EMBEDDING ℓ_{1} INTO THE PROJECTIVE TENSOR PRODUCT OF BANACH SPACES

Xiaoping Xue*, Yongjin Li and Qingying Bu**

Abstract

Let X and Y be Banach spaces such that X has an unconditional basis. Then $X \hat{\otimes} Y$, the projective tensor product of X and Y, contains no copy of ℓ_{1} if and only if both X and Y contain no copy of ℓ_{1} and each continuous linear operator from X to Y^{*} is compact.

1. Introduction

In 1991, G. Emmanuele [3] showed that if Banach spaces X and Y contain no copy of ℓ_{1} then their projective tensor product $X \hat{\otimes} Y$ contains no copy of ℓ_{1} provided ${ }^{(*)}$ each continuous linear operator from X to Y^{*} is compact. In this paper, we will use Rosenthal's ℓ_{1}-theorem (see [1, p.201]) and sequence space techniques to show that the condition (*) in Emmanuele's result is not only sufficient but also necessary in case one of X and Y has an unconditional basis.

For a Banach space X, let X^{*} denote its topological dual and B_{X} denote its closed unit ball. For Banach spaces X and Y, let $\mathcal{L}(X, Y)$ denote the space of all continuous linear operators from X to Y with its operator norm $\|\cdot\|$; and let $X \hat{\otimes} Y$ denote the completion of the tensor product $X \otimes Y$ with respect to the projective tensor norm. It is known that the dual of $X \hat{\otimes} Y$ is isometrically isomorphic to $\mathcal{L}\left(X, Y^{*}\right)$ (see [2, p. 230]). For a Banach space with a basis $\left\{e_{n}\right\}_{1}^{\infty}$, let $\left\{e_{n}^{*}\right\}_{1}^{\infty}$ be the biorthogonal functionals associated to the basis $\left\{e_{n}\right\}_{1}^{\infty}$, i.e.,

$$
e_{i}^{*}\left(e_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

[^0]Lemma 1. Let X be a Banach space with an unconditional basis $\left\{e_{n}\right\}_{1}^{\infty}$. Then a bounded subset M of X is relatively compact if and only if

$$
\begin{equation*}
\limsup _{n}\left\{\left\|\sum_{i=n}^{\infty} e_{i}^{*}(x) e_{i}\right\|: x \in M\right\}=0 . \tag{1}
\end{equation*}
$$

Proof. First suppose that M is relatively compact. If (1) does not hold, then noting that $\lim _{n}\left\|\sum_{i=n}^{\infty} e_{i}^{*}(x) e_{i}\right\|=0$ for each $x \in X$, there exist an $\varepsilon_{0}>0$, a subsequence $n_{1}<m_{1}<n_{2}<m_{2}<\cdots$, and a sequence $\left\{x_{k}\right\}_{1}^{\infty}$ in M such that

$$
\left\|\sum_{i=n_{k}}^{\infty} e_{i}^{*}\left(x_{k}\right) e_{i}\right\| \geq \varepsilon_{0}, \quad k=1,2, \cdots
$$

and

$$
\left\|\sum_{i=m}^{\infty} e_{i}^{*}\left(x_{k}\right) e_{i}\right\| \leq \varepsilon_{0} / 2, \quad m>m_{k}, k=1,2, \cdots .
$$

Let K be the unconditional basis constant of $\left\{e_{n}\right\}_{1}^{\infty}$. Then for each $k, j \in \mathbb{N}$ with $k>j$,

$$
\begin{aligned}
K \cdot\left\|x_{k}-x_{j}\right\| & \geq\left\|\sum_{i=n_{k}}^{\infty} e_{i}^{*}\left(x_{k}-x_{j}\right) e_{i}\right\| \geq\left\|\sum_{i=n_{k}}^{\infty} e_{i}^{*}\left(x_{k}\right) e_{i}\right\|-\left\|\sum_{i=n_{k}}^{\infty} e_{i}^{*}\left(x_{j}\right) e_{i}\right\| \\
& \geq \varepsilon_{0}-\varepsilon_{0} / 2=\varepsilon_{0} / 2 .
\end{aligned}
$$

Therefore the sequence $\left\{x_{k}\right\}_{1}^{\infty}$ has no limit points in X, which shows that M is not relatively compact. This contradiction shows that (1) holds.

