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VECTOR VALUED COMMUTATORS ON
NON-HOMOGENEOUS SPACES

Wengu Chen and Changxing Miao

Abstract. Let µ be a Borel measure on R
d which may be non doubling.

The only condition that µ must satisfy is µ(Q) ≤ c0l(Q)n for any cube
Q ⊂ R

d with sides parallel to the coordinate axes and for some fixed n
with 0 < n ≤ d. This paper is to develop the vector valued commutator
theory in the context of the non-homogeneous spaces. As an application, the
boundedness of the maximal commutator of any Calderón-Zygmund operator
on the non-homogeneous space with a RBMO(µ) function introduced by
Tolsa in [9] is obtained.

1. INTRODUCTION

Let µ be a non-negative n-dimensional Borel measure on Rd, that is, a measure
satisfying

µ(Q) ≤ c0l(Q)n

for any cube Q ⊂ R
d with sides parallel to the coordinate axes, where l(Q) stands

for the side length of Q and n is a fixed real number such that 0 < n ≤ d.
Throughout this paper, all cubes we shall consider will be those with sides parallel
to the coordinate axes. For r > 0, rQ will denote the cube with the same center as
Q and with l(rQ) = rl(Q). Moreover, Q(x, r) will be the cube centered at x with
side length r.

The classical theory of harmonic analysis for maximal functions and singular
integrals on (Rn, µ) has been developed under the assumption that the underlying
measure µ satisfies the doubling property, i.e., there exists a constant c > 0 such that
µ(B(x, 2r)) ≤ cµ(B(x, r)) for every x ∈ R

n and r > 0. However, some recent
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results on Calderón-Zygmund operators ([4,5,7,8]) and functions of bounded mean
oscillation ([3,9]) show that it should be possible to dispense with the doubling
condition for most of the classical theory. The purpose of this paper is to develop
the vector valued commutator theory in this new setting.

Let us introduce some notations and definitions. Given a Banach space E we
will denote by Lp

E(µ) the Bochner-Lebesgue space of E−valued strongly measurable
functions such that ∫

Rd

‖f(x)‖p
Edµ < +∞.

Given two cubes Q ⊂ R in R
d, we set

KQ,R = 1 +
NQ, R∑
k=1

µ(2kQ)
l(2kQ)n

,

where NQ,R is the first integer k such that l(2kQ) ≥ l(R). KQ,R was introduced
by Tolsa in [9].

Given βd (depending on d) big enough (for example, βd > 2n), we say that
some cube Q ⊂ R

d is doubling if µ(2Q) ≤ βdµ(Q).
Given a cube Q ⊂ R

d, let N be the smallest integer ≥ 0 such that 2NQ is
doubling. We denote this cube by Q̃.

Let η > 1 be some fixed constant. We say that a locally integrable function
b(x) is in RBMO(µ) if there exists some constant c1 such that for any cube Q,

1
µ(ηQ)

∫
Q
|b−mQ̃b|dµ ≤ c1(1)

and

|mQb−mRb| ≤ c1KQ,R for any two doubling cubes Q ⊂ R,(2)

where mQb =
1

µ(Q)

∫
Q

bdµ. The minimal constant c1 is the RBMO(µ) norm of

b, and it will be denoted by ‖b‖∗.
LetE, F be a couple of Banach spaces. L(E, F ) will denote the set of bounded

linear operators from E to F . We say a kernel k(x, y) : R
d × R

d\{(x, y) : x =
y} → L(E, F ) is a (vector-valued) n−dimensional singular integral kernel if

(1) ‖k(x, y)‖L(E,F ) ≤ A
|x−y|n if x �= y,

(2) and there exists 0 < δ ≤ 1 such that

‖k(x, y) − k(x′, y)‖L(E,F ) + ‖k(y, x) − k(y, x′)‖L(E,F ) ≤
A|x− x′|δ
|x− y|n+δ
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if |x− y| > 2|x− x′|.
A bounded linear operator T from L2

E(µ) to L2
F (µ) is said to be a vector-valued

Calderón-Zygmund operator with n−dimensional singular integral kernel k if for
every compactly supported function f ∈ L2

E(µ),

Tf(x) =
∫

Rd

k(x, y)f(y)dµ(y), for x �∈ supp f.

