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AN ATOMIC DECOMPOSITION FOR THE HARDY-SOBOLEV SPACE

Zengjian Lou and Shouzhi Yang

Abstract. We define a Hardy-Sobolev space and give its atomic decomposi-
tion. As an application of the decomposition we prove a div-curl lemma.

1. INTRODUCTION AND PRELIMINARIES

The Hardy space H 1(Rn) is the space of locally integrable functions f for
which

M(f)(x) = sup
t>0

|ψt ∗ f(x)|

belongs to L1(Rn), where ψ ∈ D(Rn) (the space of infinitely differentiable func-
tions with compact supports), ψt(x) = 1

tnψ(xt ), t > 0,
∫

Rn ψ(x) dx = 1, supp ψ ⊂
B(0, 1), a ball centered at the origin with radius 1. The norm of H1(Rn) is defined
by

‖f‖H1(Rn) = ‖M(f)‖L1(Rn).

Among many characterizations of Hardy spaces, the atomic decomposition is an
important one. An L2(Rn) function a is an H 1(Rn)-atom if there exists a ball
B = Ba in R

n satisfying:

(1) supp a ⊂ B;

(2) ‖a‖L2(B) ≤ |B|−1/2;

(3)
∫
B a(x) dx = 0.
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The basic result about atoms is the following atomic decomposition theorem (see
[3] and [9]): A function f on R

n belongs to H1(Rn) if and only if f has a
decomposition

f =
∞∑
k=0

λkak,

where the ak’s are H1(Rn)-atoms and
∞∑
k=0

|λk| ≤ C‖f‖H1(Rn).

The tent space N p(Rn+1
+ ) (1 ≤ p <∞) is the space of all measurable functions

F on R
n+1
+ for which S(F ) ∈ Lp(Rn), where S(F ) is the square function defined

by

S(F )(x) =

(∫
Γ(x)

|F (y, t)|2dydt
tn+1

)1/2

,

Γ(x) = {(y, t) ∈ R
n+1
+ : |y − x| < t} is the cone whose vertex at x ∈ R

n. The
norm of F ∈ Np(Rn+1

+ ) is defined by

‖F‖N p(Rn+1
+ ) = ‖S(F )‖Lp(Rn).

An N p(Rn+1
+ )-atom is a function α supported in a tent T (B) = {(x, t) ∈ R

n+1
+ :

|x− x0| ≤ r − t} of a ball B = B(x0, r) in R
n, for which∫

T (B)
|α(x, t)|2 dxdt

t
≤ |B|1−2/p.

In [5], Coifman, Meyer and Stein proved the following atomic decomposition the-
orem: any F ∈ Np(Rn+1

+ ) can be written as

F =
∞∑
k=0

λkαk,

where the αk are N p(Rn+1
+ )-atoms and

∞∑
k=0

|λk| ≤ C‖F‖N p(Rn+1
+ ).

Let D′(Rn) denote the dual of D(Rn), often called the space of distributions.
For f ∈ D′(Rn), its gradient is defined, in the sense of distributions, by

< ∇f, ϕ >= −
∫

Rn
f div ϕ dx
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for all ϕ ∈ D(Rn,Rn). For f = (f1, · · · , fn) ∈ D′(Rn,Rn), we say that curl f = 0
on R

n if∫
Rn

(
fj
∂ϕ

∂xi
− fi

∂ϕ

∂xj

)
dx = 0, ϕ ∈ D(Rn), i, j = 1, · · · , n.

Let H1(Rn,Rn) denote the Hardy space of functions f = (f1, · · · , fn) each of
whose components fl is in H 1(Rn) (l = 1, · · · , n) with norm

‖f‖H1(Rn,Rn) =
n∑
l=1

‖fl‖H1(Rn).

In this paper, we investigate the space of f in D′(Rn) whose gradient ∇f is in
H1(Rn,Rn). We call it Hardy-Sobolev space and thus set

H1,1(Rn) = {f ∈ D′(Rn) : ∇f ∈ H1(Rn,Rn)}
with the semi-norm of f ∈ H1,1(Rn)

‖f‖H1,1(Rn) = ‖∇f‖H1(Rn,Rn)

(see [2] for more information on a slight different Hardy-Sobolev space). We call a
function a ∈ L2(Rn) an H1,1(Rn)-atom if there exists a ball B in R

n such that
(1) supp a ⊂ B;
(2) ‖a‖L2(B) ≤ r(B)|B|−1/2, where r(B) denotes the radius of B;
(3) ∇a is an H1(Rn,Rn)-atom.

