TWIWANESE JOURNAL OF MATHEMATICS Vol. 1, No. 1, pp. 21-30, March 1997

A SPECIAL IDENTITY OF (α, β) -DERIVATIONS AND ITS CONSEQUENCES

Jui-Chi Chang

Abstract. In this note, we shall give a description of (α, β) -derivations δ, g and h of a prime ring R satisfying $\delta(x) = ag(x) + h(x)b$ for all $x \in U$, where a and b are some fixed noncentral elements of R and U a nonzero ideal of R. This result generalizes some known results.

Recently, Brešar [2] proved a theorem which generalizes a result in Herstein's paper [7]. Indeed, he gave a description of derivations d, g and h of a prime ring R satisfying d(x) = ag(x) + h(x)b, $x \in R$, where a and b are some fixed noncentral elements in R. In [1], Aydin-Kaya proved that if d is a nonzero (α, β) -derivation of a prime ring, U is an ideal of R and $a \in R$ such that $\alpha(a)d(u) - d(u)\beta(a) = 0$ for all $u \in U$, then $a \in Z$ provided that char $R \neq 2$. In [3], the author proved that if $\delta \neq 0$ is an (α, β) -derivation of a prime ring R and if $a \in R$ is such that $[a, \delta(R)] = 0$, then (i) $a \in Z$ provided that char $R \neq 2$ and $\alpha \delta = \delta \alpha$, $\beta \delta = \delta \beta$; (ii) $a^2 + \eta a \in C$ for some $\eta \in C$ provided that char R = 2 and $\alpha \delta = \delta \alpha$ (or $\beta \delta = \delta \beta$). Moreover, if $a \notin Z$, then there exists an invertible element b in Q and $\lambda \in C$ such that $\delta(x) = \lambda[a, x]b$ for all $x \in R$.

In this note, we shall give a description of (α, β) -derivations δ, g and h of a prime ring R satisfying $\delta(x) = ag(x) + h(x)b$ for all $x \in U$, where a and b are some fixed noncentral elements of R and U a nonzero ideal of R. This result generalizes those results mentioned above simultaneously.

Throughout, R will be a prime ring with center Z. Q will denote the symmetric Martindale quotient ring of R and C will be the extended centroid of R. α, β will be automorphisms of R. In the following, the (α, β) -derivation f of U into R means f(x+y) = f(x) + f(y) and $f(xy) = \alpha(x)f(y) + f(x)\beta(y)$ for all $x, y \in U$.

Received October 3, 1995.

Communicated by P.-H. Lee.

¹⁹⁹¹ Mathematics Subject Classification: Primary 16A72.

Key words and phrases: (α, β) -derivation, identity.

We begin with a lemma.

Lemma 1. Let R be a prime ring and U a nonzero ideal of R. Let g and h be (α, β) -derivations of U into R, f an (α, α) -derivation of U into R and k an (β, β) -derivation of U into R. Suppose that

(1)
$$f(x)g(y) = h(x)k(y) \text{ for all } x, y \in U.$$

Then there exists an invertible element $u \in Q$ such that $\beta(x) = u^{-1} \alpha(x)u$, h(x) = f(x)u and g(x) = uk(x) for all $x \in U$.

Proof. From (1) it follows that g = 0 if and only if h = 0. Hence if either g = 0 or h = 0, then the result follows. So we may assume that both g and h are not 0. Substituting zy for y in (1), we obtain $f(x)\alpha(z)g(y) + f(x)g(z)\beta(y) = h(x)\beta(z)k(y) + h(x)k(z)\beta(y)$. Applying (1) we then get

(2)
$$f(x)\alpha(z)g(y) = h(x)\beta(z)k(y) \text{ for all } x, y, z, \in U$$

Applying α^{-1} on both sides of (2) and let $f_1 = \alpha^{-1}f, g_1 = \alpha^{-1}g, h_1 = \alpha^{-1}h, k_1 = \alpha^{-1}k$, and $\alpha_1 = \alpha^{-1}\beta$, then we have

