TWIWANESE JOURNAL OF MATHEMATICS
Vol. 1, No. 1, pp. 21-30, March 1997

A SPECIAL IDENTITY OF (α, β)-DERIVATIONS AND ITS CONSEQUENCES

Jui-Chi Chang

Abstract

In this note, we shall give a description of (α, β)-derivations δ, g and h of a prime ring R satisfying $\delta(x)=a g(x)+h(x) b$ for all $x \in U$, where a and b are some fixed noncentral elements of R and U a nonzero ideal of R. This result generalizes some known results.

Recently, Brešar [2] proved a theorem which generalizes a result in Herstein's paper [7]. Indeed, he gave a description of derivations d, g and h of a prime ring R satisfying $d(x)=a g(x)+h(x) b, x \in R$, where a and b are some fixed noncentral elernents in R. In [1], Aydin-Kaya proved that if d is a nonzero (α, β)-derivation of a prime ring, U is an ideal of R and $a \in R$ such that $\alpha(a) d(u)-d(u) \beta(a)=0$ for all $u \in U$, then $a \in Z$ provided that char $R \neq 2$. In [3], the author proved that if $\delta \neq 0$ is an (α, β)-derivation of a prime ring R and if $a \in R$ is such that $[a, \delta(R)]=0$, then (i) $a \in Z$ provided that char $R \neq 2$ and $\alpha \delta=\delta \alpha, \beta \delta=\delta \beta$; (ii) $a^{2}+\eta a \in C$ for some $\eta \in C$ provided that char $R=2$ and $\alpha \delta=\delta \alpha$ (or $\beta \delta=\delta \beta$). Moreover, if $a \notin Z$, then there exists an invertible element b in Q and $\lambda \in C$ such that $\delta(x)=\lambda[a, x] b$ for all $x \in R$.

In this note, we shall give a description of (α, β)-derivations δ, g and h of a prime ring R satisfying $\delta(x)=a g(x)+h(x) b$ for all $x \in U$, where a and b are some fixed noncentral elernents of R and U a nonzero ideal of R. This result generalizes those results mentioned above simultaneously.

Throughout, R will be a prime ring with center $Z . Q$ will denote the symmetric Martindale quotient ring of R and C will be the extended centroid of R. α, β will be automorphisms of R. In the following, the (α, β)-derivation f of U into R means $f(x+y)=f(x)+f(y)$ and $f(x y)=\alpha(x) f(y)+f(x) \beta(y)$ for all $x, y \in U$.

We begin with a lemma.
Lemma 1. Let R be a prime ring and U a nonzero ideal of R. Let g and h be (α, β)-derivations of U into R, f an (α, α)-derivation of U into R and k an (β, β)-derivation of U into R. Suppose that

$$
\begin{equation*}
f(x) g(y)=h(x) k(y) \quad \text { for all } x, y \in U . \tag{1}
\end{equation*}
$$

Then there exists an invertible element $u \in Q$ such that $\beta(x)=u^{-1} \alpha(x) u, h(x)$ $=f(x) u$ and $g(x)=u k(x)$ for all $x \in U$.

Proof. From (1) it follows that $g=0$ if and only if $h=0$. Hence if either $g=0$ or $h=0$, then the result follows. So we may assume that both g and h are not 0 . Substituting $z y$ for y in (1), we obtain $f(x) \alpha(z) g(y)+f(x) g(z) \beta(y)=$ $h(x) \beta(z) k(y)+h(x) k(z) \beta(y)$. Applying (1) we then get

$$
\begin{equation*}
f(x) \alpha(z) g(y)=h(x) \beta(z) k(y) \quad \text { for all } x, y, z, \in U \tag{2}
\end{equation*}
$$

