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ON SUPERDERIVATIONS AND LOCAL SUPERDERIVATIONS

Ajda Fošner and Maja Fošner

Abstract. In this paper we describe superderivations in certain superalgebras
by their actions on elements satisfying some special conditions. One of the
main results is applied to local superderivations on some certain superalgebras.

1. INTRODUCTION

Throughout the paper, by an algebra we shall mean an algebra over a fixed
unital commutative ring Φ, and we shall assume that Φ contains the element 1

2 (i.e.
1 + 1 is an invertible element).

Let A be an algebra and let M be an A-bimodule. Recall that a derivation is a
Φ-linear map d : A → M such that d(xy) = d(x)y+xd(y) for all x, y ∈ A. In [2]
Bresar characterized derivations in certain rings containing noncentral idempotents
by their actions on elements satisfying some special conditions. As an application
he obtained some new results on local derivations (they are defined below). The
main goal of this paper is to prove the superalgebra version of these results. It
should be also mentioned that several ideas from [2] will be used in our proofs.

Let A be an associative superalgebra, that is, a Z2-graded associative algebra.
This means that there exist Φ-submodules A0 and A1 of A such that A = A0 ⊕A1

and A0A0 ⊆ A0 (A0 is a subalgebra of A), A0A1 ⊆ A1,A1A0 ⊆ A1 (A1 is an
A0-bimodule), and A1A1 ⊆ A0. We say that A0 is the even and A1 is the odd
part of A. An element x ∈ Ai, i = 0 or i = 1, is said to be homogeneous of
degree i. In this case we write |x| = i. The set of all homogeneous elements of A
will be denoted by H(A). An ideal I of A is said to be graded if I = I0 ⊕ I1,
where I0 = I ∩ A0 and I1 = I ∩ A1. A superalgebra A is called prime if the
product of any two nonzero graded ideals in A is nonzero, and is called simple if
its only graded ideals are 0 and A. An A-bimodule M is an A-superbimodule if
M = M0 ⊕M1 and the multiplication should be self-explanatory.
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A superderivation of degree 0 is a Φ-linear map d 0 : A → M such that
d0(A0) ⊆ M0, d0(A1) ⊆ M1 and d0(xy) = d0(x)y+xd0(y) for all x, y ∈ H(A).
This is actually a derivation from A to M. A superderivation of degree 1 is a
Φ-linear map d1 : A → M such that d1(A0) ⊆ M1, d1(A1) ⊆ M0 and d1(xy) =
d1(x)y + (−1)|x|xd1(y) for all x, y ∈ H(A). A superderivation d : A → M is a
sum of superderivations d0 and d1.

Let A be an algebra and let M be an A-bimodule. A local derivation is a
Φ-linear map d : A → M such that for every x ∈ A there exists a derivation
dx : A → M such that d(x) = dx(x). The standard problem, initiated by Kadison
[9] and Larson and Sourour [10], is to find conditions implying that a local derivation
is actually a derivation. A number of papers dealing with this problem have been
published, see for example [1, 3, 6-8, 11-18].

Motivated by these results we introduce the following definition.

Definition 1.1. Let A be an associative superalgebra and let M be an A-
superbimodule. Further, let i = 0 or i = 1. A Φ-linear map di : A → M is called
a local superderivation of degree i if for every x ∈ A there exists a superderivation
of degree i dix : A → M such that di(x) = dix(x). A local superderivation is a
sum of a local superderivation of degree 0 and a local superderivation of degree 1.

The results on local superderivations will be actually obtained as corollaries
to our main results in which we shall study maps satisfying certain more general
conditions. In order to present these conditions we introduce and fix some notation.
Throughout the paper A = A0 ⊕A1 will be an associative superalgebra and M =
M0 ⊕ M1 will be an A-superbimodule. By E we denote the set E = E0 ⊕ E1,
where E0 = {e ∈ A0 | e2 = e} (E0 is the set of all idempotents in A0) and
E1 = {e ∈ A1 | there exists e′ ∈ E0 such that (e′ + e)2 = e′ + e}. Note that the
condition (e′ + e)2 = e′ + e, e′ ∈ E0, e ∈ E1, implies e2 = 0 and e′e + ee′ = e.

