
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 11, No. 5, pp. 1301-1313, December 2007
This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON RADIAL DISTRIBUTION OF JULIA SETS
OF MEROMORPHIC FUNCTIONS

Sheng Wang

Abstract. In this paper, we mainly investigate the radial distribution of the
Julia set of a transcendental meromorphic function with finitely many deficient
values.

1. INTRODUCTION

Let f(z) be a transcendental meromorphic function in the complex plane C and
fn be the nth iterate of f , i.e. f0 = 1, f1 = f, f2 = f(f), fn = f(fn−1). For
n > 1, fn(z) is well defined in C except for a possible countable set below:

{z ∈ C : fk(z) = ∞, k = 1, 2, · · · , n− 1}.

Fatou set F (f) of f(z) is defined by

F (f) = {z ∈ C : {fn} is defined and normal in a neighborhood of z}.

Julia set J(f) of f(z) is the complement of F (f) in C = C ∪ {∞}. F (f) is
open and J(f) is closed, non-empty.

For a θ ∈ [0, 2π), arg z = θ is called the radial distribution of J(f), if for any
small ε > 0, Ω(θ − ε, θ + ε) ∩ J(f) is unbounded, where

Ω(θ − ε, θ + ε) = {z ∈ C : arg z ∈ (θ − ε, θ + ε)}.

RD(f) denotes the set of all radial distributions of J(f). Obviously, mesRD(f)
is closed and measurable. mesRD(f) denotes the linear measure of RD(f).
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Some standard notations of Nevanlinna theory are used in this paper. T (r, f),
N (r, f) and N (r, 1

f ) are defined in [2]. For a ∈ C, if

δ(a, f) = 1 − lim sup
r→∞

N (r, 1
f−a)

T (r, f)
> 0,

then a is called a Nevanlinna deficient value of f(z), δ(a, f) is called the deficient
number of f(z) at a. δ(∞, f) is the deficient number of f(z) at ∞, which is
defined by

δ(∞, f) = 1− lim sup
r→∞

N (r, f)
T (r, f)

.

The growth order σ(f) and lower order µ(f) of f(z) are defined respectively by

σ(f) = lim sup
r→∞

logT (r, f)
log r

and
µ(f) = lim inf

r→∞
logT (r, f)

log r
.

Let W ⊂ C be a hyperbolic domain, that is, C\W contains at least three points.
There exists the hyperbolic metric λW (z)|dz| on W with Gaussian curvature −4.
Let ∆ be a unit disc and h(z) be a holomorphic universal covering map of W from
∆, then the hyperbolic density λW on W is expressed as:

λW (h(z))|h′(z)| = 1
1 − |z|2 , z ∈ ∆,

where the hyperbolic density λ∆ on ∆ is defined by:

λ∆(z) =
1

1 − |z|2 .

For an a ∈ C\W , define

CW (a) = inf{λW (z)δW (a) : ∀z ∈ W},

where δW (z) is a Euclidean distance between z and ∂W . For a finite number
a ∈ J(f), if there is a component U in F (f) such that CU (a) > 0, then we call
CF (f)(a) > 0, where f(z) is a transcendental meromorphic function in C. For
example, Ctan z(0) > 0, 0 ∈ J(tan z).

2. RADIAL DISTRIBUTION OF JULIA SETS

Let f(z) be a transcendental entire function in C. If σ(f) < ∞, Baker [1]
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proved that J(f) cannot lie in finitely many lines beginning from the original point.
But for an arbitrarily small d > 0, Baker[1] constructed an entire function f(z),
dependent on d, of infinite order satisfying

J(f) ⊂ {z ∈ C : | arg z| < d, Rez > 0}.

So mesRD(f) < d. We conclude µ(f) = ∞ by the following Theorem A, see [3]:

Theorem A. Let f(z) be a transcendental entire function in C with µ(f) < ∞.
Then mesRD(f) = 2π if µ(f) < 1

2 ; mesRD(f) ≥ π
µ(f)

if µ(f) ≥ 1
2 .

For the proof of Theorem A, the Principle of Pragmén-Lindelöf was applied.
But for the case of a meromorphic function with poles, the Principle of Pragmén-
Lindelöf cannot be applied. The following theorem was proved in [7] by applying
methods of Nevanlinna theory.