Applying α^{-1} on both sides of (2) and let $f_{1}=\alpha^{-1} f, g_{1}=\alpha^{-1} g, h_{1}=$ $\alpha^{-1} h, k_{1}=\alpha^{-1} k$, and $\alpha_{1}=\alpha^{-1} \beta$, then we have

$$
\begin{equation*}
f_{1}(x) z g_{1}(y)=h_{1}(x) \alpha_{1}(z) k_{1}(y) \quad \text { for all } x, y, z \in U, \tag{3}
\end{equation*}
$$

where f_{1} is a derivation, g_{1} and h_{1} are ($1, \alpha_{1}$)-derivation and k_{1} is an $\left(\alpha_{1}, \alpha_{1}\right)$ derivation. Since $f \neq 0, k \neq 0, g \neq 0$ and $h \neq 0$, it follows that f, g, h and k are not 0 on U. Therefore there exists $x_{0}, y_{0} \in U$ such that $f\left(x_{0}\right) \neq 0, h\left(x_{0}\right) \neq 0$ and $g\left(y_{0}\right) \neq 0, k\left(y_{0}\right) \neq 0$. Consequently, $f_{1}\left(x_{0}\right) \neq 0, h_{1}\left(x_{0}\right) \neq 0$ and $g_{1}\left(y_{0}\right) \neq$ $0, k_{1}\left(y_{0}\right) \neq 0$. By Kharchenko's result [8], (3) cannot hold for such x_{0} and y_{0} unless α_{1} is Q -inner. This says, there exists $s \in Q$ such that $\alpha_{1}(x)=s^{-1} x s$ for all $x \in R$. Then (3) becomes

$$
f_{1}(x) z g_{1}(y)=h_{1}(x) s^{-1} z s k_{1}(y) \quad \text { for all } x, y, z \in U,
$$

and thus

$$
f_{1}(x) z g_{1}(y) s^{-1}=h_{1}(x) s^{-1} z s k_{1}(y) s^{-1} \quad \text { for all } x, y, z \in U
$$

Note that $f_{1}, g_{1} s^{-1}, h_{1} s^{-1}$ and $s k_{1} s^{-1}$ are derivations of Q which maps some nonzero ideal I of R into R. Let $K=I \cap U$, then K is a nonzero ideal of R and we have

$$
\begin{equation*}
f_{1}(x) z g_{1}(y) s^{-1}=h_{1}(x) s^{-1} z s k_{1}(y) s^{-1} \quad \text { for all } x, y, z \in K \tag{4}
\end{equation*}
$$

Substituting $z s k_{1}(\omega) s^{-1}$ for z in (4), where $z, \omega \in K$, we get $f_{1}(x) z s k_{1}(\omega) s^{-1}$ $g_{1}(y) s^{-1}=h_{1}(x) s^{-1} z s k_{1}(\omega) s^{-1} s k_{1}(y) s^{-1}$. By (4), $h_{1}(x) s^{-1} z s k_{1}(\omega) s^{-1}=$
$f_{1}(x) z g_{1}(\omega) s^{-1}$ and so we have $f_{1}(x) z\left[s k_{1}(\omega) s^{-1} g_{1}(y) s^{-1}-g_{1}(\omega) s^{-1} s k_{1}(y) s^{-1}\right]$ $=0$. Since $f_{1} \neq 0$ on K and R is prime, we have $s k_{1}(\omega) s^{-1} g_{1}(y) s^{-1}=g_{1}(\omega) s^{-1}$ $s k_{1}(y) s^{-1}$ for all $\omega, y \in K$. Note that Lemma 2.2 in [2] still holds if one replaces the condition given there by the following one

$$
d(x) g(y)=g(x) d(y) \quad \text { for all } x, y \in K,
$$

K a nonezero ideal of R. By this result, we see that there exists $\eta \in C$ such that $g_{1}(\omega) s^{-1}=\eta s k_{1}(\omega) s^{-1}$ for all $\omega \in K$. Hence $\eta f_{1}(x) z s k_{1}(\omega) s^{-1}=$ $h_{1}(x) s^{-1} z s k_{1}(\omega) s^{-1}$ and $\left(\eta f_{1}(x)-h_{1}(x) s^{-1}\right) z s k_{1}(\omega) s^{-1}=0$ for all $x, z, w \in$ K. Therefore, $h_{1}(x) s^{-1}=\eta f_{1}(x)$ for all $x \in K$ and hence $h_{1}(x) s^{-1}=\eta f_{1}(x)$ for all $x \in R$. Thus $h(x) t^{-1}=\lambda f(x)$ for $x \in R$, where $t=\alpha(s), \lambda=\alpha(\eta)$. Similarly, from $g_{1}(\omega) s^{-1}=\eta s k_{1}(\omega) s^{-1}$ we get $t^{-1} g(x)=\lambda k(x)$ for all $x \in R$. Also, $t^{-1} \alpha(x) t=\alpha(s)^{-1} \alpha(x) \alpha(s)=\alpha\left(s^{-1} x s\right)=\alpha\left(\alpha^{-1} \beta(x)\right)=\beta(x)$. Now, set $u=\lambda t$, we obtain our lemma.

