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ON THE STABILITY OF A FUNCTIONAL
EQUATION OF PEXIDER TYPE

Yong-Soo Jung and Kyoo-Hong Park

Abstract. We study the Hyers-Ulam stability of a functional equation of
Pexider type associated with a functional equation f(xy) = xf(y) + f(x)y
which defines derivations in algebras.

1. INTRODUCTION

The problem of stability of functional equations was originally raised by S. M.
Ulam [9] in 1940: given a group V , a metric group W with metric d(·, ·), and
a ε > 0, does there exist a δ > 0 such that if a mapping f : V → W satisfies
d(f(xy), f(x)f(y)) ≤ δ for all x, y ∈ V , then a homomorphism g : V → W exists
with d(f(x), g(x)) ≤ ε for all x ∈ V ? For Banach spaces the Ulam problem was
first solved by D. H. Hyers [1] in 1941, which states that if δ > 0 and f : X → Y
is a mapping with X , Y Banach spaces, such that

(1.1) ||f(x + y) − f(x) − f(y)|| ≤ δ

for all x, y ∈ X , then there exists a unique additive mapping T : X → Y such
that

||f(x)− T (x)|| ≤ δ

for all x, y ∈ X . Due to this fact, the additive functional equation f(x + y) =
f(x) + f(y) is said to have the Hyers-Ulam stability property on (X, Y ). This
terminology is also applied to other functional equations which has been studied by
many authors (see, for example, [2-4, 6]. During the 34th International Symposium
on Functional Equations, G. Maksa [4] posed the problem concerning the Hyers-
Ulam stability of the functional equation

(1.2) f(xy) = xf(y) + f(x)y
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on the interval (0, 1], which is usually called a derivation. Recently J. Tabor [8]
gave an answer to the question of Maksa by proving the Hyers-Ulam stability of
the functional equation (1.2) on the interval (0, 1]. In a similar way, Zs. Páles [5]
proved that the functional equation (1.2) for real-valued functions on the interval
[1,∞) has the Hyers-Ulam stability . In this note, by using an idea of Tabor [8],
we deal with the Hyers-Ulam stability of the functional equation (1.2) of Pexider
type:

(1.3) f1(xy) = xf2(y) + f3(x)y.

2. HYERS-ULAM STABILITY OF EQ. (1.3).

We first introduce a theorem of F. Skof [7] concerning the stability of the additive
functional equation f(x + y) = f(x) + f(y) on a restricted domain:

Theorem 2.1. Let X be a Banach space. Given c > 0, let a mapping
f : [0, c) → X satisfy the inequality

||f(x + y) − f(x) − f(y)|| ≤ δ

for some δ > 0 and for all x, y ∈ [0, c) with x + y ∈ [0, c). Then there exists an
additive mapping A : R → X such that

||f(x)− A(x)|| ≤ 3δ

for any x ∈ [0, c), where R is the set of all real numbers.

Our main result is the following:

Theorem 2.2. Let X be a Banach space, and let f1, f2, f3 : (0,∞) → X be
mappings satisfying the inequality

(2.1) ||f1(xy)− xf2(y)− f3(x)y|| ≤ δ

for some δ > 0 and for all x, y ∈ (0,∞). Then there exists a solution D :
(0,∞) → X of the functional equation (1.2) such that

(2.2) ||f1(x)− D(x)− (f2(1) + f3(1))x|| ≤ (12e)δ

(2.3) ||f2(x) − D(x)− f2(1)x|| ≤ (12e + 1)δ
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(2.4) ||f3(x) − D(x) − f3(1)x|| ≤ (12e + 1)δ

for all x ∈ (0,∞).