For r > 0, we define the truncated operators by

Trf(x) =
∫

Rd\B(x,r)
k(x, y)f(y)dµ(y)

and define the maximal operator associated with T as follows

T∗f(x) = sup
r>0

‖Trf(x)‖F .

2. COTLAR TYPE INEQUALITY AND BOUNDEDNESS OF T∗

Now we are ready to prove the boundedness of the maximal operator T∗. This
follows immediately from

Theorem 1. Let f ∈ L2
E(µ). For any β > 1 and x ∈ suppµ,

T∗f(x) ≤ 4 · 9nM̃(‖Tf‖F )(x) +B(β)M̃β(‖f‖E)(x)

where the constant B(β) > 0 depends on the parameter β > 1, the dimension n,
the constants δ and A in the definition of the singular integral kernel k, and the
norm ‖T‖L2

E→L2
F

only. M̃f(x) = supr>0

1
µ(B(x, 3r))

∫
B(x, r)

|f(y)|dµ(y) and

M̃βf(x) = [M̃(|f |β)(x)]1/β.

Proof. We follow the ideas of [5, Theorem 7.1]. Let x ∈ suppµ and r > 0.
Consider the sequence of balls B(x, rj) with rj = 3jr and set µj = µ(B(x, rj)).
We can choose l ≥ 1, the smallest positive integer such that µl ≤ 2 · 3nµl−1. Put
R = rl−1 = 3l−1r. Then

‖Trf(x) − T3Rf(x)‖F ≤
∫

B(x,3R)\B(x,r)
‖k(x, y)‖L(E,F )‖f(y)‖Edµ(y)

=
l∑

j=1

∫
B(x, rj)\B(x,rj−1)

‖k(x, y)‖L(E,F )‖f(y)‖Edµ(y)

≤
l∑

j=1

Ar−n
j−1

∫
B(x,rj)

‖f(y)‖Edµ(y).
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Note that rj−1 = 3j−1−lrl and

µj ≤ (2 · 3n)j−l+1µl for 1 ≤ j ≤ l.

Hence

‖Trf(x)− T3Rf(x)‖F ≤
l∑

j=1

Ar−n
j−1µjM̃(‖f‖E)(x)

≤ 2 · 9nAM̃(‖f‖E)(x)
µl

rn
l

l∑
j=1

2j−l ≤ 4 · 9nAM̃(‖f‖E)(x).

So, we need only to estimate T3Rf(x). We consider the average

VR(x) :=
1

µ(B(x, R))

∫
B(x,R)

Tfdµ,

which is bounded by µ(B(x,3R))
µ(B(x,R)) M̃ (‖Tf‖F )(x) ≤ 4 · 9nM̃(‖Tf‖F )(x). On the

other hand,

VR(x) =
1

µ(B(x, R))

∫
B(x,R)

T (fχRd\B(x,3R))dµ

+
1

µ(B(x, R))

∫
B(x,R)

T (fχB(x,3R))dµ = I + II,

and ‖T3Rf(x) − VR(x)‖F ≤ ‖T3Rf(x) − I‖F + ‖II‖F . By using the second
condition on the kernel,

‖T3Rf(x) − I‖F

≤ 1
µ(B(x, R))

∫
B(x,R)

∫
Rd\B(x,3R)

‖k(x, y)−k(z, y)‖L(E,F )‖f(y)‖Edµ(y)dµ(z)

≤ 1
µ(B(x, R))

∫
B(x,R)

∞∑
j=1

∫
B(x,3j+1R)\B(x,3jR)

A|x−z|δ
|y−x|n+δ

‖f(y)‖Edµ(y)dµ(z)

≤ 1
µ(B(x, R))

∫
B(x,R)

∞∑
j=1

ARδ

(3jR)n+δ

∫
B(x,3j+1R)

‖f(y)‖Edµ(y)dµ(z)

≤ c(δ)3nAM̃(‖f‖E)(x).