Now we are ready to prove our main result.
Theorem 1. Let R be a prime ring, U a nonzero ideal of R, Q the symmetric Martindale quotient ring of R and C the extended centroid of R. Further, let δ, g and h be (α, β)-derivations of U into R and $a, b \in Q \backslash C$. Suppose that either $g \neq 0$ or $h \neq 0$. Then the following conditions are equivalent:
(i) $\delta(x)=a g(x)+h(x) b \quad$ for all $x \in U$.
(ii) There exists an invertible element $s \in Q$ such that

$$
\begin{aligned}
& \beta(x)=s^{-1} \alpha(x) s, \\
& \delta(x)=\left[a s b s^{-1}, \alpha(x)\right] s, \\
& g(x)=s[b, \beta(x)]=\left[s b s^{-1}, \alpha(x)\right] s, \\
& h(x)=[a, \alpha(x)] s
\end{aligned}
$$

for all $x \in U$.
Proof. It is easy to see that (ii) implies (i). So we only need to show that (i) implies (ii). Asumme (i) holds. Replacing x by $x y$ in (i), we have

$$
\begin{aligned}
& a \alpha(x) g(y)+a g(x) \beta(y)+\alpha(x) h(y) b+h(x) \beta(y) b \\
& \quad=a g(x y)+h(x y) b=\delta(x y)=\alpha(x) \delta(y)+\delta(x) \beta(y) \\
& \quad=\alpha(x) a g(y)+\alpha(x) h(y) b+a g(x) \beta(y)+h(x) b \beta(y) .
\end{aligned}
$$

Hence

$$
[a, \alpha(x)] g(y)=h(x)[b, \beta(y)] \quad \text { for all } x, y \in U .
$$

Since $a \notin C$ and $b \notin C$, without loss of generality, we may assume that $f(x)=[a, \alpha(x)]$ is a nonzero (α, α)-derivation of U into R and $k(y)=[b, \beta(y)]$ is a nonzero (β, β)-derivation of U into R. By Lemma 1 , there exists an invertible element $s \in Q$ such that $g(x)=s[b, \beta(x)], h(x)=[a, \alpha(x)] s$ and $s^{-1} \alpha(x) s=\beta(x)$ for all $x \in U$. Substituting these into (i) we have

$$
\begin{aligned}
\delta(x) & =a g(x)+h(x) b \\
& =a s[b, \beta(x)]+[a, \alpha(x)] s b \\
& =a s[b, \beta(x)] s^{-1} s+[a, \alpha(x)] s b s^{-1} s \\
& =\left(a\left[s b s^{-1}, s \beta(x) s^{-1}\right]+[a, \alpha(x)] s b s^{-1}\right) s \\
& =\left(a\left[s b s^{-1}, \alpha(x)\right]+[a, \alpha(x)] s b s^{-1}\right) s \\
& =\left[a s b s^{-1}, \alpha(x)\right] s
\end{aligned}
$$

So $\delta(x)=\left[a s b s^{-1}, \alpha(x)\right] s$ for all $x \in U$.
The first corollary of this theorem is to generalize Theorem 1 in [3] mentioned in the introduction.