Further, by R = R0⊕R1 we denote the subsuperalgebra of A generated by E , and
by I = I0 ⊕ I1 we denote the graded ideal generated by [E0,A]. Here, [ . , . ]
denotes the commutator.

The next simple lemma will show us that the existence of merely one noncentral
idempotent in A0 implies that R contains a nonzero graded ideal. By a central
idempotent we mean an idempotent e such that [e, x] = 0 for all x ∈ A.

Lemma 1.2. I ⊆ R.

Proof. Let e ∈ E0 and x ∈ H(A). Note that the elements e + ex − exe and
e+xe−exe are also in E . Namely, if x ∈ A0 then clearly e+ex−exe, e+xe−exe ∈
E0. In the case when x ∈ A1 we have ex − exe, xe − exe ∈ E1 (e′ = e). Since
E ⊆ R we get (e + ex − exe) − (e + xe − exe) = [e, x] ∈ R. Using the proof of
[2, Lemma 2.1] the result follows.
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We will get particularly nice results for superalgebras A such that A = R. So,
the natural question that appears is when A = R. Lemma 1.2 makes it possible for
us to give a few examples of such superalgebras:

(a) A is a simple superalgebra containing a nontrivial idempotent in A0,
(b) A is a unital superalgebra containing an idempotent e0 ∈ A0 such that graded

ideals generated by e0 and 1 − e0, respectively, are both equal to A,
(c) A = Mn(B), the superalgebra of all n × n matrices over any unital algebra

B, where n ≥ 2.

By a nontrivial idempotent we mean an idempotent different from 0 and 1.
Simple superalgebras (as well as prime superalgebras) do not contain nontrivial
central idempotents in the even part. Therefore, if A is a superalgebra of the type
(a), we have I �= 0, which yields R = A by Lemma 1.2.

Now assume that A satisfies the condition (b). Then in particular we have∑
j xj(1 − e0)yj = e0 for some xj , yj ∈ H(A), which in turn implies e0 =∑
j [e0, xj](1 − e0)yj ∈ I. Analogously,

∑
j x′

je0y
′
j = 1 − e0 for some x′j, y

′
j ∈

H(A) and hence 1−e0 =
∑

j[x
′
j, e0]e0y

′
j ∈ I. Consequently, 1 ∈ I, which implies

that I = R = A.
Finally, let A be of the type (c). Then it is not difficult to see that A satisfies

(b). Namely, one can choose, for example, the matrix unit E11 for e0.
Let i = 0 or i = 1 and let di : A → M be a Φ-linear map. We shall consider

the following conditions:

(di1) xy = yz = 0 ⇒ (x0 + (−1)ix1)di(y)z = 0

(x = x0 + x1, y, z ∈ A = A0 ⊕A1),

(di2) xy = 0 ⇒ di(x)y + (x0 + (−1)ix1)di(y) = 0

(x = x0 + x1, y ∈ A = A0 ⊕A1).

Note that maps satisfying the conditions (d02) and (d12) are clearly special
cases of maps satisfying the conditions (d01) and (d11), respectively.

Suppose that di : A → M, i = 0, 1, is a superderivation of degree i. Pick any
x = x0 + x1, y ∈ A = A0 ⊕A1 such that xy = 0. It follows that

0 = di(xy) = di(x)y + (x0 + (−1)ix1)di(y).

Further, if xy = yz = 0, z ∈ A, we arrive at

0 = di(xy)z = di(x)yz + (x0 + (−1)ix1)di(y)z = (x0 + (−1)ix1)di(y)z.

Thus, every superderivation of degree 0 satisfies the conditions (d01) and (d02).
Similarly, every superderivation of degree 1 satisfies the conditions (d11) and (d12).
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The obvious problem, which is the main issue of this paper, is to show that in
appropriate settings the converses are true.