It is easy to see that if a is an H1,1(Rn)-atom, then a ∈ H1,1(Rn). Since f is
in H1,1(Rn) if and only if f +C is in H1,1(Rn) (C is a constant), we consider all
functions f +C are same as f . As a main theorem of the paper we show that any f
in H1,1(Rn) can be decomposed into a sum of H1,1(Rn)-atoms. As an application
of the decomposition we prove a div-curl lemma.

Throughout the paper, unless otherwise specified, C denotes a constant inde-
pendent of functions and domains related to the inequalities. Such C may differ at
different occurrences.

2. ATOMIC DECOMPOSITION

The main result of the paper is the following atomic decomposition theorem.

Theorem 1. A distribution f on R
n is in H 1,1(Rn) if and only if it has a

decomposition

f =
∞∑
k=0

λkak,
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where the ak’s are H1,1(Rn)-atoms and
∑∞

k=0 |λk| <∞. Furthermore,

‖f‖H1,1(Rn) ∼ inf

( ∞∑
k=0

|λk|
)
,

where the infimum is taken over all such decompositions. The constants of the
proportionality are absolute constants.

For the proof of Theorem 1, we need two lemmas.

Lemma 1. If g ∈ H1(Rn,Rn) and curl g = 0, then g has a decomposition

g =
∞∑
k=0

λkbk,

where the bk’s are H1(Rn,Rn)-atoms satisfying curl bk = 0 and
∞∑
k=0

|λk| ≤ C‖g‖H1(Rn,Rn)

Proof. From Lemma 1.1 in [6], there exists a function ϕ : R
n → R such that

(1) supp ϕ ⊂ B(0, 1);
(2) ϕ ∈ C∞(Rn);
(3)

∫∞
0 t|ξ|2ϕ̂(tξ)2 dt = 1, ξ ∈ R

n \ {0}.
For g ∈ H1(Rn,Rn), define

F (x, t) = t div
(
g ∗ ϕt(x)

)
, x ∈ R

n, t > 0.

Then

F (x, t) = t div
(
g1 ∗ ϕt(x), · · · , gn ∗ ϕt(x)

)
=

n∑
l=1

gl ∗ (∂lϕ)t(x),

where gl, l = 1, · · · , n, is the component of g.
From the proof of Theorem 6 (3) in [5] (see also Theorems 3 and 4 in Chapter

III of [12]), the operator defined by

u → Sψ(u)

is bounded from H1(Rn) to L1(Rn) and

‖Sψ(u)‖L1(Rn) ≤ Cψ‖u‖H1(Rn),
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where Sψ(u)(x) =
(∫

Γ(x) |u ∗ ψt(y)|2 dydt
tn+1

)1/2
, ψ ∈ D(Rn) and

∫
Rn ψ(x) dx = 0,

Cψ denotes a constant depending on ψ. Thus gl ∈ H1(Rn) implies S∂lϕ(gl) ∈
L1(Rn) and

‖S∂lϕ(gl)‖L1(Rn) ≤ Cϕ‖gl‖H1(Rn).

That is gl ∗ (∂lϕ)t ∈ N 1(Rn+1
+ ), further we have F ∈ N 1(Rn+1

+ ) and

‖F‖N 1(Rn+1
+ ) ≤ Cϕ‖g‖H1(Rn,Rn).

Using the atomic decomposition theorem for tent spaces, F has a decomposition

F =
∞∑
k=0

λkαk

with
∞∑
k=0

|λk| ≤ C‖F‖N 1(Rn+1
+ ),

where the αk’s are N 1(Rn+1
+ )-atoms i.e. there exist balls Bk such that supp αk

⊂ T (Bk) and ∫
T (Bk)

|αk(x, t)|2 dxdt
t

≤ 1
|Bk| .

Define

bk = −
∫ ∞

0

t∇(αk(·, t) ∗ ϕt) dt
t

:= (b1k, · · · , bnk),

where blk = − ∫∞
0 αk(·, t) ∗ (∂lϕ)t dt

t , l = 1, · · · , n. It is obvious that curl bk = 0
and easy to check that bk satisfies the moment condition. Since supp αk ⊂ T (Bk)
and ϕ is supported in the unit ball, a simple computation shows that supp b k ⊂ Bk.
We next prove that bk has also the size condition. Applying Theorem 6 in [5] again,
the operator

πψ(α) =
∫ ∞

0
α(·, t) ∗ ψt dt

t

is bounded from N 2(Rn+1
+ ) to L2(Rn) for ψ ∈ D(Rn) with

∫
Rn ψ(x) dx = 0 and

‖πψ(α)‖L2(Rn) ≤ Cψ‖α‖N 2(Rn+1
+ ).