Theorem B. Let f(z) be a transcendental meromorphic function in C with
µ(f) < ∞ and δ(∞, f) > 0. If µ(f) = 0, then mesRD(f) = 2π; if µ(f) > 0
and J(f) has an unbounded component, then

mesRD(f) ≥ min{2π,
4

µ(f)
arcsin

√
δ(∞, f)

2
}.

Now, we have a significant and interesting result in the following, which extends
Theorem B to be a more general case. In this paper, p is a positive integer throughout.

Theorem 1. Let f(z) be a transcendental meromorphic function with lower or-
der µ(f) ∈ (0,∞). Suppose f(z) has p mutually distinct deficient values a 1, · · · , ap

and the corresponding deficient numbers δ(a 1, f), · · · , δ(ap, f). If there exists
a ∈ J(f) such that CF (f)(a) > 0, then

mesRD(f) ≥ min{2π,
4
µ

Σp
j=1 arcsin

√
δ(aj, f)

2
}.

If CF (f)(a) = 0 for any a ∈ J(f), does the conclusion of Theorem 1 still hold?
This question seems be interesting, see [7] for a special case.

Next, considering the radial distribution of the common Julia sets of a transcen-
dental meromorphic function and its derivatives, we have another interesting result
as follows:

Theorem 2. Let f(z) be a transcendental meromorphic function of finite lower
order µ > 0 and δ(∞, f) > 0. If J(f) has an unbounded component and for k > 0,
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J(f (k)) has an unbounded component, then

mes(RD(f) ∩ RD(f (k))) ≥ min{2π,
4
µ

arcsin

√
δ(∞, f)

2
}.

If f(z) is an entire function with finite lower order µ(f) > 0, from [4], Theorem
2 and furthermore the following question holds.

Let f(z) be a transcendental meromorphic function of finite lower order µ > 0
and δ(∞, f) > 0. Do we always have the following, for some integer k > 0,

mes(RD(f) ∩ RD(f (k))) ≥ min{2π,
4
µ

arcsin

√
δ(∞, f)

2
} ?

3. PROOFS OF THEOREMS

Before the proof of the theorems, we need to quote two lemmas from [6] as
follows:

Lemma A. Suppose that f(z) is a transcendental meromorphic function with
lower order µ < ∞ and order σ > 0. Then for any ρ ∈ [µ, σ], there is a positive
series {rk}, rk

k → ∞, such that

T (t, f) < (1 + o(1))(
t

rk
)ρT (rk, f), ∀t ∈ [

rk

k
, krk]

and
lim inf
k→∞

log T (rk, f)
log rn

≥ ρ.

Lemma B. Suppose that f(z) is a transcendental meromorphic function with
lower order µ < ∞ and order σ > 0, ρ ∈ [µ, σ]. If a is a deficient value of f(z),
δ(a, f) is the deficient number, then we have

lim
n→∞mesE(rn, ε, a, ρ)≥ min{2π,

4
ρ

arcsin

√
δ(a, f)

2
},

where

E(rn, ε, aj, µ) = {θ ∈ [0, 2π) : log
1

|f(rneiθ) − aj | > rµ−ε
n }, aj 	= ∞

or
E(rn, ε, aj, µ) = {θ ∈ [0, 2π) : log |f(rneiθ)| > rµ−ε

n }, aj = ∞,
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j = 1, 2, · · · , p, for ∀ε ∈ (0, µ).

Let f(z) be a transcendental meromorphic function with finite order µ > 0
and f(z) has p mutually distinct deficient values aj and the corresponding deficient
numbers δ(aj, f), j = 1, 2, · · · , p. By Lemma A, there exists an unbounded positive
series{rn}∞n=1 such that

(1) lim inf
n→∞

logT (rn, f)
log rn

≥ µ.

and for ∀ε ∈ (0, µ), set

E(rn, ε, aj, µ) = {θ ∈ [0, 2π) : log
1

|f(rneiθ) − aj| > rµ−ε
n }, aj 	= ∞

or
E(rn, ε, aj, µ) = {θ ∈ [0, 2π) : log |f(rneiθ)| > rµ−ε

n }, aj = ∞,

j = 1, 2, · · · , p. By Lemma B, there exists Nj for all n > Nj , we have

mesE(rn, ε, aj, µ) > min{2π,
4
µ

arcsin

√
δ(aj, f)

2
} − ε

p
,

j = 1, 2, · · · , p. So, for all n > max{N1, · · · , Np},

p∑
j=1

mesE(rn, ε, aj, µ) > min{2π,
4
µ

arcsin

√
δ(aj, f)

2
} − ε.