There is a simple link between local superderivations of degree i, i = 0, 1, and
these conditions. Namely, if di : A → M is a local superderivation of degree i,
then for all x = x0 + x1, y, z ∈ A = A0 ⊕A1 we have

(x0 + (−1)ix1)di(y)z = (x0 + (−1)ix1)diy(y)z = diy(xy)z − diy(x)yz

and hence (x0 + (−1)ix1)di(y)z = 0 in the case when xy = yz = 0. Thus, local
superderivations of degree i satisfy (di1).

2. CONDITIONS (d01) AND (d11)

First we shall consider the conditions (d01) and (d11). The following theo-
rem plays an important role in this section. As we shall see, the results on local
superderivations will follow from those on the conditions (d01) and (d11).

Theorem 2.1. Let A be a unital superalgebra, let M be a unital A-superbi-
module, and let di : A → M, i = 0, 1, be a Φ-linear map satisfying d i(A0) ⊆ Mi,
di(A1) ⊆ M1+i (index modulo 2), (di1), and di(1) = 0. Then the restriction of d i

to R is a superderivation of degree i. Moreover,

(1)
di(rxs) + (−1)i|r|rdi(x)s = di(rx)s + (−1)i|r|rdi(xs)

(r, s ∈ H(R), x ∈ H(A)),

(2)
I
(
di(xy)− di(x)y − (−1)i|x|xdi(y)

)
I = 0

(x, y ∈ H(A)).

Proof. Let e and f be idempotents in A and pick any x ∈ A. It is easy to see
that the following identities hold true

(3)

(1− e) · exf = exf · (1 − f) = 0,

e · (1− e)xf = (1 − e)xf · (1− f) = 0,

(1− e) · ex(1 − f) = ex(1− f) · f = 0,

e · (1− e)x(1 − f) = (1− e)x(1− f) · f = 0.

Setting e = e0, f = f0 ∈ E0 in (3) and using (di1) we obtain

(1− e0)di(e0xf0)(1− f0) = 0,

e0di((1− e0)xf0)(1− f0) = 0,

(1− e0)di(e0x(1 − f0))f0 = 0,

e0di((1− e0)x(1− f0))f0 = 0.
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It follows that

(4) di(e0xf0) + e0di(x)f0 = di(e0x)f0 + e0di(xf0)

for all e0, f0 ∈ E0 and x ∈ A.
Further, let e = e0 ∈ E0 and let f = f0 +f1 ∈ A be an idempotent with f0 ∈ E0

and f1 ∈ E1. Using (3) and (di1) we arrive at

(1− e0)di(e0xf)(1 − f) = 0,

e0di((1− e0)xf)(1− f) = 0,

(1− e0)di(e0x(1 − f))f = 0,

e0di((1− e0)x(1− f))f = 0.

Hence di(e0xf) + e0di(x)f = di(e0x)f + e0di(xf). From (4) we get

(5) di(e0xf1) + e0di(x)f1 = di(e0x)f1 + e0di(xf1)

for all e0 ∈ E0, f1 ∈ E1 and x ∈ A.
Now pick f = f0 ∈ E0 and an idempotent e = e0 + e1 ∈ A, where e0 ∈ E0 and

e1 ∈ E1. Again using (3) and (di1) we obtain

(1 − e0 − (−1)ie1)di(exf0)(1− f0) = 0,

(e0 + (−1)ie1)di((1− e)xf0)(1 − f0) = 0,

(1 − e0 − (−1)ie1)di(ex(1 − f0))f0 = 0,

(e0 + (−1)ie1)di((1− e)x(1− f0))f0 = 0.

By (3) we infer

(6) di(e1xf0) + (−1)ie1di(x)f0 = di(e1x)f0 + (−1)ie1di(xf0)

for all e1 ∈ E1, f0 ∈ E0 and x ∈ A.
Finally, let e = e0 + e1 ∈ A and f = f0 + f1 ∈ A be idempotents with

e0, f0 ∈ E0 and e1, f1 ∈ E1. Using the same procedure as above we arrive at

(7) di(e1xf1) + (−1)ie1di(x)f1 = di(e1x)f1 + (−1)ie1di(xf1)

for all e1, f1 ∈ E1 and x ∈ A. By (4), (5), (6), and (7) we proved that

(8) di(exf) + (−1)i|e|edi(x)f = di(ex)f + (−1)i|e|edi(xf)

for all e, f ∈ H(E) and x ∈ H(A). In particular, by setting x = 1 and using
di(1) = 0 we get