Since αk are N 1(Rn+1
+ )-atoms, so αk ∈ N 2(Rn+1

+ ). The boundedness of πψ
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implies that blk ∈ L2(Rn) and

‖blk‖2
L2(Rn) = ‖π∂lϕ(αk)‖2

L2(Rn)

≤ Cϕ‖αk‖2
N 2(Rn+1

+ )

= Cϕ

∫
Rn

∫
R

n+1
+

|αk(x, t)|2χ(
y − x

t
)
dxdt

tn+1
dy

≤ Cϕ

∫
T (Bk)

|αk(x, t)|2 dxdt
t

≤ Cϕ |Bk|−1,

where χ denotes the characteristic function in the unit ball. Therefore

‖bk‖L2(Bk,Rn) ≤ Cϕ |Bk|−1/2.

Finally we prove g =
∑∞

k=0 λkbk. Since g ∈ H1(Rn,Rn) and curl g = 0, there
exists a distribution f such that g = ∇f . We have

∞∑
k=0

λkbk = −
∫ ∞

0

∞∑
k=0

λkt∇
(
αk(·, t) ∗ ϕt

) dt
t

= −
∫ ∞

0

∇(F (·, t) ∗ ϕt
)
dt

= −
∫ ∞

0
∇
{(
t div

(
(∇f) ∗ ϕt

)) ∗ ϕt} dt.
So it is sufficient to show that

−
∫ ∞

0

(
t div

(
(∇f) ∗ ϕt

)) ∗ ϕt dt = f,

which follows from the condition (3) of ϕ satisfying, in fact

−
∫ ∞

0

{(
t div

(
(∇f) ∗ ϕt

)) ∗ ϕt}∧
(ξ) dt

= −
∫ ∞

0

{
t
n∑
l=1

∂l

(
(∂lf) ∗ ϕt

)}∧
(ξ)ϕ̂(tξ) dt

= −i
∫ ∞

0
t

n∑
l=1

ξl

(
(∂lf) ∗ ϕt

)∧
(ξ)ϕ̂(tξ) dt =

∫ ∞

0
t

n∑
l=1

ξ2l ϕ̂(tξ)2f̂(ξ) dt

=
∫ ∞

0

t|ξ|2ϕ̂(tξ)2f̂(ξ) dt = f̂(ξ),

where i is the image unit with i2 = −1. Lemma 1 is proved.
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Let Ω be a smooth domain. For f ∈ L2(Ω,Rn), we say that curl f = 0 on Ω if∫
Ω

(
fj
∂ϕ

∂xi
− fi

∂ϕ

∂xj

)
dx = 0

for all ϕ ∈ D(Ω), i, j = 1, · · · , n. For f ∈ L2(Ω,Rn) with curl f = 0 on Ω,
define ν × f |∂Ω by ∫

∂Ω
(ν × f) · ϕ dx =

∫
Ω
f · curl Φ dx

for all Φ ∈ C1(Ω̄,Rn) and ϕ = Φ|∂Ω, where ν denotes the outward unit normal
vector. Note that the definition of ν × f |∂Ω is independent of the choice of the
extensions Φ ([8, page 208]). Let W 1,2(Ω) denote the Sobolev space and W1,2

0 (Ω)
be the space of functions in W 1,2(Ω) with zero boundary values (see [1]). The
following lemma can be obtained from Theorem 3.3.3 in Chapter 3 of [11].

Lemma 2. Let Ω be a bounded smooth contractible domain. If u ∈ L 2(Ω,Rn)
with curl u = 0 and ν×u|∂Ω = 0, then there exists v ∈W 1,2

0 (Ω) such that u = ∇v
and

‖v‖W 1,2(Ω) ≤ C‖u‖L2(Ω,Rn),

where the constant C depends on the domain Ω. When Ω is a ball B, we have

‖v‖L2(B) ≤ Cr(B)‖u‖L2(B,Rn),

where C is independent of u, v and B.
Now we turn to the proof of Theorem 1.

Proof. Necessity. For f ∈ H1,1(Rn), let g = ∇f . Then g ∈ H1(Rn,Rn) and
curl g = 0. Applying Lemma 1, g can be written as

g =
∞∑
k=0

λkbk.

where bk are H1(Rn,Rn)-atoms with curl bk = 0, and

∞∑
k=0

|λk| ≤ ‖g‖H1(Rn,Rn) = ‖f‖H1,1(Rn).