Therefore, we obtain

Lemma 1. Let f(z) be a transcendental meromorphic function in C with
finite lower order µ > 0. If f(z) has p mutually distinct deficient values a j and
the corresponding deficient numbers δ(a j, f), j = 1, 2, · · · , p, then for any ε > 0,
there exist an unbounded positive number series satisfying (1) and integer N > 0,
for all n > N , we have

p∑
j=1

mesE(rn, ε, aj, µ) > min{2π,
4
µ

arcsin

√
δ(aj, f)

2
} − ε.

For r > 0 and θ1, θ2 ∈ [0, 2π), θ1 < θ2, we define

Ω(r; θ1, θ2) := {z ∈ C : arg z ∈ (θ1, θ2), |z| > r}.

Lemma 2. ([7, Lemma 2.2]). Let f(z) be analytic in Ω(r; θ1, θ2), r > 0, U a
hyperbolic domain and
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f : Ω(r; θ1, θ2) → U.

If there exists a point a ∈ ∂U\{∞} such that CU (a) > 0, then there exists a
constant d > 0 such that for arbitrary ε > 0, θ 2 − θ1 − 2ε > 0, it has

|f(z)| = O(|z|d), z → ∞, z ∈ Ω(r; θ1 + ε, θ2 − ε).

Proof of Theorem 1. Assume that by contradiction,

mesRD(f) < l = min{2π,
4
µ

Σp
j=1 arcsin

√
δ(aj, f)

2
}.

Since RD(f) is closed, RD(f)c = [0, 2π)\RD(f) is an union set of at most
countable open intervals I . From I , we chosen m ≥ 1 intervals Ij , j = 1, · · · , m,
such that

mes(RD(f)c\ ∪m
j=1 Ij) <

t

2
,

where
t = l − mesRD(f)− q, 0 < q < l − mesRD(f).

By the hypotheses of Theorem 1 and Lemma 1, for any ε > 0, there exists an
unbounded positive number series {rn}∞n=1 and integer N ≥ 1, if n > N , then

mes ∪p
j=1 E(rn, ε, aj, µ) > l − q > 0.

And then for n > N , we have

mes((∪p
j=1E(rn, ε, aj, µ)) ∩ RD(f)c)

= mes(∪p
j=1E(rn, ε, aj, µ)\((∪p

j=1E(rn, ε, aj, µ)) ∩ RD(f)))

= mes(∪p
j=1E(rn, ε, aj, µ))− mes((∪p

j=1E(rn, ε, aj, µ)) ∩ RD(f))

> l − q − mesRD(f) = t > 0

and
mes((∪m

j=1Ij) ∩ (∪p
j=1E(rn, ε, aj, µ)))

≥ mes(RD(f)c ∩ (∪p
j=1E(rn, ε, aj, µ)))

−mes((RD(f)c)\ ∪m
j=1 Ij)

> t − t
2 = t

2 .

There exists a j0, 1 ≤ j0 ≤ m such that Ij0 ⊂ RD(f)c, and for infinitely many n
it has

mes[(∪m
j=1Ij) ∩ (∪p

j=1E(rn, ε, aj, µ))] ≤ m · mes(Ij0 ∩ ∪p
j=1E(rn, ε, aj, µ)).
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So, for infinitely many n, it has

(2) mes(Ij0 ∩ (∪p
j=1E(rn, ε, aj, µ))) >

t

2m
.

Without loss of generality, assume (2) is valid for all n. Set

Ij0 = (θ1, θ2), 0 < θ2 − θ1 < 2π.

Take a positive number s > 1 such that θ2 − θ1 − 2ε
s > 0 and

mes[(θ1 +
ε

s
, θ2 − ε

s
) ∩ (∪p

j=1E(rn, ε, aj, µ))] >
t

3m
.

Hence, according to the fact (see [6] or the Notes following the end of the proof.),

E(rn, ε, aj, µ) ∩ E(rn, ε, ak, µ) = ∅, j 	= k, j, k = 1, · · · , p,

there is some aj , say a1, for infinitely many n it has

mes[(θ1+
ε

s
, θ2− ε

s
)∩(∪p

j=1E(rn, ε, aj, µ))]≤p·mes((θ1+
ε

s
, θ2− ε

s
)∩E(rn, ε, a1, µ)).