(9) di(ef) = di(e)f + (−1)i|e|edi(f)
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for all e, f ∈ H(E).
In the next step we will prove that the restriction of di to R is a superderivation

of degree i. All we have to do is to show that

(10)
di(e1e2 . . . en) =

di(e1)e2 . . . en−1en + (−1)i|e1|e1di(e2)e3 . . . en−1en+

+ . . . + (−1)i|e1e2...en−1|e1e2 . . . en−1di(en)

holds true for all n ∈ N \ {1}, where e1, e2, . . . , en ∈ H(E). We shall use the
induction on n. By (9) our assertion is already proved for n = 2. Let 2 < n and
assume that the statement holds true for all positive integers smaller than n. Using
(8) we have

di(e1e2 . . . en) = di(e1e2 . . . en−1)en +

+(−1)i|e1|e1di(e2 . . . en)− (−1)i|e1|e1di(e2 . . . en−1)en

for all e1, e2, . . . , en ∈ H(E). This together with induction hypothesis yields (10).
Thus we proved that the restriction of di to R is a superderivation of degree i, as
desired.

For any a ∈ H(A) we shall denote the sets

Sa = {r ∈ H(R) | di(rxa) + (−1)i|r|rdi(x)a = di(rx)a + (−1)i|r|rdi(xa)

for all x ∈ H(A)},
Ta = {s ∈ H(R) | di(axs) + (−1)i|a|adi(x)s = di(ax)s + (−1)i|a|adi(xs)

for all x ∈ H(A)}.

Given r, r′ ∈ Sa we have

di(rr′xa) = di(rr′x)a + (−1)i|r|rdi(r′xa) − (−1)i|r|rdi(r′x)a

= di(rr′x)a + (−1)i|r|r
(
di(r′x)a + (−1)i|r′|r′di(xa)− (−1)i|r′|r′di(x)a

)

−(−1)i|r|rdi(r′x)a = di(rr′x)a + (−1)i|rr′|rr′di(xa) − (−1)i|rr′|rr′di(x)a

for all x ∈ H(A). Thus we showed that rr′ ∈ Sa for every pair r, r′ ∈ Sa.
Similarly, we can show that ss′ ∈ Ta for every pair s, s′ ∈ Ta. By (8) we have
H(E) ⊆ Sf for all f ∈ H(E), and consequently H(R) ⊆ Sf for all f ∈ H(E).
Therefore, f ∈ Tr for every f ∈ H(E) and every r ∈ H(R). This yields that
H(R) ⊆ Tr for every r ∈ H(R). Thus we proved (1).

Now pick u ∈ H(I), x ∈ H(A), and s ∈ H(R). Then ux ∈ H(I) ⊆ H(R)
by Lemma 1.2. Since di is a superderivation of degree i on R, we have

di(uxs) = di(ux)s + (−1)i|ux|uxdi(s).
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On the other hand, since u, s ∈ H(R), it follows from (1) that

di(uxs) = di(ux)s + (−1)i|u|udi(xs) − (−1)i|u|udi(x)s.

Comparing the last two identities we obtain

(11) u(di(xs)− di(x)s− (−1)i|x|xdi(s)) = 0

for all u ∈ H(I), x ∈ H(A), and s ∈ H(R). Now let y ∈ H(A) and v ∈ H(I).
Since v ∈ H(R) we get from (11)

u(di((xy)v)− di(xy)v − (−1)i|xy|xydi(v)) = 0.

On the other hand, since yv, v ∈ I ⊆ R and ux ∈ I, (11) implies

0 = u(di(x(yv))− di(x)yv − (−1)i|x|xdi(yv))

= u(di(x(yv))− di(x)yv − (−1)i|x|x(di(y)v + (−1)i|y|ydi(v))).

Comparing the last two identities we get (2). Thereby the proof is completed.

Corollary 2.2. If R = A, then di : A → M, i = 0, 1, is a superderivation of
degree i.