Next suppose that (1) holds. Pick a sequence $\left\{x_{m}\right\}_{1}^{\infty}$ in M. Since M is bounded, $\sup _{m}\left|e_{i}^{*}\left(x_{m}\right)\right|<\infty$ for each $i \in \mathbb{N}$. By diagonal method, we can find a subsequence $\left\{x_{m_{k}}\right\}_{1}^{\infty}$ of $\left\{x_{m}\right\}_{1}^{\infty}$ such that

$$
\begin{equation*}
\lim _{k} e_{i}^{*}\left(x_{m_{k}}\right) \text { exists for each } i \in \mathbb{N} \text {. } \tag{2}
\end{equation*}
$$

For each $\varepsilon>0$, there exists by (1) an $n_{0} \in \mathbb{N}$ such that

$$
\left\|\sum_{i=n_{0}+1}^{\infty} e_{i}^{*}(x) e_{i}\right\| \leq \varepsilon / 4, \quad \forall x \in M
$$

Moreover, there exists by (2) a $k_{0} \in \mathbb{N}$ such that for each $k, j>k_{0}$,

$$
\left|e_{i}^{*}\left(x_{m_{k}}-x_{m_{j}}\right)\right|<\varepsilon / 2 c n_{0}, \quad i=1,2, \cdots, n_{0},
$$

where $c=\sup _{n}\left\|e_{n}\right\|<\infty$. Thus for each $k, j>k_{0}$,

$$
\begin{aligned}
\left\|x_{m_{k}}-x_{m_{j}}\right\| & =\left\|\sum_{i=1}^{\infty} e_{i}^{*}\left(x_{m_{k}}-x_{m_{j}}\right) e_{i}\right\| \\
& \leq c \sum_{i=1}^{n_{0}}\left|e_{i}^{*}\left(x_{m_{k}}-x_{m_{j}}\right)\right|+\left\|\sum_{i=n_{0}+1}^{\infty} e_{i}^{*}\left(x_{m_{k}}\right) e_{i}\right\|+\left\|\sum_{i=n_{0}+1}^{\infty} e_{i}^{*}\left(x_{m_{j}}\right) e_{i}\right\| \\
& \leq \varepsilon / 2+\varepsilon / 4+\varepsilon / 4=\varepsilon .
\end{aligned}
$$

Therefore $\left\{x_{m_{k}}\right\}_{1}^{\infty}$ is a Cauchy sequence in X, and hence it has a limit point in X. This shows that M is relatively compact.

Lemma 2. Let X and Y be Banach spaces such that X has an unconditionally shrinking basis $\left\{e_{n}\right\}_{1}^{\infty}$. For a continuous linear operator T from X to Y, let $y_{n}=T e_{n}$ for each $n \in \mathbb{N}$. Then T is compact if and only if

$$
\limsup _{n}\left\{\left\|\sum_{i=n}^{\infty} e_{i}^{*}(x) y_{i}\right\|_{Y}: x \in B_{X}\right\}=0
$$

Proof. Since $\left\{e_{n}\right\}_{1}^{\infty}$ is an unconditionally shrinking basis of $X,\left\{e_{n}^{*}\right\}_{1}^{\infty}$ is an unconditional basis of X^{*}. Let T^{*} be the adjoint operator of T. Then for each $y^{*} \in Y^{*}, T^{*}\left(y^{*}\right)=\sum_{n=1}^{\infty} y^{*}\left(y_{n}\right) e_{n}^{*}$. Thus $\left\{T^{*}\left(y^{*}\right): y^{*} \in B_{Y^{*}}\right\}=$ $\left\{\sum_{n=1}^{\infty} y^{*}\left(y_{n}\right) e_{n}^{*}: y^{*} \in B_{Y^{*}}\right\}$. Note that for each $n \in \mathbb{N}$,

$$
\sup \left\{\left\|\sum_{i=n}^{\infty} e_{i}^{*}(x) y_{i}\right\|_{Y}: x \in B_{X}\right\}=\sup \left\{\left\|\sum_{i=n}^{\infty} y^{*}\left(y_{i}\right) e_{i}^{*}\right\|_{X^{*}}: y^{*} \in B_{Y^{*}}\right\} .
$$