Whereas for the second term, by Hölder’s inequality,

‖II‖F ≤ 1
µ(B(x, R))

‖T‖
Lβ

E(µ)→Lβ
F (µ)

µ(B(x, R))1/β′‖fχB(x,3R)‖Lβ
E(µ)

≤ ‖T‖
Lβ

E(µ)→Lβ
F (µ)

( 1
µ(B(x, R))

∫
B(x,3R)

‖f(y)‖β
Edµ

)1/β
.



Vector Valued Commutators on Non-homogeneous Spaces 1131

According to our choice of R, we have

µ(B(x, 3R)) = µl ≤ 2 · 3nµl−1 = 2 · 3nµ(B(x, R)).

This allows us to conclude that the second term is bounded by

(2 · 3n)1/β‖T‖
Lβ

E(µ)→Lβ
F (µ)

M̃β(‖f‖E)(x).

By taking the supremum on r > 0 we have the desired estimate.

3. THE VECTOR VALUED COMMUTATOR THEOREMS

Now we can state the main results in this paper.

Theorem 2. Let E, F be Banach spaces. Let T be a vector-valued Calderón-
Zygmund operator with an n−dimensional singular integral kernel k(x, y). Given
b ∈ RBMO(µ). Then the commutator Cb defined by

Cbf(x) = b(x)Tf(x)− T (bf)(x)

is bounded from Lp
E(µ) into Lp

F (µ) for 1 < p <∞.

Theorem 2. Let F be a Banach lattice and V a bounded linear operator from
Lp(µ) into Lp

F (µ) for 1 < p <∞. Assume that there exists an F−valued function
w(x, y) satisfying:

(W1) for any compactly supported function f ∈ L 2(µ),

V f(x) =
∫

Rd
w(x, y)f(y)dµ(y),

(W2) for every x and y ∈ R
d, w(x, y) ≥ 0, and for x �= y,

‖w(x, y)‖F ≤ A

|x− y|n ,

(W3) there exists 0 < δ ≤ 1 such that

‖w(x, y) −w(x′, y)‖F + ‖w(y, x) −w(y, x′)‖F ≤ A|x− x′|δ
|x− y|n+δ

if |x− y| > 2|x− x′|. If b ∈ RBMO(µ), then the operator V +
b defined by

V +
b f(x) =

∫
Rd

|b(x)− b(y)|w(x, y)f(y)dµ(y)

is bounded from Lp(µ) into Lp
F (µ) for 1 < p <∞.



1132 Wengu Chen and Changxing Miao

4. AN APPLICATION OF THE VECTOR VALUED COMMUTATOR THEOREMS

Let b ∈ RBMO(µ) and T be a Calderón-Zygmund operator with an n−dimensional
singular integral kernel k(x, y). We define

Tεf(x) =
∫
|x−y|>ε

k(x, y)f(y)dµ(y),

and
C∗

b f(x) = sup
ε>0

|b(x)Tεf(x)− Tε(bf)(x)|.

Then the operator C∗
b is bounded on Lp(µ) for all 1 < p <∞.

Following the idea of [6], we take φ, ψ ∈ C∞([0, ∞)) such that |φ′(t)| ≤
ct−1, |ψ′(t)| ≤ ct−1 and

χ[2,∞) ≤ φ ≤ χ[1,∞), χ[1, 2] ≤ ψ ≤ χ[1/2,3].