Corollary 2.3. Let di : A → A, i = 0, 1, be a Φ-linear map satisfying
di(A0) ⊆ Ai, di(A1) ⊆ A1+i (index modulo 2), (di1), and di(1) = 0. If A
is a prime superalgebra containing a nontrivial idempotent in A 0, then di is a
superderivation of degree i.

Note that the conclusions of Theorem 2.1 hold also for local superderivations
di : A → M, i = 0, 1, of degree i.

Now let A be a nonunital superalgebra and let di : A → M, i = 0, 1, be a
local superderivation of degree i. Then we can consider a superalgebra A′ obtained
by adjoining a unity in A. Setting 1m = m = m1 for every m ∈ M, M then
becomes a unital A′-superbimodule. Extend di to A′ by defining di(1) = 0. Note
that di is a local superderivation of degree i on A′. Therefore the conclusions of
Theorem 2.1 hold for local superderivations di : A → M even when A and M are
not unital. In particular, every superalgebra A with a noncentral idempotent in A0

contains a nonzero graded ideal I such that every local superderivation of degree
i di : A → M, i = 0, 1, is a superderivation of degree i on I. Thus, every local
superderivation from A to M is a superderivation on I.

Corollary 2.4. If R = A, then every local superderivation d : A → M is a
superderivation.
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Proof. Let di : A → M, i = 0, 1, be a local superderivation of degree i. Hence,
di satisfies (di1). According to Theorem 2.1 it follows that di is a superderivation
of degree i on A. Consequently, every local superderivation d : A → M is a
superderivation.

Corollary 2.5. Let A be a prime superalgebra containing a nontrivial idem-
potent in A0. Then every local superderivation d : A → A is a superderivation.

Proof. According to our assumption A contains a nonzero graded ideal I. Now
let di : A → A, i = 0, 1, be a local superderivation of degree i. Using Theorem 2.1
it follows that (2) holds true. Since A is prime, di is a superderivation of degree i

on A. Consequently, every local superderivation d : A → A is a superderivation.

3. CONDITIONS (d02) AND (d12)

In this section we shall consider the conditions (d02) and (d12). Clearly, the
condition (d02) implies the condition (d01) and (d12) implies (d11). Thus, the
results of the previous section give some conclusions for maps satisfying (d02) or
(d12). However, as we shall see, we will obtain some stronger results. In particular,
we will not assume that our superalgebras and superbimodules are unital.

Theorem 3.1. Let A be a superalgebra, let M be an A-superbimodule, and let
di : A → M, i = 0, 1, be a Φ-linear map satisfying d i(A0) ⊆ Mi, di(A1) ⊆ M1+i

(index modulo 2), and (di2). Then

(12)
di(xr)z + (−1)i|xr|xrdi(z) = di(x)rz + (−1)i|x|xdi(rz)

(x, z ∈ H(A), r ∈ H(R)),

(13)

(−1)i|wtz|wtz(di(xy) − di(x)y − (−1)i|x|xdi(y))

= (di(wt) − di(w)t − (−1)i|w|wdi(t))zxy

(t ∈ H(A2I), x, y, z, w ∈ H(A)).

Proof. Let e be an idempotent in A and let x, z ∈ H(A). Then

(14)
(x − xe) · ez = 0,

xe · (z − ez) = 0.

First suppose that e = e0 ∈ E0. Using (di2) it follows that

di(x − xe0)e0z + (−1)i|xe0|(x − xe0)di(e0z) = 0,

di(xe0)(z − e0z) + (−1)i|xe0|xe0di(z − e0z) = 0.
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These two identities imply

(15) di(xe0)z + (−1)i|xe0|xe0di(z) = di(x)e0z + (−1)i|x|xdi(e0z)

for all x, z ∈ H(A) and e0 ∈ E0. Now let e = e0 + e1 ∈ A be an idempotent,
where e0 ∈ E0 and e1 ∈ E1. Using (14), (di2), and (15) it follows that

di(xe1)z + (−1)i|xe1|xe1di(z) = di(x)e1z + (−1)i|x|xdi(e1z)

for all x, z ∈ H(A) and e1 ∈ E1. Thus we proved

(16) di(xe)z + (−1)i|xe|xedi(z) = di(x)ez + (−1)i|x|xdi(ez)

for all x, z ∈ H(A) and e ∈ H(E). Let

T = {r ∈ H(A) | di(xr)z + (−1)i|xr|xrdi(z) = di(x)rz + (−1)i|x|xdi(rz)

for all x, z ∈ H(A)}.