Corollary. Let R be a prime ring, U a nonzero ideal of R, g and $h(\alpha, \beta)$ derivations of U into R and $a, b \in Q \backslash C$. Suppose that either $g \neq 0$ or $h \neq 0$. Then the following conditions are equivalent:
(i) $a g(x)+h(x) b=0$ for all $x \in U$.
(ii) There exists an invertible element $s \in Q$ such that

$$
\begin{aligned}
& \beta(x)=s^{-1} \alpha(x) s, \\
& g(x)=s[b, \beta(x)]=\left[s b s^{-1}, \alpha(x)\right] s, \\
& h(x)=[a, \alpha(x)] s, \\
& \alpha^{-1}(a) \beta^{-1}(b) \in C
\end{aligned}
$$

for all $x \in U$.
Proof. (i) \Longrightarrow (ii). The first part follows immediately from Theorem 1. Setting $\delta(x)=a g(x)+h(x) b, x \in U$, we see that $\delta=0$ and so $a s b s^{-1} \in C$ by Theorem 1. As $\beta(x)=s^{-1} \alpha(x) s, \beta^{-1}(x)=\alpha^{-1}\left(s x s^{-1}\right)$ for all $x \in U$. Therefore

$$
\alpha^{-1}(a) \beta^{-1}(b)=\alpha^{-1}\left(a s b s^{-1}\right) \in C
$$

The inverse implication is obvious.

Theorem 2. Let R be a prime ring, U a nonzero ideal of R, Q the symmetric Martindale quotient ring of R and C the extended centroid of R. Further, let $\delta: U \rightarrow R$ be an (α, β)-derivation and $a \in Q \backslash C$. Then the following conditions are equivalent:
(i) $[a, \delta(x)]=0$ for all $x \in U$.
(ii) There exists an invertible element $s \in Q$ such that
(a) $\delta(x)=[a, \alpha(x)] s \quad$ for all $x \in U$;
(b) $\alpha^{-1}(a)+\beta^{-1}(a) \in C\left(\tau=a+\right.$ sas $^{-1} \in C$ equivalently $)$;
(c) $\alpha^{-1}(a) \beta^{-1}(a) \in C\left(\mu=\right.$ asas $^{-1} \in C$ equivalently $) ;$
(d) $a^{2}-\tau a+\mu=0$.(In particular, if char $R=2$, then $\tau=[a, s] s^{-1}$).

Proof. (i) \Longrightarrow (ii). Since $a \delta(x)-\delta(x) a=[a, \delta(x)]=0$ for all $x \in U$, we can appeal to Corollary 1 to conclude that $\alpha^{-1}(a) \beta^{-1}(a) \in C$ and $s[-a, \beta(x)]=$ $\delta(x)=[a, \alpha(x)] s$ for all $x \in U$. The first part implies $\mu=a s a s^{-1} \in C$ and the last part, as before, implies

$$
\left[a+s a s^{-1}, \alpha(x)\right] s=0
$$

for all $x \in U$. Since s is invertible in Q, we get $\left[a+\operatorname{sas}^{-1}, \alpha(x)\right]=0$ for all $x \in U$. Therefore, $a+$ sas $^{-1} \in C$. But again, $s a s^{-1}=\alpha \beta^{-1}(a)$, so $a+\alpha \beta^{-1}(a) \in C$ and hence $\alpha^{-1}(a)+\beta^{-1}(a) \in C$. Put $\tau=a+\operatorname{sas}^{-1}$. Then $a^{2}-\tau a=a^{2}-a\left(a+s a s^{-1}\right)=a^{2}-a^{2}-a s a s^{-1}=-a s a s^{-1}=-\mu$ and hence $a^{2}-\tau a+\mu=0$. In particular, if char $R=2$, then $\tau=a+\operatorname{sas}^{-1}=$ $(a s-s a) s^{-1}=[a, s] s^{-1}$.

The inverse implication is obvious.

Remarks:

1. In Theorem 2 we don't need to assume any commutativity between δ and α, β as it did in [3] mentioned above.
2. Example 1 in [3] shows that $a \beta^{-1}(a)=0 \in Z$ and $a+\beta^{-1}(a)=I_{2 k} \in Z$. Moreover, $a^{2}-a=0 \in Z$.
3. If, in addition, we assume that δ commutes with α and β, then it is easy to show that $\beta^{-1} \alpha(a)-a \in C$. But then we have $2 a \in C$. If char $\neq 2$, then $a \in C$, which is contrary to the assumption that $a \notin C$. So char $R=2$.

The following result is a generalization of Theorem 1 in [1]. Before statting this theorem, we set $[x, y]_{\alpha, \beta}=\alpha(x) y-y \beta(x)$.