We consider the operators

Φf(x) = {φεf(x)}ε>0 =
{ ∫

k(x, y)φ(
|x− y|
ε

)f(y)dµ(y)
}

ε>0

and

Ψf(x) = {ψεf(x)}ε>0 =
{ ∫

|k(x, y)|ψ(
|x− y|
ε

)f(y)dµ(y)
}

ε>0

,

with kernels given by

{φε(x, y)}ε>0 =
{
k(x, y)φ(

|x− y|
ε

)
}

ε>0

and
{ψε(x, y)}ε>0 =

{
|k(x, y)|ψ(

|x− y|
ε

)
}

ε>0

.

The kernel of Φ as l∞(R)−valued function is an n−dimensional singular integral
kernel. Analogously, it can be shown that the kernel of Ψ satisfies (W2) and
(W3) of Theorem 3. By the vector valued Caldeŕon-Zygmund theory on the non-
homogeneous spaces, see [1, 2], Φ and Ψ are bounded linear operators from Lp(µ)
into Lp

l∞(µ) for all 1 < p < ∞. Therefore Φ satisfies the hypotheses of Theorem
2 and Ψ satisfies the hypotheses of Theorem 3. Then by Theorems 2 and 3 the
operators

Φbf(x) = {b(x)φεf(x) − φε(bf)(x)}ε>0
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and
Ψ+

b f(x) =
{ ∫

|b(x)− b(y)|ψε(x, y)f(y)dµ(y)
}

ε>0

are bounded from Lp(µ) into Lp
l∞(µ) for all 1 < p <∞.

Now, we consider the operator

T̃bf(x) = {b(x)Tεf(x) − Tε(bf)(x)}ε>0.

The difference operator

Ubf(x) = Φbf(x)− T̃bf(x)

=
{ ∫

(b(x)− b(y))
[
φ(

|x− y|
ε

) − χ[1,∞)(
|x− y|
ε

)
]
k(x, y)f(y)dµ(y)

}
ε>0

satisfies, for a certain ψ as above, that

‖Ubf(x)‖l∞ ≤ sup
ε>0

∫
|b(x)− b(y)||k(x, y)|ψ(

|x− y|
ε

)|f(y)|dµ(y)

= ‖Ψ+
b f(x)‖l∞

and therefore Ub is bounded from Lp(µ) into Lp
l∞(µ) and, consequently, T̃b is

bounded from Lp(µ) into Lp
l∞(µ), that is to say C∗

b is bounded on Lp(µ).

5. THE PROOF OF THE VECTOR VALUED COMMUTATOR THEOREMS

Before proving the theorems, we need another equivalent norm for RBMO(µ)
and some lemmas.

Suppose that for a measurable function b(x) there exists some c2 and for each
cube Q, there exists real number bQ such that

sup
Q

1
µ(ηQ)

∫
Q
|b− bQ|dµ ≤ c2(3)

and

|bQ − bR| ≤ c2KQ,R for any two cubes Q ⊂ R.(4)

Then, we write ‖b‖∗∗ = inf c2, where the infimum is taken over all the constants c2
and all the numbers {bQ} satisfying (3) and (4). By Lemma 2.8 in [9], the norms
‖ · ‖∗ and ‖ · ‖∗∗ are equivalent for a fixed η > 1.

In [9], Tolsa defined a sharp maximal operator M#f(x) such that

f ∈ RBMO(µ) ⇐⇒ M#f ∈ L∞(µ).
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In order to prove the theorems, we need to introduce the vector valued version
M#

E f(x). We define

M#
E f(x) = sup

x∈Q

1
µ( 3

2Q)

∫
Q
‖f −mQ̃f‖Edµ+ sup

x ∈ Q ⊂ R

Q, R doubling

‖mQf −mRf‖E

KQ,R
.

We also consider the non-centered doubling maximal operator NE :

NEf(x) = sup
x ∈ Q

Q doubling

1
µ(Q)

∫
Q
‖f‖Edµ.

By the Remark 2.3 of [9], for µ-almost all x ∈ R
d one can find a sequence of

doubling cubes {Qk}k centered at x with l(Qk) → 0 as k → ∞ such that

lim
k→∞

1
µ(Qk)

∫
Qk

b(y)dµ(y) = b(x).