Given r, r′ ∈ T and x, z ∈ H(A) we have

di(xrr′)z = di(xr)r′z + (−1)i|xr|xrdi(r′z) − (−1)i|xrr′|xrr′di(z)

= di(x)rr′z + (−1)i|x|xdi(rr′z) − (−1)i|xrr′|xrr′di(z).

Therefore we proved that rr′ ∈ T . Since H(E) ⊆ T by (16), we get H(R) ⊆ T .
This proves (12).

Let u ∈ H(I) and x, y, z, w,w′, w′′ ∈ H(A). Then uzx, w′′uz, w′w′′u ∈
H(I) ⊆ H(R) by Lemma 1.2. Using (12) we obtain

ww′w′′di(uzxy) = (−1)i|w′′|ww′di(w′′uzx)y + (−1)i|uzx|ww′w′′uzxdi(y)

−(−1)i|w′′|ww′di(w′′)uzxy

= (−1)i|w′′|w((−1)i|w′|di(w′w′′uz)x + (−1)i|w′′uz|w′w′′uzdi(x)

−(−1)i|w′|di(w′)w′′uzx)y + (−1)i|uzx|ww′w′′uzxdi(y)

−(−1)i|w′′|ww′di(w′′)uzxy

= (−1)i|w′′w′|((−1)i|w|di(ww′w′′u)z + (−1)i|w′w′′u|ww′w′′udi(z)

−(−1)i|w|di(w)w′w′′uz)xy + (−1)i|uz|ww′w′′uzdi(x)y

−(−1)i|w′′w′|wdi(w′)w′′uzxy + (−1)i|uzx|ww′w′′uzxdi(y)

−(−1)i|w′′|ww′di(w′′)uzxy.

On the other hand, since uz, w′′u ∈ H(R), we arrive at
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ww′w′′di(uzxy) = (−1)i|w′′|ww′di(w′′uz)xy + (−1)i|uz|ww′w′′uzdi(xy)

−(−1)i|w′′|ww′di(w′′)uzxy

= (−1)i|w′′|w((−1)i|w′|di(w′w′′u)z

+(−1)i|w′′u|w′w′′udi(z)− (−1)i|w′|di(w′)w′′uz)xy

+(−1)i|uz|ww′w′′uzdi(xy)− (−1)i|w′′|ww′di(w′′)uzxy.

Comparing so obtained identities and write t = w ′w′′u we get

(−1)i|wtz|wtz(di(xy)− di(x)y − (−1)i|x|xdi(y))
= (di(wt) − di(w)t− (−1)i|w|wdi(t))zxy

for all t ∈ H(A2I), x, y, z, w ∈ H(A). Thereby the proof is completed.

In the case when A = R, (12) can be read as

(17)
di(xy)z + (−1)i|xy|xydi(z) = di(x)yz + (−1)i|x|xdi(yz)
(x, y, z ∈ H(A)).

Assume that A and M are unital. Let x = z = 1. Using (17) we obtain λ =
di(1) ∈ Z(M) = {m ∈ H(M) | (−1)i|x|xm = mx for all x ∈ H(A)}. If
i = 0, then Z(M) is actually the center of M. Setting z = 1, it follows that
δi : x 	→ di(x)− λx is a superderivation of degree i. Namely,

δi(xy) = di(xy)− λxy

= di(x)y + (−1)i|x|xdi(y)− 2λxy

= δi(x)y + λxy + (−1)i|x|xδi(y)− λxy

= δi(x)y + (−1)i|x|xδi(y)

for all x, y ∈ H(A). Thus we have the next corollary.

