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ON THE STABILITY OF A FUNCTIONAL
EQUATION OF PEXIDER TYPE

Yong-Soo Jung and Kyoo-Hong Park

Abstract. We study the Hyers-Ulam stability of a functional equation of
Pexider type associated with a functional equation f(zy) = zf(y) + f(x)y
which defines derivations in algebras.

1. INTRODUCTION

The problem of stability of functional equations was originally raised by S. M.
Ulam [9] in 1940: given a group V, a metric group W with metric d(-,-), and
a € > 0, does there exist a § > 0 such that if a mapping f : V — W satisfies
d(f(zy), f(x)f(y)) <4 forall z, y € V, then a homomorphism g : V' — W exists
with d(f(x), g(x)) < e for all z € V' ? For Banach spaces the Ulam problem was
first solved by D. H. Hyers [1] in 1941, which states thatif § >0 and f: X — Y
is @ mapping with X, Y Banach spaces, such that

(1.1) 1f(z+y) = f2) = fF)l <0

for all z, y € X, then there exists a unique additive mapping 7' : X — Y such
that
| f(z) = T(z)|| <6

for all z, y € X. Due to this fact, the additive functional equation f(z 4+ y) =
f(z) + f(y) is said to have the Hyers-Ulam stability property on (X,Y). This
terminology is also applied to other functional equations which has been studied by
many authors (see, for example, [2-4, 6]. During the 34th International Symposium
on Functional Equations, G. Maksa [4] posed the problem concerning the Hyers-
Ulam stability of the functional equation

(1.2) flzy) =2f(y) + f(2)y
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on the interval (0, 1], which is usually called a derivation. Recently J. Tabor [8]
gave an answer to the question of Maksa by proving the Hyers-Ulam stability of
the functional equation (1.2) on the interval (0, 1]. In a similar way, Zs. Pales [5]
proved that the functional equation (1.2) for real-valued functions on the interval
[1,00) has the Hyers-Ulam stability . In this note, by using an idea of Tabor [8],
we deal with the Hyers-Ulam stability of the functional equation (1.2) of Pexider

type:
(1.3) fi(zy) =z fa(y) + f3(2)y.

2. HYErs-uLAM StaBILITY OF EQ. (1.3).

We first introduce a theorem of F. Skof [7] concerning the stability of the additive
functional equation f(x + y) = f(x) + f(y) on a restricted domain:

Theorem 2.1. Let X be a Banach space. Given ¢ > 0, let a mapping
f:]0,¢) — X satisfy the inequality

I[f(z+y) — flz)— fyll <o

for some 6 > 0 and for all z, y € [0, ¢) with z +y € [0, ¢). Then there exists an
additive mapping A : R — X such that

1f(z) = A(2)]| < 36
for any x € [0, ¢), where R is the set of all real numbers.
Our main result is the following:

Theorem 2.2. Let X be a Banach space, and let f1, fa, f3: (0,00) — X be
mappings satisfying the inequality

(2.1) 1f1(zy) — 2 fa(y) — fa()yl] <6

for some 6 > 0 and for all z, y € (0,00). Then there exists a solution D :
(0, 00) — X of the functional equation (1.2) such that

(2.2) 1f1(x) = D(2) = (f2(1) + fs(1))z < (12€)d

(2.3) Ifo(z) = D(z) = fo(1)z|| < (124 1)0
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(2.4) Ifs(z) = D(z) — fs(L)z]| < (12e +1)0
for all z € (0, ).

Proof.

Case 1. We first prove (2.2), (2.3) and (2.4) under the inequality (2.1) on the
interval (0, 1].

Let us define the mappings £y, Fb, F5:(0,1] — X by

x x
Fiw) = 1 pyay = 29 gy -
for all x € (0, 1], respectively. Then, by (2.1), we see that F;, F,, Fj satisfy the
inequality

f3(x)

)

[Fi(zy) — Fa(y) — Fa(a)|| < p”
for all z, y € (0, 1]. Define the mappings G1, G2, G3:[0,00) — X by
Gi(u) = Fi(e™"), Ga(u) = Fa(e™"), and Gs(u) = Fs(e™"),

for all u € [0, ), respectively. Then

(2.5) [|G1(u+v) — Go(u) — G3(v)|| < de¥t?

for all u, v € [0,00). Putting v = 0 in (2.5) we get

(2.6) 1G1(u) = Ga(u) — G3(0)]| < de*

for all u € [0, 00). Analogously, if we put w = 0 in (2.5), we have
(2.7) IG1(v) = G2(0) — Gs(v)[| < de”

for all v € [0, 00). We now define a mapping F : [0,00) — X by
(2.8) F(u) = Gi(u) — G2(0) — G3(0)

for all u € [0, 00). We claim that

(2.9) [|[F(u+v) — F(u) — F(v)|| < 35"

for all u, v € [0,00). In fact, it follows from (2.5), (2.6), (2.7) and (2.8) that for
all u, v € [0, 00),

|1F(u+v) = F(u) = F(v)|]
= ||G1(u+v) — Ga(u) — G3(v) + G2(0) + G3(0)|]
< |[|G1(u +v) = Ga(u) = Gs(v)|| + ||Ga(u) = Gi(u) + G3(0)]|
+|Gs(v) = Gi(v) + G2(0)]]
< §eUTY 4 fev + dev
< 35evtv.
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This means that
[[F(u+v) — F(u) — F(u)[| < 36¢°

for all u, v € [0,¢) with u + v < ¢, where ¢ > 1 is an arbitrary given constant.
According to Theorem 2.1, there exists an additive mapping A : R — X such that
[|F(u) — A(u)|| < 9de for all u € [0, c). If we let ¢ — 1 in the last inequality, we
then get