(3)
$$f_1(x)zg_1(y) = h_1(x)\alpha_1(z)k_1(y)$$
 for all $x, y, z \in U$,

where f_1 is a derivation, g_1 and h_1 are $(1, \alpha_1)$ -derivation and k_1 is an (α_1, α_1) derivation. Since $f \neq 0, k \neq 0, g \neq 0$ and $h \neq 0$, it follows that f, g, h and k are not 0 on U. Therefore there exists $x_0, y_0 \in U$ such that $f(x_0) \neq 0, h(x_0) \neq 0$ and $g(y_0) \neq 0, k(y_0) \neq 0$. Consequently, $f_1(x_0) \neq 0, h_1(x_0) \neq 0$ and $g_1(y_0) \neq 0$, $k_1(y_0) \neq 0$. By Kharchenko's result [8], (3) cannot hold for such x_0 and y_0 unless α_1 is Q-inner. This says, there exists $s \in Q$ such that $\alpha_1(x) = s^{-1}xs$ for all $x \in R$. Then (3) becomes

$$f_1(x)zg_1(y) = h_1(x)s^{-1}zsk_1(y)$$
 for all $x, y, z \in U$,

and thus

$$f_1(x)zg_1(y)s^{-1} = h_1(x)s^{-1}zsk_1(y)s^{-1}$$
 for all $x, y, z \in U$

Note that $f_1, g_1 s^{-1}, h_1 s^{-1}$ and $sk_1 s^{-1}$ are derivations of Q which maps some nonzero ideal I of R into R. Let $K = I \cap U$, then K is a nonzero ideal of R and we have

(4)
$$f_1(x)zg_1(y)s^{-1} = h_1(x)s^{-1}zsk_1(y)s^{-1}$$
 for all $x, y, z \in K$.

Substituting $zsk_1(\omega)s^{-1}$ for z in (4), where $z, \omega \in K$, we get $f_1(x)zsk_1(\omega)s^{-1}$ $g_1(y)s^{-1} = h_1(x)s^{-1}zsk_1(\omega)s^{-1}sk_1(y)s^{-1}$. By (4), $h_1(x)s^{-1}zsk_1(\omega)s^{-1} =$

 $\mathbf{22}$

 $f_1(x)zg_1(\omega)s^{-1}$ and so we have $f_1(x)z[sk_1(\omega)s^{-1}g_1(y)s^{-1}-g_1(\omega)s^{-1}sk_1(y)s^{-1}]$ = 0. Since $f_1 \neq 0$ on K and R is prime, we have $sk_1(\omega)s^{-1}g_1(y)s^{-1} = g_1(\omega)s^{-1}sk_1(y)s^{-1}$ for all $\omega, y \in K$. Note that Lemma 2.2 in [2] still holds if one replaces the condition given there by the following one

$$d(x)g(y) = g(x)d(y)$$
 for all $x, y \in K$,

K a nonezero ideal of R. By this result, we see that there exists $\eta \in C$ such that $g_1(\omega)s^{-1} = \eta sk_1(\omega)s^{-1}$ for all $\omega \in K$. Hence $\eta f_1(x)zsk_1(\omega)s^{-1} = h_1(x)s^{-1}zsk_1(\omega)s^{-1}$ and $(\eta f_1(x) - h_1(x)s^{-1})zsk_1(\omega)s^{-1} = 0$ for all $x, z, w \in K$. Therefore, $h_1(x)s^{-1} = \eta f_1(x)$ for all $x \in K$ and hence $h_1(x)s^{-1} = \eta f_1(x)$ for all $x \in R$. Thus $h(x)t^{-1} = \lambda f(x)$ for $x \in R$, where $t = \alpha(s), \lambda = \alpha(\eta)$. Similarly, from $g_1(\omega)s^{-1} = \eta sk_1(\omega)s^{-1}$ we get $t^{-1}g(x) = \lambda k(x)$ for all $x \in R$. Also, $t^{-1}\alpha(x)t = \alpha(s)^{-1}\alpha(x)\alpha(s) = \alpha(s^{-1}xs) = \alpha(\alpha^{-1}\beta(x)) = \beta(x)$. Now, set $u = \lambda t$, we obtain our lemma.

Now we are ready to prove our main result.

Theorem 1. Let R be a prime ring, U a nonzero ideal of R, Q the symmetric Martindale quotient ring of R and C the extended centroid of R. Further, let δ , g and h be (α, β) -derivations of U into R and $a, b \in Q \setminus C$. Suppose that either $g \neq 0$ or $h \neq 0$. Then the following conditions are equivalent:

(i) $\delta(x) = ag(x) + h(x)b$ for all $x \in U$.