So, ‖f(x)‖E ≤ NEf(x) for µ− a.e. x ∈ R
d. Moreover, it is easy to show that NE

is bounded from L1
E(µ) into L1,∞(µ) and from L

p
E(µ) into Lp(µ) for p ∈ (1, ∞].

Lemma 1. Let f(x) be an E−valued strongly measurable function with∫
fdµ = 0 if ‖µ‖ <∞. For 1 < p <∞, if inf(1, NEf) ∈ Lp(µ), then we have

‖NEf‖Lp(µ) ≤ c‖M#
E f‖Lp(µ).

For the scalar case, this is the theorem 6.2 of [9]. By some modifications one
can obtain the proof of the lemma. We omit the proof here for brevity.

Proof of the theorem 2. For all p ∈ (1, ∞), we will show the following sharp
maximal function estimate

M#
F (Cbf)(x) ≤ cp‖b‖∗

(
Mp, (9/8)(‖f‖E)(x) +Mp, (3/2)(‖Tf‖F )(x) + T∗f(x)

)
,

where, for η > 1, Mp, (η) is the non-centered maximal operator

Mp, (η)f(x) = sup
x∈Q

( 1
µ(ηQ)

∫
Q
|f |pdµ

)1/p
,

and the operator Mp, (η) is bounded on Lr(µ) for r > p.
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By Theorem 1 and Lemma 1, if we take r such that 1 < r < p < ∞, we can
get

‖Cbf‖Lp
F (µ) ≤ ‖NF (Cbf)‖Lp(µ) ≤ c‖M#

F (Cbf)‖Lp(µ)

≤ c‖b‖∗
(
‖Mr, (9/8)(‖f‖E)‖Lp(µ) + ‖Mr, (3/2)(‖Tf‖F )‖Lp(µ)+‖T∗f‖Lp(µ)

)

≤ c‖b‖∗‖f‖Lp
E(µ).

Now we remain to show the above sharp maximal function estimate.
Let {bQ}Q be a family of numbers satisfying∫

Q
|b− bQ|dµ ≤ 2µ(2Q)‖b‖∗∗

for any cube Q, and
|bQ − bR| ≤ 2KQ,R‖b‖∗∗

for all cubes Q ⊂ R. For any cube Q, we denote

hQ := mQ

(
T ((b− bQ)fχ

Rd\ 4
3
Q)

)
.

We will prove that

(5)

1
µ( 3

2Q)

∫
Q
‖Cbf − hQ‖Fdµ ≤ c‖b‖∗

(
Mp, (9/8)(‖f‖E)(x)

+Mp, (3/2)(‖Tf‖F )(x)
)

for all x and Q with x ∈ Q, and

‖hQ − hR‖F ≤ c‖b‖∗
(
Mp, (9/8)(‖f‖E)(x) + T∗f(x)

)
K2

Q,R(6)

for all cubes Q ⊂ R with x ∈ Q.
To get (5) for some fixed cube Q and x with x ∈ Q, we write Cbf in the

following way:

Cbf = (b− bQ)Tf − T ((b− bQ)f1) − T ((b− bQ)f2),(7)

where f1 = fχ4
3
Q and f2 = f − f1. Let us estimate the term (b− bQ)Tf :

(8)

1

µ(
3
2
Q)

∫
Q

‖(b− bQ)Tf‖Fdµ ≤
( 1
µ( 3

2Q)

∫
Q

|b− bQ|p′dµ
)1/p′

×
( 1
µ( 3

2Q)

∫
Q
‖Tf‖p

Fdµ
)1/p

≤
( 1
µ( 3

2Q)

∫
Q

|b− bQ|p′dµ
)1/p′

Mp, (3/2)(‖Tf‖F )(x)

≤ c‖b‖∗Mp, (3/2)(‖Tf‖F )(x).
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Now we are going to estimate the second term on the right hand side of (7). We
take s =