So that, for infinitely many n, it gets

(3) mes((θ1 +
ε

s
, θ2 − ε

s
) ∩ E(rn, ε, a1, µ)) >

t

3pm
> 0.

Obviously, we may assume (3) is valid for all n. Set

φ(z) =
1

z − a1
.

Write
α = θ1 +

ε

s
, β = θ2 − ε

s
.

There exists a sufficiently large R > 0,

φ ◦ f : Ω(R; α, β) → φ(F (f))

is an analytic map. Note that

Cφ(F (f))(φ(a)) = CF (f)(a) > 0,

By Lemma 2, for an arbitrarily small ζ > 0, we have

β − α − 2ζ > 0
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and
log+ |φ(f(z))| = O(log(|z|)), z ∈ Ω(R; α + ζ, β − ζ), |z| → ∞.

So

(4) log+ | 1
f(z)− a1

| = O(log(|z|)), z ∈ Ω(R; α + ζ, β − ζ), |z| → ∞.

On the another hand, noting that ζ may be chosen as small as we like, from (3),
for all n, it follows

mes[(α + ζ, β − ζ) ∩ E(rn, ε, a1, f)] > 0.

And then, there is an unbounded series

{rneiθn}∞n=1, θn ∈ (α + ζ, β − ζ) ∩ E(rn, ε, a1, f),

such that for all sufficiently large n, it has

(5) log+ | 1
f(rneiθn) − a1

| > rn
µ(f)−ε.

Since the unbounded series {rneiθn}∞n=N satisfying (4) for some N ≥ 1, namely

(6) log+ | 1
f(rneiθn) − a1

| = O(log(rn)), n → ∞.

When n → ∞, it derives a contradiction from (5) and (6). The proof is complete.
Notes. Let’s prove

E(rn, ε, aj, µ) ∩ E(rn, ε, ak, µ) = ∅, j 	= k, j, k = 1, · · · , p,

for sufficiently large n.
If assume that

E(rn, ε, aj, µ) ∩ E(rn, ε, ak, µ) 	= ∅, j 	= k

for sufficiently large n, without loss of generality, assume aj 	= ∞, ak 	= ∞, and
there is a θ such that

θ ∈ E(rn, ε, aj, µ) ∩ E(rn, ε, ak, µ),

then by the definition of E(rn, ε, a, µ), we may have

|f(rneiθ)− aj| < e−rµ−ε
n ,
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and
|f(rneiθ) − ak| < e−rµ−ε

n .

But from the following

|f(rneiθ) − ak| = |(f(rneiθ) − aj) + (aj) − ak|
≥ |aj − ak| − |f(rneiθ) − ak|
> |aj − ak| − e−rµ−ε

n

>
1
2
|aj − ak|,

we have the following contradiction:

log
1

|aj − ak| > log
2

|f(rneiθ) − ak| > rµ−ε
n .

The contradiction shows that the fact cited is right.

Proof of Theorem 2. By contradiction, assume that

(7) mes(RD(f) ∩ RD(f (k))) < ν = min{2π,
4
µ

arcsin

√
δ(∞, f)

2
}.

There must exist an open interval

I = (α, β) ⊂ RD(f (k))c, 0 < β − α < ν,

such that ∀ε > 0 and

(8) lim
n→∞ mes(I ∩ RD(f) ∩ E(rn, ε,∞, µ)) > 0.

In fact, we have

(9) lim
n→∞ mes(E(rn, ε,∞, µ)\RD(f)) = 0.

Otherwise, suppose there is a subseries {nk} such that

lim
k→∞

mes(E(rnk
, ε,∞, µ)\RD(f)) > 0,

for some ε > 0, then there exist θ0 ∈ RD(f)c and η > 0 satisfying

(10) lim
k→∞

mes((θ0 − η, θ0 + η) ∩ (E(rnk
, ε,∞, µ)\RD(f))) > 0.
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As arg z = θ0 is not a radial distribution of J(f), there is R > 0, f(z) is analytic
in

Ω(R; θ0 − η, θ0 + η)

and
f(Ω(R; θ0 − η, θ0 + η)) ⊂ F (f).

Note that J(f) has an unbounded component, by Lemma 2, for any ζ > 0, ζ < η,

(11) log |f(z)| = O(log |z|), z ∈ Ω(R; θ0 − η + ζ, θ0 + η − ζ), |z| → ∞.

