h(x)b

= as[b, β(x)] + [a, α(x)]sb

= as[b, β(x)]s−1s + [a, α(x)]sbs−1s

= (a[sbs−1, sβ(x)s−1] + [a, α(x)]sbs−1)s

= (a[sbs−1, α(x)] + [a, α(x)]sbs−1)s

= [asbs−1, α(x)]s

So δ(x) = [asbs−1, α(x)]s for all x ∈ U .

The first corollary of this theorem is to generalize Theorem 1 in [3] men-
tioned in the introduction.

Corollary. Let R be a prime ring, U a nonzero ideal of R, g and h (α, β)-
derivations of U into R and a, b ∈ Q \C. Suppose that either g 6= 0 or h 6= 0.
Then the following conditions are equivalent:

( i ) ag(x) + h(x)b = 0 for all x ∈ U .

(ii) There exists an invertible element s ∈ Q such that

β(x) = s−1α(x)s,

g(x) = s[b, β(x)] = [sbs−1, α(x)]s,

h(x) = [a, α(x)]s,

α−1(a)β−1(b) ∈ C

for all x ∈ U .

Proof. (i)=⇒(ii). The first part follows immediately from Theorem 1.
Setting δ(x) = ag(x) + h(x)b, x ∈ U , we see that δ = 0 and so asbs−1 ∈ C
by Theorem 1. As β(x) = s−1α(x)s, β−1(x) = α−1(sxs−1) for all x ∈ U .
Therefore

α−1(a)β−1(b) = α−1(asbs−1) ∈ C

The inverse implication is obvious.
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Theorem 2. Let R be a prime ring, U a nonzero ideal of R, Q the
symmetric Martindale quotient ring of R and C the extended centroid of R.
Further, let δ: U → R be an (α, β)-derivation and a ∈ Q\C. Then the
following conditions are equivalent:

( i ) [a, δ(x)] = 0 for all x ∈ U.

(ii) There exists an invertible element s ∈ Q such that

(a) δ(x) = [a, α(x)]s for all x ∈ U ;

(b) α−1(a) + β−1(a) ∈ C (τ = a + sas−1 ∈ C equivalently);

(c) α−1(a)β−1(a) ∈ C (µ = asas−1 ∈ C equivalently);

(d) a2 − τa + µ = 0.(In particular, if char R = 2, then τ = [a, s]s−1).

Proof. (i)=⇒(ii). Since aδ(x)− δ(x)a = [a, δ(x)] = 0 for all x ∈ U , we can
appeal to Corollary 1 to conclude that α−1(a)β−1(a) ∈ C and s[−a, β(x)] =
δ(x) = [a, α(x)]s for all x ∈ U . The first part implies µ = asas−1 ∈ C and the
last part, as before, implies

[a + sas−1, α(x)]s = 0

for all x ∈ U . Since s is invertible in Q, we get [a + sas−1, α(x)] = 0 for
all x ∈ U . Therefore, a + sas−1 ∈ C. But again, sas−1 = αβ−1(a), so
a + αβ−1(a) ∈ C and hence α−1(a) + β−1(a) ∈ C. Put τ = a + sas−1. Then
a2 − τa = a2 − a(a + sas−1) = a2 − a2 − asas−1 = −asas−1 = −µ and
hence a2 − τa + µ = 0. In particular, if char R = 2, then τ = a + sas−1 =
(as− sa)s−1 = [a, s]s−1.

The inverse implication is obvious.

Remarks:

1. In Theorem 2 we don’t need to assume any commutativity between δ
and α, β as it did in [3] mentioned above.

2. Example 1 in [3] shows that aβ−1(a) = 0 ∈ Z and a+β−1(a) = I2k ∈ Z.
Moreover, a2 − a = 0 ∈ Z.

3. If, in addition, we assume that δ commutes with α and β, then it is easy
to show that β−1α(a) − a ∈ C. But then we have 2a ∈ C. If char 6= 2,
then a ∈ C, which is contrary to the assumption that a 6∈ C. So char
R = 2.
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The following result is a generalization of Theorem 1 in [1]. Before statting
this theorem, we set [x, y]α,β = α(x)y − yβ(x).

Theorem 3. Let R be a prime ring, U a nonzero ideal of R, Q the
symmetric Martindale quotient ring of R and C the extended centroid of R.
Further, let δ be an (α, β)-derivation of U into R and a ∈ Q\C. Then the
following conditions are equivalent:

( i ) [x, y]α,β = 0 for all x ∈ U .

(ii) char R = 2, a2 ∈ C and α(a2) = β(a2). Moreover, there exists an invert-
ible element t ∈ Q such that β(x) = t−1α(x)t and δ(x) = [α(a), α(x)]t
for all x ∈ U .