Since bk are H1(Rn,Rn)-atoms, there exist balls Bk such that supp bk ⊂ Bk and

‖bk‖L2(Bk,Rn) ≤ |Bk|−1/2.
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Combining this with curl bk = 0, Lemma 2 implies that there exist ak ∈W 1,2
0 (Bk)

such that bk = ∇ak and

‖ak‖L2(Bk) ≤ Cr(Bk)‖bk‖L2(Bk,Rn) ≤ Cr(Bk)|Bk|−1/2.

Hence ak are H1,1(Rn)-atoms and

f =
∞∑
k=0

λkak

in the sense of distributions, where we considered f +C as f .
Sufficiency. Suppose f can be written as a sum of H1,1(Rn,Rn)-atoms ak. To

prove f ∈ D′(Rn), it is sufficient to show that the sum
∑∞

k=0 λkak is convergent
in the sense of distributions. From

∑∞
k=0 |λk| <∞, we have

m′∑
k=m

|λk| → 0 as m, m′ → ∞.

Combining this with the size condition of ak, for any ϕ ∈ D(Rn) with compact
support K, we get

∣∣∣ ∫
Rn

(
m′∑
k=m

λkak

)
ϕ dx

∣∣∣ ≤ m′∑
k=m

|λk|
∣∣∣ ∫

Bk∩K
akϕ dx

∣∣∣
≤ ‖ϕ‖L∞(K)

m′∑
k=m

|λk|‖ak‖L2(Bk∩K)|Bk ∩K|1/2

≤ ‖ϕ‖L∞(K)

m′∑
k=m

|λk|r(Bk)|Bk|−1/2|Bk ∩K|1/2

≤ ‖ϕ‖L∞(K) max{1, |K|1/2}
m′∑
k=m

|λk|

→ 0 as m, m′ → ∞.

The convergence of
∑∞

k=0 λkak is proved, so f ∈ D′(Rn). Applying the atomic
decomposition theorem for H1(Rn), we have ∇f ∈ H1(Rn,Rn) and

‖f‖H1,1(Rn) = ‖∇f‖H1(Rn,Rn) ≤ C
∞∑
k=0

|λk|.

That is f ∈ H 1,1(Rn). The proof of Theorem 1 is finished.

Remark 1. In [10], Peng defined Hardy-Sobolev spaces Hp
k as spaces of f in

Hardy spaces Hp with Dαf ∈ Hp (|α| ≤ k) and obtained some analogous results
to those for Sobolev spaces.
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3. AN APPLICATION: DIV-CURL LEMMA

In [4, Theorem 2], Coifman, Lions, Meyer and Semmes proved the following
well-known Div-curl Lemma: Let 1 < p, q <∞ and 1

p+ 1
q = 1. If f ∈ Lp(Rn,Rn)

with curl f = 0 and e ∈ Lq(Rn,Rn) with div e = 0 on R
n. Then e · f ∈ H1(Rn).

We now consider the case of p = 1, as an application of Theorem 1 we give the
endpoint version of the div-curl lemma.

Theorem 2. Let f ∈ H1,1(Rn) and e ∈ L∞(Rn,Rn) with div e = 0 on R
n.

Then e · ∇f ∈ H1(Rn).

Proof. If f ∈ H1,1(Rn), Theorem 1 yields that f has the decomposition

f =
∞∑
k=0

λkak,

where the ak’s are H1,1(Rn)-atoms and
∑∞

k=0 |λk| < ∞. Therefore, for e ∈
L∞(Rn,Rn)

e · ∇f =
∞∑
k=0

λke · ∇ak.

To prove e ·∇f ∈ H1(Rn), we need only to show that e ·∇ak are H1(Rn)-atoms by
the atomic decomposition theorem for H1(Rn). Since ak is anH1,1(Rn)-atom, there
exists a ball Bk in R

n such that supp ∇ak ⊂ Bk and ‖∇ak‖L2(Bk,Rn) ≤ |Bk|−1/2.
Combining this with e ∈ L∞(Rn,Rn) implies that

‖e · ∇ak‖L2(Rn) ≤ C|Bk|−1/2,

where C = ‖e‖L∞(Rn,Rn). By a simple calculation and div e = 0, we get

e · ∇ak = div (ake),

which yields the moment condition∫
Rn

e · ∇ak dx = 0.

We proved Theorem 2.

Remark 2. If the condition: f ∈ H1,1(Rn) is replaced by f ∈ L1(Rn) and
∇f ∈ H1(Rn,Rn), Theorem 2 was proved in [2, Theorem 21] by a different
method.

Corollary. Let f ∈ H 1(Rn,Rn) with curl f = 0 on R
n and e ∈ L∞(Rn,Rn)

with div e = 0 on R
n. Then e · f ∈ H1(Rn).
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