(ii) There exists an invertible element $s \in Q$ such that

$$\begin{split} \beta(x) &= s^{-1}\alpha(x)s, \\ \delta(x) &= [asbs^{-1}, \alpha(x)]s, \\ g(x) &= s[b, \beta(x)] = [sbs^{-1}, \alpha(x)]s, \\ h(x) &= [a, \alpha(x)]s \end{split}$$

for all $x \in U$.

Proof. It is easy to see that (ii) implies (i). So we only need to show that (i) implies (ii). Asumme (i) holds. Replacing x by xy in (i), we have

$$\begin{aligned} a\alpha(x)g(y) + ag(x)\beta(y) + \alpha(x)h(y)b + h(x)\beta(y)b \\ &= ag(xy) + h(xy)b = \delta(xy) = \alpha(x)\delta(y) + \delta(x)\beta(y) \\ &= \alpha(x)ag(y) + \alpha(x)h(y)b + ag(x)\beta(y) + h(x)b\beta(y) \end{aligned}$$

Hence

$$[a, \alpha(x)]g(y) = h(x)[b, \beta(y)]$$
 for all $x, y \in U$.

Jui-Chi Chang

Since $a \notin C$ and $b \notin C$, without loss of generality, we may assume that $f(x) = [a, \alpha(x)]$ is a nonzero (α, α) -derivation of U into R and $k(y) = [b, \beta(y)]$ is a nonzero (β, β) -derivation of U into R. By Lemma 1, there exists an invertible element $s \in Q$ such that $g(x) = s[b, \beta(x)], h(x) = [a, \alpha(x)]s$ and $s^{-1}\alpha(x)s = \beta(x)$ for all $x \in U$. Substituting these into (i) we have

$$\begin{split} \delta(x) &= ag(x) + h(x)b \\ &= as[b, \beta(x)] + [a, \alpha(x)]sb \\ &= as[b, \beta(x)]s^{-1}s + [a, \alpha(x)]sbs^{-1}s \\ &= (a[sbs^{-1}, s\beta(x)s^{-1}] + [a, \alpha(x)]sbs^{-1})s \\ &= (a[sbs^{-1}, \alpha(x)] + [a, \alpha(x)]sbs^{-1})s \\ &= [asbs^{-1}, \alpha(x)]s \end{split}$$

So $\delta(x) = [asbs^{-1}, \alpha(x)]s$ for all $x \in U$.

The first corollary of this theorem is to generalize Theorem 1 in [3] mentioned in the introduction.

Corollary. Let R be a prime ring, U a nonzero ideal of R, g and h (α, β) -derivations of U into R and $a, b \in Q \setminus C$. Suppose that either $g \neq 0$ or $h \neq 0$. Then the following conditions are equivalent:

- (i) ag(x) + h(x)b = 0 for all $x \in U$.
- (ii) There exists an invertible element $s \in Q$ such that

$$\begin{split} \beta(x) &= s^{-1}\alpha(x)s, \\ g(x) &= s[b,\beta(x)] = [sbs^{-1},\alpha(x)]s, \\ h(x) &= [a,\alpha(x)]s, \\ \alpha^{-1}(a)\beta^{-1}(b) \in C \end{split}$$

for all $x \in U$.

Proof. (i) \Longrightarrow (ii). The first part follows immediately from Theorem 1. Setting $\delta(x) = ag(x) + h(x)b, x \in U$, we see that $\delta = 0$ and so $asbs^{-1} \in C$ by Theorem 1. As $\beta(x) = s^{-1}\alpha(x)s, \ \beta^{-1}(x) = \alpha^{-1}(sxs^{-1})$ for all $x \in U$. Therefore

$$\alpha^{-1}(a)\beta^{-1}(b) = \alpha^{-1}(asbs^{-1}) \in C$$

The inverse implication is obvious.

Theorem 2. Let R be a prime ring, U a nonzero ideal of R, Q the symmetric Martindale quotient ring of R and C the extended centroid of R. Further, let $\delta: U \to R$ be an (α, β) -derivation and $a \in Q \setminus C$. Then the following conditions are equivalent:

(i) $[a, \delta(x)] = 0$ for all $x \in U$.