√
p. Then we have

(9)

1
µ( 3

2Q)

∫
Q

‖T ((b− bQ)f1)‖Fdµ ≤ µ(Q)1−1/s

µ( 3
2Q)

‖T ((b− bQ)f1)‖Ls
F (µ)

≤ c
µ(Q)1−1/s

µ( 3
2Q)

‖(b− bQ)f1‖Ls
E(µ)

≤ c
µ(Q)1−1/s

µ( 3
2Q)

( ∫
4
3
Q
‖(b− bQ)f1‖s

Edµ
)1/s

≤ c
1

µ( 3
2Q)1/s

( ∫
4
3
Q
|b− bQ|ss′dµ

)1/ss′( ∫
4
3
Q
‖f‖p

Edµ
)1/p

≤ c‖b‖∗Mp, (9/8)(‖f‖E)(x).

By (7), (8) and (9), to get (5) we only need to estimate the difference ‖T ((b −
bQ)f2) − hQ‖F . For y1, y2 ∈ Q we have

(10)

‖T ((b− bQ)f2)(y1)− T ((b− bQ)f2)(y2)‖F

≤ c

∫
Rd\ 4

3
Q

|y2 − y1|δ
|z − y1|n+δ

|b(z)− bQ|‖f(z)‖Edµ(z)

≤ c
∞∑

k=1

∫
2k 4

3
Q\2k−1 4

3
Q

l(Q)δ

|z − y1|n+δ

(
|b(z)− b2k 4

3
Q|

+|bQ − b2k 4
3
Q|

)
‖f(z)‖Edµ(z)

≤ c

∞∑
k=1

2−kδ 1
l(2kQ)n

∫
2k 4

3
Q
|b(z)− b2k 4

3
Q|‖f(z)‖Edµ(z)

+c
∞∑

k=1

k2−kδ‖b‖∗ 1
l(2kQ)n

∫
2k 4

3
Q
‖f(z)‖Edµ(z)

≤ c
∞∑

k=1

2−kδ
( 1
µ(2k 3

2Q)

∫
2k 4

3
Q

|b− b2k 4
3
Q|p

′
dµ

)1/p′

×
( 1
µ(2k 3

2Q)

∫
2k 4

3
Q
‖f‖p

Edµ
)1/p

+c
∞∑

k=1

k2−kδ‖b‖∗
( 1
µ(2k 3

2Q)

∫
2k 4

3
Q
‖f‖p

Edµ
)1/p
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≤ c

∞∑
k=1

2−kδ‖b‖∗Mp, (9/8)(‖f‖E)(x)

+c
∞∑

k=1

k2−kδ‖b‖∗Mp, (9/8)(‖f‖E)(x)

≤ c‖b‖∗Mp, (9/8)(‖f‖E)(x),

where we used the fact that

|bQ − b2k 4
3
Q| ≤ 2KQ,2k 4

3
Q‖b‖∗∗ ≤ ck‖b‖∗.

Taking the mean over y2 ∈ Q, we get

‖T ((b− bQ)f2)(y1)− hQ‖F = ‖T ((b− bQ)f2)(y1) −mQ(T ((b− bQ)f2))‖F

≤ c‖b‖∗Mp, (9/8)(‖f‖E)(x).

Then

(11)

1

µ(
3
2
Q)

∫
Q
‖T ((b− bQ)f2)(y1) − hQ‖Fdµ(y1)

≤ c‖b‖∗Mp, (9/8)(‖f‖E)(x),

and so (5) holds.
Now we have to check the regularity condition (6) for the elements {hQ}Q.