Proof. (i)=⇒ (ii). Setting h(x) = α−1(δ(x)), x ∈ U, γ = α−1β, we note
that h : U → R is an (1, γ)-derivation of U into R and [a, h(x)]1,γ = 0 for all
x ∈ U . Since ah(x)− h(x)γ(a) = [a, h(x)]1,γ = 0, by Corollary 1, there exists
an invertible element s ∈ Q such that

γ(x) = s−1xs,

h(x) = s[−γ(a), γ(x)] = [−sγ(a)s−1, x]s = [−a, x]s,

h(x) = [a, x]s,

−a2 = aγ−1(−γ(a)) ∈ C

for all x ∈ U . It follows that a2 ∈ C and [a + a, x] = [2a, x] = 0 for all x ∈ U .
If char R 6= 2, then a ∈ C which is not the case. Therefore, char R = 2. Since

a2h(x) = a(ah(x)) = a(h(x)γ(a)) = (ah(x))γ(a) = h(x)γ(a2)

for all x ∈ R and since a2 ∈ C, it follows that h(x)(a2 − γ(a2)) = 0 for all
x ∈ U and so a2 = γ(a2). Therefore α(a2) = β(a2). Clearly, β(x) = t−1α(x)t
and δ(x) = [α(a), α(x)]t for all x ∈ U , where t = α(s).

(ii)=⇒(i). We have

[x, y]α,β = α(a)[α(a), α(x)]t− [α(a), α(x)]tβ(a).

Since β(a) = t−1α(a)t, a2 ∈ C and char R = 2, we see that

[x, y]α,β = α(a)[α(a), α(x)]t− [α(a), α(x)]α(a)t

= [α(a), [α(a), α(x)]]t = [α(a2), α(x)]t

= 0
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for all x ∈ U . The proof is complete.

The next corollary generalizes Theorem 2 (ii) in [3].

Corollary. Let R be a prime ring of characteristic 2, U a nonzero ideal of
R and δ a nonzero (α, β)-derivation of R. If [δ(x), δ(y)] = 0 for all x, y ∈ U ,
then R is an S4-ring.

Proof. The argument used in [3] works as well here.

The following example shows that we can not strengthen Theorem 2(i) in
[3].

Example 2. Let R be the complete matrix ring of 2 × 2 matrices over

a field F . Let a =
(

1 0
0 0

)
, b =

(
0 1
1 0

)
, [a, b] =

(
0 1

−1 0

)
. Define

β(x) = b−1xb and δ(x) = [a, x]b for all x ∈ R. Then δ is an (1, β)-derivation
of R such that [δ(x), δ(y)] = 0 for all x ∈ R. If char F 6= 2, then βδ 6= δβ.

Before proving the next result, we need the following lemmas.

Lemma 2. Let R be a prime ring, f, g be (α, β)-derivations of R. Suppose
that

f(x)g(y) = g(x)f(y) for all x, y ∈ U,(4)

where U is a nonzero ideal of R. If f 6= 0, then there exists λ ∈ C such that
g(x) = λf(x) for all x ∈ R.

Proof. Substituting zy for y in (4), where y, z ∈ U , we get

f(x)α(z)g(y) + f(x)g(z)β(y) = g(x)α(z)f(y) + g(x)f(z)β(y).

According to (4), this relation reduces to

f(x)ug(y) = g(x)uf(y) for all x, y ∈ U,(5)

where u = α(z), z ∈ U . Hence if f(x) 6= 0, then we have that g(x) = λ(x)f(x)
for some λ(x) ∈ C by Lemma 1.3.2 in [6]. Thus if f(x) 6= 0 and f(y) 6= 0,
then it follows from (5) that

(λ(x)− λ(y))f(x)uf(y) = 0 for all u ∈ α(U).

Since R is prime, this relation implies that λ(x) = λ(y). Thus we have proved
that there exists λ ∈ C such that the relation g(x) = λf(x) holds for all x ∈ U
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with the property f(x) 6= 0. On the other hand, if f(x) = 0, then we see from
(4), since f 6= 0 and R is prime, that g(x) = 0 as well. Thus g(x) = λf(x) for
all x ∈ R.

Lemma 3. Let R be a prime ring, U a nonzero ideal of R, δ1 a nonzero
(α1, β1)-derivation of U into R and of δ2 an (α2, β2)-derivation of U into R.
Then the following conditions are equivalent:

( i ) δ1(x) = δ2(x) for all x ∈ U .

(ii) Either α1 = α2 and β1 = β2, or there exists an invertible element u ∈
Q such that β2(x) = u−1α1(x)u, β1(x) = u−1α2(x)u, δ1(x) = (α1(x) −
(α2(x))u and δ2(x) = u(β2(x)− β1(x)) for all x ∈ U .