Corollary 3.2. If R = A, then di : A → M, i = 0, 1, satisfies (17). Moreover,
if A and M are unital, then λ = d i(1) ∈ Z(M) and there exists a superderivation
of degree i δi : A → M such that di(x) = δi(x) + λx for all x ∈ H(A).

Corollary 3.3. Let A be a prime superalgebra containing a nontrivial idem-
potent in A0 and let d0 : A → A be a Φ-linear map satisfying d 0(A0) ⊆ A0,
d0(A1) ⊆ A1, and (d02). Then there exist λ in the extended centroid of A and
a superderivation of degree 0 δ0 from A into the central closure of A such that
d0(x) = δ0(x) + λx for all x ∈ A.
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Proof. According to our assumption (13) holds true and A2I �= 0. Namely, if
A2I = 0 then I = 0 by the primeness of A. Since A does not contain a nontrivial
central idempotent in A0 it follows that I �= 0. Let us fix w ∈ A and t ∈ A2I
such that wt �= 0. By (13) we have

wtz(d0(wt) − d0(w)t− wd0(t)) = (d0(wt) − d0(w)t − wd0(t))zwt

for all z ∈ A. Using the above equality and [5, Lemma 3.2] there exists µ in
the extended centroid C of A (for more details on the extended centroid of prime
superalgebras see [5]) such that

µwt = d0(wt) − d0(w)t− wd0(t).

But then (13) implies

wtz(d0(xy)− d0(x)y − xd0(y) − µxy) = 0

for all x, y, z ∈ A. By the primeness of A we obtain

d0(xy)− d0(x)y − xd0(y) = µxy

for all x, y ∈ A. Thereby d0(x) = δ0(x) − µx for all x ∈ A, where δ0 is a
superderivation of degree 0 from A into the central closure of A. Setting λ = −µ

we get the desired conclusion.

In the case when A is unital δ0 maps A into itself and λ = d0(1) ∈ Z(A),
where Z(A) denotes the center of A.

Corollary 3.4. Let A be a prime superalgebra containing a nontrivial idem-
potent in A0 and let d1 : A → A be a Φ-linear map satisfying d 1(A0) ⊆ A1,
d1(A1) ⊆ A0, and (d12). Then d1 is a superderivation of degree 1.

Proof. According to our assumptions there exist elements w ∈ A and t ∈ A2I
such that wt �= 0 (see above).

First assume that the odd part C1 of the extended centroid C = C0 ⊕ C1 of A is
zero. Using (13) and [5, Theorem 3.5 (i)] we obtain

wtz(d1(xy)− d1(x)y − (−1)|x|xd1(y)) = 0

for all x, y, z ∈ H(A). By the primeness of A it follows that

d1(xy)− d1(x)y − (−1)|x|xd1(y) = 0

for all x, y ∈ H(A). Thus we proved that d1 is a superderivation of degree 1 on A.
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Now suppose that C1 �= 0. By (14) we have

(−1)|wt|wtz(d1(xy)− d1(x)y − (−1)|x|xd1(y)) =
(d1(wt)− d1(w)t − (−1)|w|wd1(t))zxy

for all x, y ∈ H(A) and z ∈ A0. Using [5, Theorem 3.5 (ii)] the above equality
holds true also for all z ∈ A1. On the other hand we have (by (13))

−(−1)|wt|wtz(d1(xy)− d1(x)y − (−1)|x|xd1(y)) =
(d1(wt) − d1(w)t− (−1)|w|wd1(t))zxy

for all x, y ∈ H(A) and z ∈ A1. Comparing the last two identities we get
wtz(d1(xy) − d1(x)y − (−1)|x|xd1(y)) = 0 for all x, y ∈ H(A) and z ∈ A1.
Analogously we can prove that this identity holds true for all x, y ∈ H(A) and
z ∈ A0, which in turn implies that

wtz(d1(xy) − d1(x)y − (−1)|x|xd1(y)) = 0

for all x, y ∈ H(A) and z ∈ A. The primeness of A implies that

d1(xy)− d1(x)y − (−1)|x|xd1(y) = 0

for all x, y ∈ H(A). Thereby d1 is a superderivation of degree 1 on A.
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