Proof.
Case 1. We first prove (2.2), (2.3) and (2.4) under the inequality (2.1) on the

interval (0, 1].
Let us define the mappings F1, F2, F3 : (0, 1] → X by

F1(x) =
f1(x)

x
, F2(x) =

f2(x)
x

, F3(x) =
f3(x)

x

for all x ∈ (0, 1], respectively. Then, by (2.1), we see that F1, F2, F3 satisfy the
inequality

||F1(xy)− F2(y)− F3(x)|| ≤ δ

xy

for all x, y ∈ (0, 1]. Define the mappings G1, G2, G3 : [0,∞) → X by

G1(u) = F1(e−u), G2(u) = F2(e−u), and G3(u) = F3(e−u),

for all u ∈ [0,∞), respectively. Then

(2.5) ||G1(u + v)− G2(u)− G3(v)|| ≤ δeu+v

for all u, v ∈ [0,∞). Putting v = 0 in (2.5) we get

(2.6) ||G1(u) − G2(u)− G3(0)|| ≤ δeu

for all u ∈ [0,∞). Analogously, if we put u = 0 in (2.5), we have

(2.7) ||G1(v)− G2(0)− G3(v)|| ≤ δev

for all v ∈ [0,∞). We now define a mapping F : [0,∞) → X by

(2.8) F (u) = G1(u)− G2(0)− G3(0)

for all u ∈ [0,∞). We claim that

(2.9) ||F (u + v) − F (u) − F (v)|| ≤ 3δeu+v

for all u, v ∈ [0,∞). In fact, it follows from (2.5), (2.6), (2.7) and (2.8) that for
all u, v ∈ [0,∞),

||F (u + v) − F (u) − F (v)||
= ||G1(u + v) − G2(u)− G3(v) + G2(0) + G3(0)||
≤ ||G1(u + v) − G2(u)− G3(v)||+ ||G2(u)− G1(u) + G3(0)||

+||G3(v)− G1(v) + G2(0)||
≤ δeu+v + δeu + δev

≤ 3δeu+v .
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This means that
||F (u + v) − F (u) − F (v)|| ≤ 3δec

for all u, v ∈ [0, c) with u + v < c, where c > 1 is an arbitrary given constant.
According to Theorem 2.1, there exists an additive mapping A : R → X such that
||F (u)−A(u)|| ≤ 9δec for all u ∈ [0, c). If we let c → 1 in the last inequality, we
then get

(2.10) ||F (u) − A(u)|| ≤ 9eδ

for all u ∈ [0, 1]. Moreover, it follows from (2.9) that

||F (u + 1) − F (u) − F (1)|| ≤ 3δeu+1

||F (u + 2) − F (u + 1) − F (1)|| ≤ 3δeu+2

...

||F (u + k) − F (u + k − 1) − F (1)|| ≤ 3δeu+k

for all u ∈ [0, 1] and k ∈ N. Summing up these inequalities we obtain

(2.11) ||F (u + k) − F (u) − kF (1)|| ≤ 3δe · eu+k

for all u ∈ [0, 1] and k ∈ N. We claim that

(2.12) ||F (v)− A(v)|| ≤ 12δe · ev

for all v ∈ [0,∞). Indeed, let v ≥ 0 and let k ∈ N∪{0} be given with v−k ∈ [0, 1].
Then, by (2.10) and (2.11), we have

||F (v)− A(v)|| ≤ ||F (v)− F (v − k) − kF (1)||
+||F (v − k) − A(v − k)||+ ||A(k)− kF (1)||

≤ 3δe · ev + 9δe + ||A(k)− kF (1)||
≤ 3δe · ev + 9δe + k||A(1)− F (1)||
≤ 3δe · ev + 9δe + 9δev

≤ 3δe(ev + 3(1 + v))

≤ 12δe · ev .