Consider two cubes Q ⊂ R with x ∈ Q. We denote N = NQ,R + 1. We write the
difference ‖hQ − hR‖F in the following way:

‖mQ(T ((b− bQ)fχ
Rd\ 4

3
Q))−mR(T ((b− bR)fχ

Rd\ 4
3
R))‖F

≤ ‖mQ(T ((b− bQ)fχ2Q\ 4
3
Q))‖F + ‖mQ(T ((bQ − bR)fχRd\2Q))‖F

+‖mQ(T ((b− bR)fχ2N Q\2Q))‖F + ‖mR(T ((b− bR)fχ2NQ\ 4
3
R))‖F

+‖mQ(T ((b− bR)fχRd\2N Q)) −mR(T ((b− bR)fχRd\2NQ))‖F

:= U1 + U2 + U3 + U4 + U5.

Let us estimate U1. For y ∈ Q we have

‖T ((b− bQ)fχ2Q\ 4
3
Q)(y)‖F ≤ c

l(Q)n

∫
2Q

|b− bQ|‖f‖Edµ

≤ c

l(Q)n

( ∫
2Q

|b− bQ|p′dµ
)1/p′( ∫

2Q
‖f‖p

Edµ
)1/p
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≤ c
( 1
µ(3Q)

∫
2Q

|b− bQ|p′dµ
)1/p′( 1

µ( 9
4Q)

∫
2Q

‖f‖p
Edµ

)1/p

≤ c‖b‖∗Mp, (9/8)(‖f‖E)(x).

So we obtain U1 ≤ c‖b‖∗Mp, (9/8)(‖f‖E)(x).
Let us consider the term U2. For x, y ∈ Q, it is easily seen that

‖T (fχRd\2Q)(y)‖F ≤ T∗f(x) + cMp, (9/8)(‖f‖E)(x).

Thus

U2 = ‖ 1
µ(Q)

∫
Q

(bQ − bR)T (fχRd\2Q)(y)dµ‖F

≤ cKQ,R‖b‖∗
(
T∗f(x) +Mp, (9/8)(‖f‖E)(x)

)
.

The term U4 is easy to estimate. Some calculations similar to the ones for U1 yield
U4 ≤ c‖b‖∗Mp, (9/8)(‖f‖E)(x).

Let us turn to estimate the term U5. Operating as in (10), for any y, z ∈ R, we
get

‖T ((b−bR)fχRd\2NQ)(y)−T ((b−bR)fχRd\2NQ)(z)‖F ≤ c‖b‖∗Mp, (9/8)(‖f‖E)(x).

Taking the mean over Q for y and over R for z, we obtain

U5 ≤ c‖b‖∗Mp, (9/8)(‖f‖E)(x).

Finally, we remain to deal with U3. For y ∈ Q, we have

‖T ((b− bR)fχ2N Q\2Q)(y)‖F ≤ c

N−1∑
k=1

1
l(2kQ)n

∫
2k+1Q\2kQ

|b− bR|‖f‖Edµ

≤ c

N−1∑
k=1

1
l(2kQ)n

( ∫
2k+1Q

|b− bR|p′dµ
)1/p′( ∫

2k+1Q
‖f‖p

Edµ
)1/p

.

Note that
( ∫

2k+1Q

|b− bR|p′dµ
)1/p′

≤
( ∫

2k+1Q

|b− b2k+1Q|p
′
dµ

)1/p′
+ µ(2k+1Q)1/p′|b2k+1Q − bR|

≤ cKQ,R‖b‖∗µ(2k+2Q)1/p′.
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Thus

‖T ((b− bR)fχ2N Q\2Q)(y)‖F

≤ cKQ,R‖b‖∗
N−1∑
k=1

µ(2k+2Q)1/p′

l(2kQ)n

( ∫
2k+1Q

‖f‖p
Edµ

)1/p

≤ cKQ,R‖b‖∗
NQ, R∑
k=1

µ(2k+2Q)
l(2kQ)n

( 1
µ(2k+2Q)

∫
2k+1Q

‖f‖p
Edµ

)1/p

≤ cK2
Q,R‖b‖∗Mp, (9/8)(‖f‖E)(x).

Taking the mean over Q, we get

U3 ≤ cK2
Q,R‖b‖∗Mp, (9/8)(‖f‖E)(x).