Since ζ may be chosen sufficiently small, from (10)

lim
k→∞

mes((θ0 − η + ζ, θ0 + η − ζ) ∩ E(rnk
, ε,∞, µ)) > 0,

we can find an infinite series {rnk
eiθnk } such that for all sufficiently large k,

(12) log |f(rnk
eiθnk )| > rµ−ε

nk
,

where
θnk

∈ ((θ0 − η + ζ, θ0 + η − ζ) ∩ E(rnk
, ε,∞, µ)).

But, from (11), it has

(13) log |f(rnk
eiθnk )| = O(log rnk

), k → ∞.

When k → ∞, (12) contradicts to (13). This contradiction implies (9) is valid.
Because

mesRD(f) ≥ ν,

and for all sufficiently large n,

mesE(rn, ε,∞, µ) > ν − ε,

it follows
lim

n→∞mesRD(f) ∩ E(rn, ε,∞, µ) ≥ ν.

By (7), there exists an open interval

Ij ⊂ RD(f (k))c(j = 1, 2, · · · , m; m ≥ 1)

such that for sufficiently large n

mes((∪m
j=1Ij)∩RD(f)∩E(rn, ε,∞, µ)) >

1
2
(ν−mes(RD(f)∩RD(f (k)))) > 0.
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For infinitely many n, there are some Ij0 satisfying

mes(Ij0 ∩ RD(f) ∩ E(rn, ε,∞, µ)) >
1

2m
(ν − mes(RD(f) ∩ RD(f (k)))) > 0.

We may assume the above is true for all n. For this case, we prove that (8) is valid.
From (8), we know there are θ and η̃ > 0 such that

(θ − 2η̃, θ + 2η̃) ⊂ I

and

(14) lim
n→∞ mes((θ − 2η̃, θ + 2η̃) ∩ RD(f) ∩ E(rn, ε,∞, µ)) > 0.

There exists R > 0 such that f (k)(z) is analytic in

Ω(R; θ − 2η̃, θ + 2η̃)

and
f (k)(Ω(R; θ− 2η̃, θ + 2η̃)) ⊂ F (f (k)).

Noting that J(f (k)) has an unbounded component, By Lemma 2,

(15) log |f (k)(z)| = O(log |z|), z ∈ Ω(R; θ − 2η̃, θ + 2η̃), |z| → ∞.

From (14), we can select an unbounded series {rneiθn}, for all sufficiently large n,
it has

(16) log |f(rneiθn)| > rµ−ε
n ,

where
θn ∈ (((θ − 2η̃, θ + 2η̃) ∩ RD(f) ∩ E(rn, ε,∞, µ)).

Fix rNeiθN ∈ {rneiθn}, and take a rneiθn ∈ {rneiθn}, n > N . Take a simple
Jordan arc γ in

Ω(R; θ − 2η̃, θ + 2η̃),

which connecting rNeiθN to rNeiθn along {|z| = rN}, and connecting rNeiθn to
rneiθn along arg z = θn. For any z ∈ γ , γz denotes a part of γ , which connecting
rNeiθN to z. Let L(γ) be the length of γ . Obviously,

L(γ) = O(rn), n → ∞.

For some M > 0, from (15), it follows

|f (k−1)(z)| ≤
∫

γz

|f (k)(z)||dz|+ ck

≤ O(|z|ML(γ)) + ck

≤ O(rM+1
n ), n → ∞.
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Similarly, it follows

|f (k−2)(z)| ≤
∫

γz

|f (k−1)(z)||dz|+ ck−1

≤ O(rM+1
n L(γ)) + ck−1

≤ O(rM+2
n ), n → ∞;

...

|f ′(z)| ≤
∫

γz

|f ′′(z)||dz|+ c2

≤ O(rM+k−2
n L(γ)) + c2

≤ O(rM+k−1
n ), n → ∞;

|f(z)| ≤
∫

γz

|f ′(z)||dz|+ c1

≤ O(rM+k−1
n L(γ)) + c1

≤ O(rM+k
n ), n → ∞,

where c1, · · · , ck are constants, which are independent of n. Therefore,

(17) log |f(rneiθn)| ≤ O(log rn), n → ∞.

When n → ∞, (16) contradicts to (17).
All in all, (7) is false. The proof is complete.
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