Now, from (2.12) and the definitions of F , Fi, Gi (i = 1, 2, 3), it follows that

||F1(x)− F2(1)− F3(1) − A(−lnx)|| ≤ 12δe · e−lnx =
12δe

x
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for all x ∈ (0, 1], i.e.,

(2.13)
∥
∥
∥
f1(x)

x
− f2(1)− f3(1)− A(−lnx)

∥
∥
∥ ≤ 12δe

x

for all x ∈ (0, 1]. If we put D(x) = xA(−lnx) for all x ∈ (0, 1], we can easily
check that D is a solution of the functional equation (1.2). This and (2.13) yield
that

||f1(x)− D(x)− (f2(1) + f3(1))x|| ≤ (12e)δ

for all x ∈ (0, 1] which proves (2.2). It remains to show (2.3) and (2.4). From
(2.6), (2.8) and (2.12), it follows that

||G2(v)− A(v) − G2(0)|| = ||G2(v) − A(v) + H(v)− G1(v) + G3(0)||
≤ ||F (v)− A(v)||+ ||G1(v)− G2(v)− G3(0)||
≤ 12δe · ev + δev = (12e + 1)δev

for all v ∈ [0,∞), and hence this and the definitions of F2, G2 imply
∥
∥
∥
f2(x)

x
− A(−lnx) − f2(1)

∥
∥
∥ ≤ (12e + 1)δe−lnx =

(12e + 1)δ
x

for all x ∈ (0, 1], that is,

||f2(x) − D(x) − f2(1)x|| ≤ (12e + 1)δ

for all x ∈ (0, 1] which verifies (2.3). Similarly, using (2.7), (2.8) and (2.12), we
have

||G3(v)− A(v) − G3(0)|| = ||G3(v) − A(v) + F (v)− G1(v) + G2(0)||
≤ ||F (v)− A(v)||+ ||G1(v)− G2(0)− G3(v)||
≤ 12δe · ev + δev = (12e + 1)δev

for all v ∈ [0,∞). By this and the definitions of F3, G3, we get
∥
∥
∥
f3(x)

x
− A(−lnx) − f3(1)

∥
∥
∥ ≤ (12e + 1)δe−lnx =

(12e + 1)δ
x

for all x ∈ (0, 1], that is,

||f3(x) − D(x) − f3(1)x|| ≤ (12e + 1)δ.

Case 2. We now intend to prove (2.2), (2.3) and (2.4) under the inequality
(2.1) on the interval [1,∞). But this is verified by using a similar way as the proof
of Case 1.
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In fact, defining the mappings F1, F2, F3 : [1,∞) → X as in the proof of
Case 1, and defining the mappings G1, G2, G3 : [0,∞) → X by

G1(u) = F1(eu), G2(u) = F2(eu), and G3(u) = F3(eu),

for all u ∈ [0,∞), respectively, we see that

(2.14) ||G1(u + v)− G2(u) − G3(v)|| ≤ δe−(u+v) ≤ δeu+v

for all u, v ∈ [0,∞). Setting v = 0 in (2.14) we get

(2.15) ||G1(u) − G2(u) − G3(0)|| ≤ δeu

for all u ∈ [0,∞). Similarly, if we set u = 0 in (2.14), we have

(2.16) ||G1(v) − G2(0) − G3(v)|| ≤ δev

for all v ∈ [0,∞). Introducing the mapping F : [0,∞) → X defined as the identity
(2.8) in the proof of Case 1, and making use of (2.14), (2.15) and (2.16), we see
that

||F (u + v)− F (u) − F (v)|| ≤ 3δeu+v

for all u, v ∈ [0,∞) by following the similar method to the proof of the inequality
(2.9). The remainder follows the similar reasoning to the one of Case 1 by putting
D(x) = xA(lnx) for all x ∈ [1,∞). This completes the proof of the theorem.

The next corollary can be easily obtained from Theorem 2.2.

Corollary 2.3. Let X be a Banach space and let f1, f2, f3 : (0,∞) → X be
mappings satisfying the equation

f1(xy)− xf2(y)− f3(x)y = 0 for all x, y ∈ (0,∞).

Then there exist a solution D : (0,∞) → X of the functional equation (1.2) and
constants a, b, c such that for all x ∈ (0,∞),

f1(x) = D(x) + ax

f2(x) = D(x) + bx

f3(x) = D(x) + cx

with a = b + c.
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