Theorem 3. Let R be a prime ring, U a nonzero ideal of R, Q the symmetric Martindale quotient ring of R and C the extended centroid of R. Further, let δ be an (α, β)-derivation of U into R and $a \in Q \backslash C$. Then the following conditions are equivalent:
(i) $[x, y]_{\alpha, \beta}=0$ for all $x \in U$.
(ii) char $R=2, a^{2} \in C$ and $\alpha\left(a^{2}\right)=\beta\left(a^{2}\right)$. Moreover, there exists an invertible element $t \in Q$ such that $\beta(x)=t^{-1} \alpha(x) t$ and $\delta(x)=[\alpha(a), \alpha(x)] t$ for all $x \in U$.

Proof. (i) \Longrightarrow (ii). Setting $h(x)=\alpha^{-1}(\delta(x)), x \in U, \gamma=\alpha^{-1} \beta$, we note that $h: U \rightarrow R$ is an (1, $\gamma)$-derivation of U into R and $[a, h(x)]_{1, \gamma}=0$ for all $x \in U$. Since $a h(x)-h(x) \gamma(a)=[a, h(x)]_{1, \gamma}=0$, by Corollary 1 , there exists an invertible element $s \in Q$ such that

$$
\begin{aligned}
& \gamma(x)=s^{-1} x s, \\
& h(x)=s[-\gamma(a), \gamma(x)]=\left[-s \gamma(a) s^{-1}, x\right] s=[-a, x] s, \\
& h(x)=[a, x] s, \\
& -a^{2}=a \gamma^{-1}(-\gamma(a)) \in C
\end{aligned}
$$

for all $x \in U$. It follows that $a^{2} \in C$ and $[a+a, x]=[2 a, x]=0$ for all $x \in U$. If char $R \neq 2$, then $a \in C$ which is not the case. Therefore, char $R=2$. Since

$$
a^{2} h(x)=a(a h(x))=a(h(x) \gamma(a))=(a h(x)) \gamma(a)=h(x) \gamma\left(a^{2}\right)
$$

for all $x \in R$ and since $a^{2} \in C$, it follows that $h(x)\left(a^{2}-\gamma\left(a^{2}\right)\right)=0$ for all $x \in U$ and so $a^{2}=\gamma\left(a^{2}\right)$. Therefore $\alpha\left(a^{2}\right)=\beta\left(a^{2}\right)$. Clearly, $\beta(x)=t^{-1} \alpha(x) t$ and $\delta(x)=[\alpha(a), \alpha(x)] t$ for all $x \in U$, where $t=\alpha(s)$.
(ii) \Longrightarrow (i). We have

$$
[x, y]_{\alpha, \beta}=\alpha(a)[\alpha(a), \alpha(x)] t-[\alpha(a), \alpha(x)] t \beta(a) .
$$

Since $\beta(a)=t^{-1} \alpha(a) t, a^{2} \in C$ and char $R=2$, we see that

$$
\begin{aligned}
{[x, y]_{\alpha, \beta} } & =\alpha(a)[\alpha(a), \alpha(x)] t-[\alpha(a), \alpha(x)] \alpha(a) t \\
& =[\alpha(a),[\alpha(a), \alpha(x)]] t=\left[\alpha\left(a^{2}\right), \alpha(x)\right] t \\
& =0
\end{aligned}
$$

for all $x \in U$. The proof is complete.
The next corollary generalizes Theorem 2 (ii) in [3].
Corollary. Let R be a prime ring of characteristic 2, U a nonzero ideal of R and δ a nonzero (α, β)-derivation of R. If $[\delta(x), \delta(y)]=0$ for all $x, y \in U$, then R is an S_{4}-ring.

Proof. The argument used in [3] works as well here.
The following example shows that we can not strengthen Theorem 2(i) in [3].

Example 2. Let R be the complete matrix ring of 2×2 matrices over a field F. Let $a=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), b=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),[a, b]=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$. Define $\beta(x)=b^{-1} x b$ and $\delta(x)=[a, x] b$ for all $x \in R$. Then δ is an $(1, \beta)$-derivation of R such that $[\delta(x), \delta(y)]=0$ for all $x \in R$. If char $F \neq 2$, then $\beta \delta \neq \delta \beta$.