(ii) There exists an invertible element $s \in Q$ such that

$$\begin{aligned} (a) \,\delta(x) &= [a, \alpha(x)]s \quad for \ all \ x \ \in U; \\ (b) \,\alpha^{-1}(a) + \beta^{-1}(a) \in C \ (\tau = a + sas^{-1} \in C \ equivalently); \\ (c) \,\alpha^{-1}(a)\beta^{-1}(a) \in C \ (\mu = asas^{-1} \in C \ equivalently); \\ (d) \,a^2 - \tau a + \mu = 0. (In \ particular, \ if \ char \ R = 2, \ then \ \tau = [a, s]s^{-1}). \end{aligned}$$

Proof. (i) \Longrightarrow (ii). Since $a\delta(x) - \delta(x)a = [a, \delta(x)] = 0$ for all $x \in U$, we can appeal to Corollary 1 to conclude that $\alpha^{-1}(a)\beta^{-1}(a) \in C$ and $s[-a, \beta(x)] = \delta(x) = [a, \alpha(x)]s$ for all $x \in U$. The first part implies $\mu = asas^{-1} \in C$ and the last part, as before, implies

$$[a + sas^{-1}, \alpha(x)]s = 0$$

for all $x \in U$. Since s is invertible in Q, we get $[a + sas^{-1}, \alpha(x)] = 0$ for all $x \in U$. Therefore, $a + sas^{-1} \in C$. But again, $sas^{-1} = \alpha\beta^{-1}(a)$, so $a + \alpha\beta^{-1}(a) \in C$ and hence $\alpha^{-1}(a) + \beta^{-1}(a) \in C$. Put $\tau = a + sas^{-1}$. Then $a^2 - \tau a = a^2 - a(a + sas^{-1}) = a^2 - a^2 - asas^{-1} = -asas^{-1} = -\mu$ and hence $a^2 - \tau a + \mu = 0$. In particular, if char R = 2, then $\tau = a + sas^{-1} = (as - sa)s^{-1} = [a, s]s^{-1}$.

The inverse implication is obvious.

Remarks:

- 1. In Theorem 2 we don't need to assume any commutativity between δ and α, β as it did in [3] mentioned above.
- 2. Example 1 in [3] shows that $a\beta^{-1}(a) = 0 \in Z$ and $a + \beta^{-1}(a) = I_{2k} \in Z$. Moreover, $a^2 - a = 0 \in Z$.
- 3. If, in addition, we assume that δ commutes with α and β , then it is easy to show that $\beta^{-1}\alpha(a) a \in C$. But then we have $2a \in C$. If char $\neq 2$, then $a \in C$, which is contrary to the assumption that $a \notin C$. So char R = 2.

The following result is a generalization of Theorem 1 in [1]. Before statting this theorem, we set $[x, y]_{\alpha,\beta} = \alpha(x)y - y\beta(x)$.

Theorem 3. Let R be a prime ring, U a nonzero ideal of R, Q the symmetric Martindale quotient ring of R and C the extended centroid of R. Further, let δ be an (α, β) -derivation of U into R and $a \in Q \setminus C$. Then the following conditions are equivalent:

- (i) $[x, y]_{\alpha, \beta} = 0$ for all $x \in U$.
- (ii) char R = 2, $a^2 \in C$ and $\alpha(a^2) = \beta(a^2)$. Moreover, there exists an invertible element $t \in Q$ such that $\beta(x) = t^{-1}\alpha(x)t$ and $\delta(x) = [\alpha(a), \alpha(x)]t$ for all $x \in U$.

Proof. (i) \Longrightarrow (ii). Setting $h(x) = \alpha^{-1}(\delta(x)), x \in U, \ \gamma = \alpha^{-1}\beta$, we note that $h: U \to R$ is an $(1, \gamma)$ -derivation of U into R and $[a, h(x)]_{1,\gamma} = 0$ for all $x \in U$. Since $ah(x) - h(x)\gamma(a) = [a, h(x)]_{1,\gamma} = 0$, by Corollary 1, there exists an invertible element $s \in Q$ such that

$$\begin{split} \gamma(x) &= s^{-1}xs, \\ h(x) &= s[-\gamma(a), \gamma(x)] = [-s\gamma(a)s^{-1}, x]s = [-a, x]s, \\ h(x) &= [a, x]s, \\ -a^2 &= a\gamma^{-1}(-\gamma(a)) \in C \end{split}$$

for all $x \in U$. It follows that $a^2 \in C$ and [a + a, x] = [2a, x] = 0 for all $x \in U$. If char $R \neq 2$, then $a \in C$ which is not the case. Therefore, char R = 2. Since

$$a^{2}h(x) = a(ah(x)) = a(h(x)\gamma(a)) = (ah(x))\gamma(a) = h(x)\gamma(a^{2})$$

for all $x \in R$ and since $a^2 \in C$, it follows that $h(x)(a^2 - \gamma(a^2)) = 0$ for all $x \in U$ and so $a^2 = \gamma(a^2)$. Therefore $\alpha(a^2) = \beta(a^2)$. Clearly, $\beta(x) = t^{-1}\alpha(x)t$ and $\delta(x) = [\alpha(a), \alpha(x)]t$ for all $x \in U$, where $t = \alpha(s)$.