(2.10) [|F(u) — A(u)|| < 9ed
for all u € [0, 1]. Moreover, it follows from (2.9) that

1F(u+1) = F(u) - F(1)|| < 30"+
|F(u+2) — Flu+1) — F(1)|| < 36e"+2

||F(u+k)— Flu+k—1)— F(1)|| < 36evt*
for all w € [0, 1] and k£ € N. Summing up these inequalities we obtain
(2.11) ||[F(u+ k) — F(u) — kF(1)|| < 3de - eutk
for all w € [0,1] and k£ € N. We claim that
(2.12) [|F(v) — A(v)|| < 1260e - €

for all v € [0, 00). Indeed, let v > 0 and let k € NU{0} be given withv—% € [0, 1].
Then, by (2.10) and (2.11), we have

IF@) - A@)| < IF(v) - Fo - k) — kF()|
H[EF (v — k) = A(v = B)|[ + [[A(K) — EF(1)]]
< 3de-e” +90e+ ||A(k) — kF(1)]|
< 3de-e” +90e + k||A(1) — F(1)||
< 3de-e¥ 4+ 96e 4+ 9dev
< 3de(e’ +3(1 +v))
< 126e-e".

Now, from (2.12) and the definitions of F', F;, G; (i = 1,2, 3), it follows that

126e

[1F1(2) = Fa(1) = Fy(1) — A(—lna)[| < 120e - e = =
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for all z € (0,1], i.e

HM 128e

(2.13)

— fo(1) = f5(1) — A(—Inz) H<

for all z € (0,1]. If we put D(z) = zA(—Inx) for all z € (0, 1], we can easily
check that D is a solution of the functional equation (1.2). This and (2.13) yield
that

1f1(2) = D(2) — (f2(1) + fs(1))z|| < (12€)d

for all x € (0, 1] which proves (2.2). It remains to show (2.3) and (2.4). From
(2.6), (2.8) and (2.12), it follows that

1Ga(v) = A(v) = G2(0)[| = [|G2(v) = A(v) + H(v) = G1(v) + G3(0)]]
< [F(v) = A@)|[ + [|G1(v) = Ga(v) = G3(0)]]
< 120e - e¥ + e’ = (12e + 1)de”
for all v € [0, 00), and hence this and the definitions of F5, G5 imply

(12e+1)9

Hf2 A(=Inx) — fo(1 H< (126 + 1)de~n* = .

for all « € (0, 1], that is,

Ifo(z) = D(z) — fo(1)a]] < (12 +1)0

for all = € (0, 1] which verifies (2.3). Similarly, using (2.7), (2.8) and (2.12), we
have

1Gs(v) = A(v) = G3(0)[| = [|G3(v) = A(v) + F(v) = Gi(v) + G2(0)]
< |[F(v) = A(v)[[ + [|G1(v) = G2(0) = G3(v)|
< 120e-e¥ + e’ = (12e + 1)de”
for all v € [0, oo). By this and the definitions of F3, G3, we get

‘ f3 12e+1)6

ACine) — 0] = (120 + 3t =

X

for all « € (0, 1], that is,
[1fs(x) = D(x) — f3(1)z|| < (12e+ 1)d.

Case 2. We now intend to prove (2.2), (2.3) and (2.4) under the inequality
(2.1) on the interval [1, oco). But this is verified by using a similar way as the proof
of Case 1.
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In fact, defining the mappings Fi, F», F3 : [l,00) — X as in the proof of
Case 1, and defining the mappings G1, G2, Gs:[0,00) — X by

Gi(u) = Fi(e"), Ga(u) = Fy(e"), and G3(u) = Fs(e"),

for all u € [0, ), respectively, we see that
(2.14) [|G1(u+ v) — Go(u) — Gs(v)]| < de~ (W) < geutv
for all u, v € [0,00). Setting v = 0 in (2.14) we get
(2.15) [|G1(u) — Ga(u) — G3(0)]| < de*
for all u € [0, 00). Similarly, if we set w = 0 in (2.14), we have
(2.16) [|G1(v) — G2(0) — G3(v)|| < de

for all v € [0, 00). Introducing the mapping F' : [0, co) — X defined as the identity
(2.8) in the proof of Case 1, and making use of (2.14), (2.15) and (2.16), we see
that

|F(u+v) = F(u) = F(v)|| < 3de"™

for all u, v € [0, 00) by following the similar method to the proof of the inequality
(2.9). The remainder follows the similar reasoning to the one of Case 1 by putting
D(z) = zA(lnx) for all z € [1,00). This completes the proof of the theorem. m

The next corollary can be easily obtained from Theorem 2.2.

Corollary 2.3. Let X be a Banach space and let f1, fo, f3 : (0,00) — X be
mappings satisfying the equation

fi(zy) —xfa(y) — f3(x)y =0 forall z, y € (0, 00).

Then there exist a solution D : (0, 00) — X of the functional equation (1.2) and
constants a, b, ¢ such that for all z € (0, o),

fi(z) = D(x) + ax
fo(x) = D(x) + bx
f3(x) = D(x) + cx

witha=b+c.
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