By Lemma $1, T$ is compact if and only if T^{*} is compact if and only if

$$
\limsup _{n}\left\{\left\|\sum_{i=n}^{\infty} y^{*}\left(y_{i}\right) e_{i}^{*}\right\|_{X^{*}}: y^{*} \in B_{Y^{*}}\right\}=0
$$

if and only if

$$
\limsup _{n}\left\{\left\|\sum_{i=n}^{\infty} e_{i}^{*}(x) y_{i}\right\|_{Y}: x \in B_{X}\right\}=0
$$

Lemma 3. Let X and Y be Banach spaces such that X has an unconditional basis $\left\{e_{n}\right\}_{1}^{\infty}$. For a continuous linear operator T from X to Y^{*}, let $y_{n}^{*}=T e_{n}$ for each $n \in \mathbb{N}$. Define

$$
\begin{aligned}
I_{T}: X \hat{\otimes} Y & \longrightarrow \ell_{1} \\
z & \longmapsto\left(\sum_{k=1}^{\infty} e_{n}^{*}\left(x_{k}\right) \cdot y_{n}^{*}\left(y_{k}\right)\right)_{n},
\end{aligned}
$$

where z admits a representation $z=\sum_{k=1}^{\infty} x_{k} \otimes y_{k}$. Then I_{T} is a well-defined continuous linear operator.

Proof. Let $z \in X \hat{\otimes} Y$ and $s=\left(s_{n}\right)_{n} \in \ell_{\infty}$. For each $\varepsilon>0, z$ admits a representation

$$
z=\sum_{k=1}^{\infty} x_{k} \otimes y_{k}
$$

such that

$$
\sum_{k=1}^{\infty}\left\|x_{k}\right\| \cdot\left\|y_{k}\right\| \leq\|z\|_{X \hat{\otimes} Y}+\varepsilon
$$

Let

$$
u_{k}=\sum_{n=1}^{\infty} s_{n} e_{n}^{*}\left(x_{k}\right) e_{n}, \quad k=1,2, \cdots
$$

Then by [4, p.19, Proposition 1.c.7], $u_{k} \in X$ for each $k \in \mathbb{N}$ and

$$
\left\|u_{k}\right\| \leq 2 K \cdot\|s\|_{\ell_{\infty}} \cdot\left\|x_{k}\right\|, \quad k=1,2, \cdots
$$

where K is the unconditional basis constant for $\left\{e_{n}\right\}_{1}^{\infty}$. Thus

$$
\begin{aligned}
\left|\left\langle s, I_{T}(z)\right\rangle\right| & =\left|\sum_{n=1}^{\infty} s_{n} \sum_{k=1}^{\infty} e_{n}^{*}\left(x_{k}\right) \cdot y_{n}^{*}\left(y_{k}\right)\right|=\left|\sum_{k=1}^{\infty}\left\langle T\left(u_{k}\right), y_{k}\right\rangle\right| \\
& =\left|\left\langle\sum_{k=1}^{\infty} u_{k} \otimes y_{k}, T\right\rangle\right| \leq\|T\| \cdot\left\|\sum_{k=1}^{\infty} u_{k} \otimes y_{k}\right\|_{X \hat{\otimes} Y} \\
& \leq\|T\| \cdot \sum_{k=1}^{\infty}\left\|u_{k}\right\| \cdot\left\|y_{k}\right\| \leq 2 K\|s\|_{\ell_{\infty}} \cdot\|T\| \cdot \sum_{k=1}^{\infty}\left\|x_{k}\right\| \cdot\left\|y_{k}\right\| \\
& \leq 2 K\|s\|_{\ell_{\infty}} \cdot\|T\| \cdot\left(\|z\|_{X \hat{\otimes} Y}+\varepsilon\right) .
\end{aligned}
$$