 $(ii) \Longrightarrow (i)$. We have

$$[x, y]_{\alpha, \beta} = \alpha(a)[\alpha(a), \alpha(x)]t - [\alpha(a), \alpha(x)]t\beta(a).$$

Since $\beta(a) = t^{-1}\alpha(a)t, a^2 \in C$ and char R = 2, we see that

$$[x, y]_{\alpha,\beta} = \alpha(a)[\alpha(a), \alpha(x)]t - [\alpha(a), \alpha(x)]\alpha(a)t$$
$$= [\alpha(a), [\alpha(a), \alpha(x)]]t = [\alpha(a^2), \alpha(x)]t$$
$$= 0$$

 $\mathbf{26}$

for all $x \in U$. The proof is complete.

The next corollary generalizes Theorem 2 (ii) in [3].

Corollary. Let R be a prime ring of characteristic 2, U a nonzero ideal of R and δ a nonzero (α, β) -derivation of R. If $[\delta(x), \delta(y)] = 0$ for all $x, y \in U$, then R is an S₄-ring.

Proof. The argument used in [3] works as well here.

The following example shows that we can not strengthen Theorem 2(i) in [3].

Example 2. Let *R* be the complete matrix ring of 2×2 matrices over a field *F*. Let $a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $[a, b] = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Define $\beta(x) = b^{-1}xb$ and $\delta(x) = [a, x]b$ for all $x \in R$. Then δ is an $(1, \beta)$ -derivation of *R* such that $[\delta(x), \delta(y)] = 0$ for all $x \in R$. If char $F \neq 2$, then $\beta \delta \neq \delta \beta$.

Before proving the next result, we need the following lemmas.

Lemma 2. Let R be a prime ring, f, g be (α, β) -derivations of R. Suppose that

(4)
$$f(x)g(y) = g(x)f(y) \quad for \ all \ x, y \in U,$$

where U is a nonzero ideal of R. If $f \neq 0$, then there exists $\lambda \in C$ such that $g(x) = \lambda f(x)$ for all $x \in R$.

Proof. Substituting zy for y in (4), where $y, z \in U$, we get

$$f(x)\alpha(z)g(y) + f(x)g(z)\beta(y) = g(x)\alpha(z)f(y) + g(x)f(z)\beta(y).$$

According to (4), this relation reduces to

(5)
$$f(x)ug(y) = g(x)uf(y) \text{ for all } x, y \in U,$$

where $u = \alpha(z), z \in U$. Hence if $f(x) \neq 0$, then we have that $g(x) = \lambda(x)f(x)$ for some $\lambda(x) \in C$ by Lemma 1.3.2 in [6]. Thus if $f(x) \neq 0$ and $f(y) \neq 0$, then it follows from (5) that

$$(\lambda(x) - \lambda(y))f(x)uf(y) = 0$$
 for all $u \in \alpha(U)$.

Since R is prime, this relation implies that $\lambda(x) = \lambda(y)$. Thus we have proved that there exists $\lambda \in C$ such that the relation $g(x) = \lambda f(x)$ holds for all $x \in U$

Jui-Chi Chang

with the property $f(x) \neq 0$. On the other hand, if f(x) = 0, then we see from (4), since $f \neq 0$ and R is prime, that g(x) = 0 as well. Thus $g(x) = \lambda f(x)$ for all $x \in R$.

Lemma 3. Let R be a prime ring, U a nonzero ideal of R, δ_1 a nonzero (α_1, β_1) -derivation of U into R and of δ_2 an (α_2, β_2) -derivation of U into R. Then the following conditions are equivalent:

- (i) $\delta_1(x) = \delta_2(x)$ for all $x \in U$.
- (ii) Either $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$, or there exists an invertible element $u \in Q$ such that $\beta_2(x) = u^{-1}\alpha_1(x)u, \beta_1(x) = u^{-1}\alpha_2(x)u, \delta_1(x) = (\alpha_1(x) (\alpha_2(x))u)$ and $\delta_2(x) = u(\beta_2(x) \beta_1(x))$ for all $x \in U$.