So by the estimates on U1, U2, U3, U4 and U5, the regularity condition (6) follows.
Let us see how from (5) and (6) one obtain the sharp maximal function estimate.

From (5), if Q is a doubling cube and x ∈ Q, we have

(12)
‖mQ(Cbf) − hQ‖F ≤ 1

µ(Q)

∫
Q

‖Cbf − hQ‖Fdµ

≤ c‖b‖∗
(
Mp, (9/8)(‖f‖E)(x) +Mp, (3/2)(‖Tf‖F )(x)

)
.

Also, for any cube Q � x, KQ, Q̃ ≤ c, and then by (5) and (6) we get

(13)

1
µ( 3

2Q)

∫
Q
‖Cbf −mQ̃(Cbf)‖Fdµ

≤ 1
µ( 3

2Q)

∫
Q
‖Cbf−hQ‖Fdµ+‖hQ−hQ̃‖F +‖hQ̃−mQ̃(Cbf)‖F

≤ c‖b‖∗
(
Mp, (9/8)(‖f‖E)(x) +Mp, (3/2)(‖Tf‖F )(x) + T∗f(x)

)
.

On the other hand, for all doubling cubes Q ⊂ R with x ∈ Q such that
KQ,R ≤ P0, where P0 is the constant in Lemma 9.3 in [9], by (6) we have

‖hQ − hR‖F ≤ cKQ,R‖b‖∗
(
Mp, (9/8)(‖f‖E)(x) + T∗f(x)

)
P0.

So by Lemma 9.3 in [9] we get

‖hQ − hR‖F ≤ cKQ,R‖b‖∗
(
Mp, (9/8)(‖f‖E)(x) + T∗f(x)

)
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for all doubling cubes Q ⊂ R with x ∈ Q and using (12) again, we obtain

‖mQ(Cbf) −mR(Cbf)‖F

≤ cKQ,R‖b‖∗
(
Mp, (9/8)(‖f‖E)(x) +Mp, (3/2)(‖Tf‖F )(x) + T∗f(x)

)
.

From this estimate and (13), we get the sharp maximal function estimate.

Proof of the theorem 3.. Let {bQ}Q be a family of numbers satisfying
∫

Q
|b− bQ|dµ ≤ 2µ(2Q)‖b‖∗∗

for any cube Q, and
|bQ − bR| ≤ 2KQ,R‖b‖∗∗

for all cubes Q ⊂ R. For any cube Q and positive function f , we denote

wQ := mQ

(
V (|b− bQ|fχRd\ 4

3
Q)

)
.

We can analogously prove that for all p ∈ (1, ∞),

(14)

1
µ( 3

2Q)

∫
Q
‖V +

b f −wQ‖Fdµ ≤ c‖b‖∗
(
Mp, (9/8)f(x)

+Mp, (3/2)(‖V f‖F )(x)
)

for all x and Q with x ∈ Q, and

‖wQ − wR‖F ≤ c‖b‖∗
(
Mp, (9/8)f(x) + ‖V f(x)‖F

)
K2

Q, R(15)

for all cubes Q ⊂ R with x ∈ Q. By (14) and (15), we obtain the following sharp
maximal function estimate

M#
F (V +

b f)(x) ≤ cp‖b‖∗
(
Mp, (9/8)f(x) +Mp, (3/2)(‖V f‖F )(x) + ‖V f(x)‖F

)
.

Then, if we take r such that 1 < r < p <∞, we can get

‖V +
b f‖Lp

F (µ) ≤ ‖NF (V +
b f)‖Lp(µ) ≤ c‖M#

F (V +
b f)‖Lp(µ)

≤ c‖b‖∗
(
‖Mr, (9/8)f‖Lp(µ) + ‖Mr, (3/2)(‖V f‖F )‖Lp(µ) + ‖V f‖L

p
F (µ)

)

≤ c‖b‖∗‖f‖Lp(µ).
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