Before proving the next result, we need the following lemmas.
Lemma 2. Let R be a prime ring, f, g be (α, β)-derivations of R. Suppose that

$$
\begin{equation*}
f(x) g(y)=g(x) f(y) \quad \text { for all } x, y \in U \tag{4}
\end{equation*}
$$

where U is a nonzero ideal of R. If $f \neq 0$, then there exists $\lambda \in C$ such that $g(x)=\lambda f(x)$ for all $x \in R$.

Proof. Substituting $z y$ for y in (4), where $y, z \in U$, we get

$$
f(x) \alpha(z) g(y)+f(x) g(z) \beta(y)=g(x) \alpha(z) f(y)+g(x) f(z) \beta(y) .
$$

According to (4), this relation reduces to

$$
\begin{equation*}
f(x) u g(y)=g(x) u f(y) \quad \text { for all } x, y \in U, \tag{5}
\end{equation*}
$$

where $u=\alpha(z), z \in U$. Hence if $f(x) \neq 0$, then we have that $g(x)=\lambda(x) f(x)$ for some $\lambda(x) \in C$ by Lemma 1.3.2 in [6]. Thus if $f(x) \neq 0$ and $f(y) \neq 0$, then it follows from (5) that

$$
(\lambda(x)-\lambda(y)) f(x) u f(y)=0 \quad \text { for all } u \in \alpha(U) .
$$

Since R is prime, this relation implies that $\lambda(x)=\lambda(y)$. Thus we have proved that there exists $\lambda \in C$ such that the relation $g(x)=\lambda f(x)$ holds for all $x \in U$
with the property $f(x) \neq 0$. On the other hand, if $f(x)=0$, then we see from (4), since $f \neq 0$ and R is prime, that $g(x)=0$ as well. Thus $g(x)=\lambda f(x)$ for all $x \in R$.

Lemma 3. Let R be a prime ring, U a nonzero ideal of R, δ_{1} a nonzero $\left(\alpha_{1}, \beta_{1}\right)$-derivation of U into R and of δ_{2} an $\left(\alpha_{2}, \beta_{2}\right)$-derivation of U into R. Then the following conditions are equivalent:
(i) $\delta_{1}(x)=\delta_{2}(x) \quad$ for all $x \in U$.
(ii) Either $\alpha_{1}=\alpha_{2}$ and $\beta_{1}=\beta_{2}$, or there exists an invertible element $u \in$ Q such that $\beta_{2}(x)=u^{-1} \alpha_{1}(x) u, \beta_{1}(x)=u^{-1} \alpha_{2}(x) u, \delta_{1}(x)=\left(\alpha_{1}(x)-\right.$ $\left(\alpha_{2}(x)\right) u$ and $\delta_{2}(x)=u\left(\beta_{2}(x)-\beta_{1}(x)\right)$ for all $x \in U$.

Proof. (i) \Longrightarrow (ii). For $x, y \in U$, we have $\alpha_{1}(x) \delta_{1}(y)+\delta_{1}(x) \beta_{1}(y)=$ $\delta_{1}(x y)=\delta_{2}(x y)=\alpha_{2}(x) \delta_{2}(y)+\delta_{2}(x) \beta_{2}(y)$ and hence

$$
\begin{equation*}
\left(\alpha_{1}(x)-\alpha_{2}(x)\right) \delta_{1}(y)=\delta_{2}(x)\left(\beta_{2}(y)-\beta_{1}(y)\right) \quad \text { for all } x, y \in U . \tag{6}
\end{equation*}
$$