Proof. (i) \Longrightarrow (ii). For $x, y \in U$, we have $\alpha_1(x)\delta_1(y) + \delta_1(x)\beta_1(y) = \delta_1(xy) = \delta_2(xy) = \alpha_2(x)\delta_2(y) + \delta_2(x)\beta_2(y)$ and hence

(6)
$$(\alpha_1(x) - \alpha_2(x))\delta_1(y) = \delta_2(x)(\beta_2(y) - \beta_1(y)) \text{ for all } x, y \in U.$$

Substituting yz for y into (6), we obtain $(\alpha_1(x) - \alpha_2(x))\alpha_1(y)\delta_1(z) + (\alpha_1(x) - \alpha_2(x))\delta_1(y)\beta_1(z) = \delta_2(x)\delta_2(y)(\beta_2(z) - \beta_1(z)) + \delta_2(x)(\beta_2(y) - \beta_1(y))\beta_1(z)$. Using (6) and letting $\delta = \delta = \delta_2$, we have

(7)
$$\begin{aligned} & (x_1 - \alpha_1^{-1} \alpha_2(x)) y \alpha_1^{-1} \delta(z) = \alpha_1^{-1} \delta(x) \alpha_1^{-1} \beta_2(y) (\alpha_1^{-1} \beta_2(z) - \alpha_1^{-1} \beta_1(z)) \\ & \text{for all } x, y, z \in U. \end{aligned}$$

If $\alpha_1^{-1}\beta_2$ is *Q*-outer, then by Kharchenko's result [8], we have from (7) that $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$. If $\alpha_1^{-1}\beta_2$ is *Q*-inner, then there exists an invertible element $s \in Q$ such that $\alpha_1^{-1}\beta_2(x) = s^{-1}xs$ for all $x \in R$. In this case, we have $\beta_2(x) = u^{-1}\alpha_1(x)u$ for all $x \in R$, where $u = \alpha_1(s)$. From (7), we have $(x - \alpha_1^{-1}\alpha_2(x))y\alpha_1^{-1}\delta(z) = \alpha_1^{-1}\delta(x)s^{-1}ys(\alpha_1^{-1}\beta_2(z) - \alpha_1^{-1}\beta_1(z))$ for all $x, y, z \in U$. By a similar argument we did before, there exists $\lambda \in C$ such that $x - \alpha_1^{-1}\alpha_2(x) = \lambda \alpha_1^{-1}\delta(x)s^{-1}$ and $\alpha_1^{-1}\beta_2(z) - \alpha_1^{-1}\beta_1(z) = \lambda s^{-1}\alpha_1^{-1}\delta(z)$ for all $x, z \in R$. Therefore,

(8)
$$(\alpha_1(x) - \alpha_2(x))u = \xi \delta(x) = u(\beta_2(x) - \beta_1(x))$$
 for all $x \in R$,

where $\xi = \alpha_1(\lambda)$. From (8), we have $\beta_2(x) - \beta_1(x) = u^{-1}(\alpha_1(x) - \alpha_2(x))u = u^{-1}\alpha_1(x)u - u^{-1}\alpha_2(x)u = \beta_2(x) - u^{-1}\alpha_2(x)u$ and hence $\beta_1(x) = u^{-1}\alpha_2(x)u$ for all $x \in U$.

The inverse implication is obvious.

Corollary. Let R be a commutative domain and let $0 \neq \delta_1$ be an (α_1, β_1) derivation, $0 \neq \delta_2$ an (α_2, β_2) -derivation of R. If $\delta_1 = \delta_2$, then we have either $\alpha_1 = \alpha_2 \ \beta_1 = \beta_2 \ or \alpha_1 = \beta_2, \ \alpha_2 = \beta_1.$

Proof. The result follows easily from Lemma 3 since $R \subset C$, the center of Q.

Lemma 4. Let $0 \neq \delta$ be an (α, β) -derivation of a commutative domain R. If $\alpha \neq \beta$, then there exists $\lambda \in C$ such that $\delta(x) = \lambda(\alpha(x) - \beta(x))$ for all $x \in R$.

Proof. Since R is commutative, we have $\alpha(x)\delta(y) + \delta(x)\beta(y) = \delta(xy) = \delta(yx) = \alpha(y)\delta(x) + \delta(y)\beta(x)$ for all $x, y \in R$. Therefore,

$$(\alpha(x) - \beta(x))\delta(y) = \delta(x)(\alpha(y) - \beta(y))$$
 for all $x, y \in R$.