Proof. (i)=⇒ (ii). For x, y ∈ U , we have α1(x)δ1(y) + δ1(x)β1(y) =
δ1(xy) = δ2(xy) = α2(x)δ2(y) + δ2(x)β2(y) and hence

(α1(x)− α2(x))δ1(y) = δ2(x)(β2(y)− β1(y)) for all x, y ∈ U.(6)

Substituting yz for y into (6), we obtain (α1(x)−α2(x))α1(y)δ1(z)+ (α1(x)−
α2(x))δ1(y)β1(z) = δ2(x)δ2(y)(β2(z)−β1(z))+δ2(x)(β2(y)−β1(y))β1(z). Using
(6) and letting δ = δ = δ2, we have

(x1 − α−1
1 α2(x))yα−1

1 δ(z) = α−1
1 δ(x)α−1

1 β2(y)(α−1
1 β2(z)− α−1

1 β1(z))

for all x, y, z ∈ U.
(7)

If α−1
1 β2 is Q-outer, then by Kharchenko’s result [8], we have from (7) that

α1 = α2 and β1 = β2. If α−1
1 β2 is Q-inner, then there exists an invertible

element s ∈ Q such that α−1
1 β2(x) = s−1xs for all x ∈ R. In this case,

we have β2(x) = u−1α1(x)u for all x ∈ R, where u = α1(s). From (7), we
have (x − α−1

1 α2(x))yα−1
1 δ(z) = α−1

1 δ(x)s−1ys(α−1
1 β2(z) − α−1

1 β1(z)) for all
x, y, z ∈ U . By a similar argument we did before, there exists λ ∈ C such that
x−α−1

1 α2(x) = λα−1
1 δ(x)s−1 and α−1

1 β2(z)−α−1
1 β1(z) = λs−1α−1

1 δ(z) for all
x, z ∈ R. Therefore,

(α1(x)− α2(x))u = ξδ(x) = u(β2(x)− β1(x)) for all x ∈ R,(8)

where ξ = α1(λ). From (8), we have β2(x)− β1(x) = u−1(α1(x)− α2(x))u =
u−1α1(x)u − u−1α2(x)u = β2(x) − u−1α2(x)u and hence β1(x) = u−1α2(x)u
for all x ∈ U .

The inverse implication is obvious.
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Corollary. Let R be a commutative domain and let 0 6= δ1 be an (α1, β1)-
derivation, 0 6= δ2 an (α2, β2)-derivation of R. If δ1 = δ2, then we have either
α1 = α2 β1 = β2 orα1 = β2, α2 = β1.

Proof. The result follows easily from Lemma 3 since R ⊂ C, the center of
Q.

Lemma 4. Let 0 6= δ be an (α, β)-derivation of a commutative domain
R. If α 6= β, then there exists λ ∈ C such that δ(x) = λ(α(x) − β(x)) for all
x ∈ R.

Proof. Since R is commutative, we have α(x)δ(y) + δ(x)β(y) = δ(xy) =
δ(yx) = α(y)δ(x) + δ(y)β(x) for all x, y ∈ R. Therefore,

(α(x)− β(x))δ(y) = δ(x)(α(y)− β(y)) for all x, y ∈ R.

By Lemma 2, there exists η ∈ C such that α(x)−β(x) = ηδ(x) for all x ∈ R. If
η = 0, then α(x) = β(x) for all x ∈ R. If η 6= 0, then δ(x) = η−1(α(x)−β(x)) =
λ(α(x)− β(x)) for all x ∈ R.

Theorem 4. Let R be a prime ring, U a nonzero ideal of R, and δ a
nonzero (α, β)-derivation of R. If [δ(U), δ(U)]α,β = 0, then

( i ) if char R 6= 2, then R is commutative. In this case, if α 6= β, then
α2 = β2, αβ = βα and δ(x) = λ(α(x)− β(x)) for some λ ∈ C such that
α(λ) + β(λ) = 0. Also δ2 = 0.

(ii) if char R = 2, then R is an S4-ring.

Proof. If char R 6= 2, then δ(U) ⊂ Z by Theorem 3. So R is commutative.
Also, we have α(δ(x)) = β(δ(x)) for all x ∈ U . By Lemma 3, we have either
α2(x) = βα(x) and αβ(x) = β2(x) for all x ∈ U or α2(x) = β2(x) and
αβ(x) = βα(x) for all x ∈ U . For the earlier case, α(x) = β(x) for all
x ∈ α(U) and hence α = β. For the latter case, α2 = β2 and αβ = βα.

Since R is commutative, by Lemma 4, δ(x) = λ(α(x) − β(x)) if α 6=
β. Note that λ 6= 0. Assume α 6= β. Since α(δ(x)) = β(δ(x)), we have
(α(λ) + β(λ))(α2(x) − αβ(x)) = 0 for all x ∈ U . If α(λ) + β(λ) 6= 0 then
α2(x)− αβ(x) = 0 for all x ∈ U and hence α(x) = β(x) for all x ∈ R which is
not the case. So α(λ)+β(λ) = 0. Also, we have δ2(x) = λ(α(δ(x))−β(δ(x))) =
0 for all x ∈ R and hence δ2 = 0.

If char R = 2, then δ(u)2 ∈ Z for all u ∈ U by Theorem 3 (ii). Now we
can appeal to Theorem A in [4] to conclude that R is an S4-ring.
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Remark. Q. Deng, M. S. Yenigül and N. Argac have obtained some
partial result of this theorem in [5] by a different way.
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