Substituting $y z$ for y into (6), we obtain $\left(\alpha_{1}(x)-\alpha_{2}(x)\right) \alpha_{1}(y) \delta_{1}(z)+\left(\alpha_{1}(x)-\right.$ $\left.\alpha_{2}(x)\right) \delta_{1}(y) \beta_{1}(z)=\delta_{2}(x) \delta_{2}(y)\left(\beta_{2}(z)-\beta_{1}(z)\right)+\delta_{2}(x)\left(\beta_{2}(y)-\beta_{1}(y)\right) \beta_{1}(z)$. Using (6) and letting $\delta=\delta=\delta_{2}$, we have

$$
\begin{equation*}
\left(x_{1}-\alpha_{1}^{-1} \alpha_{2}(x)\right) y \alpha_{1}^{-1} \delta(z)=\alpha_{1}^{-1} \delta(x) \alpha_{1}^{-1} \beta_{2}(y)\left(\alpha_{1}^{-1} \beta_{2}(z)-\alpha_{1}^{-1} \beta_{1}(z)\right) \tag{7}
\end{equation*}
$$

for all $x, y, z \in U$.
If $\alpha_{1}^{-1} \beta_{2}$ is Q-outer, then by Kharchenko's result [8], we have from (7) that $\alpha_{1}=\alpha_{2}$ and $\beta_{1}=\beta_{2}$. If $\alpha_{1}^{-1} \beta_{2}$ is Q-inner, then there exists an invertible element $s \in Q$ such that $\alpha_{1}^{-1} \beta_{2}(x)=s^{-1} x s$ for all $x \in R$. In this case, we have $\beta_{2}(x)=u^{-1} \alpha_{1}(x) u$ for all $x \in R$, where $u=\alpha_{1}(s)$. From (7), we have $\left(x-\alpha_{1}^{-1} \alpha_{2}(x)\right) y \alpha_{1}^{-1} \delta(z)=\alpha_{1}^{-1} \delta(x) s^{-1} y s\left(\alpha_{1}^{-1} \beta_{2}(z)-\alpha_{1}^{-1} \beta_{1}(z)\right)$ for all $x, y, z \in U$. By a similar argument we did before, there exists $\lambda \in C$ such that $x-\alpha_{1}^{-1} \alpha_{2}(x)=\lambda \alpha_{1}^{-1} \delta(x) s^{-1}$ and $\alpha_{1}^{-1} \beta_{2}(z)-\alpha_{1}^{-1} \beta_{1}(z)=\lambda s^{-1} \alpha_{1}^{-1} \delta(z)$ for all $x, z \in R$. Therefore,

$$
\begin{equation*}
\left(\alpha_{1}(x)-\alpha_{2}(x)\right) u=\xi \delta(x)=u\left(\beta_{2}(x)-\beta_{1}(x)\right) \quad \text { for all } x \in R, \tag{8}
\end{equation*}
$$

where $\xi=\alpha_{1}(\lambda)$. From (8), we have $\beta_{2}(x)-\beta_{1}(x)=u^{-1}\left(\alpha_{1}(x)-\alpha_{2}(x)\right) u=$ $u^{-1} \alpha_{1}(x) u-u^{-1} \alpha_{2}(x) u=\beta_{2}(x)-u^{-1} \alpha_{2}(x) u$ and hence $\beta_{1}(x)=u^{-1} \alpha_{2}(x) u$ for all $x \in U$.

The inverse implication is obvious.

Corollary. Let R be a commutative domain and let $0 \neq \delta_{1}$ be an $\left(\alpha_{1}, \beta_{1}\right)$ derivation, $0 \neq \delta_{2}$ an (α_{2}, β_{2})-derivation of R. If $\delta_{1}=\delta_{2}$, then we have either $\alpha_{1}=\alpha_{2} \beta_{1}=\beta_{2}$ or $\alpha_{1}=\beta_{2}, \alpha_{2}=\beta_{1}$.

Proof. The result follows easily from Lemma 3 since $R \subset C$, the center of Q.

Lemma 4. Let $0 \neq \delta$ be an (α, β)-derivation of a commutative domain R. If $\alpha \neq \beta$, then there exists $\lambda \in C$ such that $\delta(x)=\lambda(\alpha(x)-\beta(x))$ for all $x \in R$.

Proof. Since R is commutative, we have $\alpha(x) \delta(y)+\delta(x) \beta(y)=\delta(x y)=$ $\delta(y x)=\alpha(y) \delta(x)+\delta(y) \beta(x)$ for all $x, y \in R$. Therefore,

$$
(\alpha(x)-\beta(x)) \delta(y)=\delta(x)(\alpha(y)-\beta(y)) \quad \text { for all } x, y \in R .
$$

By Lemma 2, there exists $\eta \in C$ such that $\alpha(x)-\beta(x)=\eta \delta(x)$ for all $x \in R$. If $\eta=0$, then $\alpha(x)=\beta(x)$ for all $x \in R$. If $\eta \neq 0$, then $\delta(x)=\eta^{-1}(\alpha(x)-\beta(x))=$ $\lambda(\alpha(x)-\beta(x))$ for all $x \in R$.