By Lemma 2, there exists $\eta \in C$ such that $\alpha(x) - \beta(x) = \eta \delta(x)$ for all $x \in R$. If $\eta = 0$, then $\alpha(x) = \beta(x)$ for all $x \in R$. If $\eta \neq 0$, then $\delta(x) = \eta^{-1}(\alpha(x) - \beta(x)) = \lambda(\alpha(x) - \beta(x))$ for all $x \in R$.

Theorem 4. Let R be a prime ring, U a nonzero ideal of R, and δ a nonzero (α, β) -derivation of R. If $[\delta(U), \delta(U)]_{\alpha,\beta} = 0$, then

- (i) if char $R \neq 2$, then R is commutative. In this case, if $\alpha \neq \beta$, then $\alpha^2 = \beta^2, \alpha\beta = \beta\alpha$ and $\delta(x) = \lambda(\alpha(x) \beta(x))$ for some $\lambda \in C$ such that $\alpha(\lambda) + \beta(\lambda) = 0$. Also $\delta^2 = 0$.
- (ii) if char R = 2, then R is an S_4 -ring.

Proof. If char $R \neq 2$, then $\delta(U) \subset Z$ by Theorem 3. So R is commutative. Also, we have $\alpha(\delta(x)) = \beta(\delta(x))$ for all $x \in U$. By Lemma 3, we have either $\alpha^2(x) = \beta\alpha(x)$ and $\alpha\beta(x) = \beta^2(x)$ for all $x \in U$ or $\alpha^2(x) = \beta^2(x)$ and $\alpha\beta(x) = \beta\alpha(x)$ for all $x \in U$. For the earlier case, $\alpha(x) = \beta(x)$ for all $x \in \alpha(U)$ and hence $\alpha = \beta$. For the latter case, $\alpha^2 = \beta^2$ and $\alpha\beta = \beta\alpha$.

Since R is commutative, by Lemma 4, $\delta(x) = \lambda(\alpha(x) - \beta(x))$ if $\alpha \neq \beta$. Note that $\lambda \neq 0$. Assume $\alpha \neq \beta$. Since $\alpha(\delta(x)) = \beta(\delta(x))$, we have $(\alpha(\lambda) + \beta(\lambda))(\alpha^2(x) - \alpha\beta(x)) = 0$ for all $x \in U$. If $\alpha(\lambda) + \beta(\lambda) \neq 0$ then $\alpha^2(x) - \alpha\beta(x) = 0$ for all $x \in U$ and hence $\alpha(x) = \beta(x)$ for all $x \in R$ which is not the case. So $\alpha(\lambda) + \beta(\lambda) = 0$. Also, we have $\delta^2(x) = \lambda(\alpha(\delta(x)) - \beta(\delta(x))) = 0$ for all $x \in R$ and hence $\delta^2 = 0$.

If char R = 2, then $\delta(u)^2 \in Z$ for all $u \in U$ by Theorem 3 (ii). Now we can appeal to Theorem A in [4] to conclude that R is an S₄-ring.

Jui-Chi Chang

Remark. Q. Deng, M. S. Yenigül and N. Argac have obtained some partial result of this theorem in [5] by a different way.

Acknowledgement

The author is grateful to the referee for his valuable suggestions.

References

- 1. N. Aydin and K. Kaya, Some generalizations in prime rings with (σ, τ) -derivation, Turkish J. Math. 16 (1992), 169-171.
- M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
- 3. J. C. Chang, On (α, β) -derivations of prime rings, *Chinese J. Math.* **22** (1994), 21-30.
- J. C. Chang, On (α, β)-derivation of prime rings having power central values, Bull. Inst. Math. Acad. Sinica 23 (1995), 295-303.
- 5. Q. Deng, M. S. Yenigül and N. Argac, On ideals of prime rings with (α, τ) -derivation, preprint.
- 6. I. N. Herstein, Rings with Involution, Univ. of Chicago Press, Chicago, 1976.
- 7. I. N. Herstein, A note on derivation II, Canad Math. Bull. 22 (1979), 509-511.
- V. K. Kharchenko, Generalized identities with automorphisms, Algebra i Logika 14 (1973), 132-148 (English Translation).

Department of Mathematics, National Taiwan University Taipei, Taiwan