Theorem 4. Let R be a prime ring, U a nonzero ideal of R, and δa nonzero (α, β)-derivation of R. If $[\delta(U), \delta(U)]_{\alpha, \beta}=0$, then
(i) if char $R \neq 2$, then R is commutative. In this case, if $\alpha \neq \beta$, then $\alpha^{2}=\beta^{2}, \alpha \beta=\beta \alpha$ and $\delta(x)=\lambda(\alpha(x)-\beta(x))$ for some $\lambda \in C$ such that $\alpha(\lambda)+\beta(\lambda)=0$. Also $\delta^{2}=0$.
(ii) if char $R=2$, then R is an S_{4}-ring.

Proof. If char $R \neq 2$, then $\delta(U) \subset Z$ by Theorem 3. So R is commutative. Also, we have $\alpha(\delta(x))=\beta(\delta(x))$ for all $x \in U$. By Lemma 3, we have either $\alpha^{2}(x)=\beta \alpha(x)$ and $\alpha \beta(x)=\beta^{2}(x)$ for all $x \in U$ or $\alpha^{2}(x)=\beta^{2}(x)$ and $\alpha \beta(x)=\beta \alpha(x)$ for all $x \in U$. For the earlier case, $\alpha(x)=\beta(x)$ for all $x \in \alpha(U)$ and hence $\alpha=\beta$. For the latter case, $\alpha^{2}=\beta^{2}$ and $\alpha \beta=\beta \alpha$.

Since R is commutative, by Lemma $4, \delta(x)=\lambda(\alpha(x)-\beta(x))$ if $\alpha \neq$ β. Note that $\lambda \neq 0$. Assume $\alpha \neq \beta$. Since $\alpha(\delta(x))=\beta(\delta(x))$, we have $(\alpha(\lambda)+\beta(\lambda))\left(\alpha^{2}(x)-\alpha \beta(x)\right)=0$ for all $x \in U$. If $\alpha(\lambda)+\beta(\lambda) \neq 0$ then $\alpha^{2}(x)-\alpha \beta(x)=0$ for all $x \in U$ and hence $\alpha(x)=\beta(x)$ for all $x \in R$ which is not the case. So $\alpha(\lambda)+\beta(\lambda)=0$. Also, we have $\delta^{2}(x)=\lambda(\alpha(\delta(x))-\beta(\delta(x)))=$ 0 for all $x \in R$ and hence $\delta^{2}=0$.

If char $R=2$, then $\delta(u)^{2} \in Z$ for all $u \in U$ by Theorem 3 (ii). Now we can appeal to Theorem A in [4] to conclude that R is an S_{4}-ring.

Remark. Q. Deng, M. S. Yenigül and N. Argac have obtained some partial result of this theorem in [5] by a different way.

Acknowledgement

The author is grateful to the referee for his valuable suggestions.

References

1. N. Aydin and K. Kaya, Some generalizations in prime rings with (σ, τ)-derivation, Turkish J. Math. 16 (1992), 169-171.
2. M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
3. J. C. Chang, On (α, β)-derivations of prime rings, Chinese J. Math. 22 (1994), 21-30.
4. J. C. Chang, On (α, β)-derivation of prime rings having power central values, Bull. Inst. Math. Acad. Sinica 23 (1995), 295-303.
5. Q. Deng, M. S. Yenigül and N. Argac, On ideals of prime rings with (α, τ) derivation, preprint.
6. I. N. Herstein, Rings with Involution, Univ. of Chicago Press, Chicago, 1976.
7. I. N. Herstein, A note on derivation II, Canad Math. Bull. 22 (1979), 509-511.
8. V. K. Kharchenko, Generalized identities with automorphisms, Algebra i Logika 14 (1973), 132-148 (English Translation).

Department of Mathematics, National Taiwan University Taipei, Taiwan