Letting $\varepsilon \longrightarrow 0$,

$$
\left|\left\langle s, I_{T}(z)\right\rangle\right| \leq 2 K\|s\|_{\ell_{\infty}} \cdot\|T\| \cdot\|z\|_{X \hat{\otimes} Y}
$$

Therefore I_{T} is well-defined and continuous.
Rosenthal's ℓ_{1}-theorem ([1, p. 201]).
A Banach space X contains no copy of ℓ_{1} if and only if each bounded sequence in X has a weakly Cauchy subsequence.

Theorem 4. Let X and Y be Banach spaces such that X has an unconditional basis. Then $X \hat{\otimes} Y$, the projective tensor product of X and Y, contains no copy of
ℓ_{1} if and only if both X and Y contain no copy of ℓ_{1} and each continuous linear operator from X to Y^{*} is compact.

Proof. First let us suppose that both X and Y contain no copy of ℓ_{1} and each continuous linear operator from X to Y^{*} is compact. Let $\left\{e_{n}\right\}_{1}^{\infty}$ be an unconditional basis of X. By [4, p. 21, Theorem 1.c.9], $\left\{e_{n}\right\}_{1}^{\infty}$ is also a shrinking basis. Let $\left\{z_{n}\right\}_{1}^{\infty}$ be a bounded sequence in $X \hat{\otimes} Y$, and let z_{n} admit representations

$$
z_{n}=\sum_{k=1}^{\infty} x_{k, n} \otimes y_{k, n} \quad n=1,2, \cdots
$$

such that

$$
\sum_{k=1}^{\infty}\left\|x_{k, n}\right\| \cdot\left\|y_{k, n}\right\| \leq\left\|z_{n}\right\|_{X \hat{\otimes} Y}+1, \quad n=1,2, \cdots
$$

Denote $M=\sup _{n}\left\|z_{n}\right\|_{X \hat{\otimes} Y}<\infty$ and $c=\sup _{n}\left\|e_{n}^{*}\right\|<\infty$. Then for each $i, n \in \mathbb{N}$,

$$
\left\|\sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, n}\right) y_{k, n}\right\|_{Y} \leq c \cdot \sum_{k=1}^{\infty}\left\|x_{k, n}\right\| \cdot\left\|y_{k, n}\right\| \leq c\left(\left\|z_{n}\right\|_{X \hat{\otimes} Y}+1\right) \leq c(M+1) .
$$

Thus for each $i \in \mathbb{N},\left\{\sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, n}\right) y_{k, n}\right\}_{n=1}^{\infty}$ is a bounded sequence in Y. By Rosenthal's ℓ_{1}-theorem, using diagonal method, there exists a subsequence of $\left\{\sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, n}\right) y_{k, n}\right\}_{n=1}^{\infty}$, without loss of generality, say itself $\left\{\sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, n}\right)\right.$ $\left.y_{k, n}\right\}_{n=1}^{\infty}$, which is coordinate-wisely weakly Cauchy sequence, i.e.,
(3) weak- $\lim _{m, n}\left(\sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, m}\right) y_{k, m}-\sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, n}\right) y_{k, n}\right)=0, \quad i=1,2, \cdots$.

Now for each $T \in(X \hat{\otimes} Y)^{*}=\mathcal{L}\left(X, Y^{*}\right)$, let $y_{n}^{*}=T e_{n}$ for each $n \in \mathbb{N}$. By hypothesis, T is compact. For each $\varepsilon>0$, there exists, by Lemma 2 , an $l \in \mathbb{N}$ such that

$$
\sup \left\{\left\|\sum_{i=l+1}^{\infty} e_{i}^{*}(x) y_{i}^{*}\right\|_{Y^{*}}: x \in B_{X}\right\} \leq \varepsilon / 4 M .
$$

Define $T_{l}: X \longrightarrow Y^{*}$ by $T_{l}(x)=\sum_{i=l+1}^{\infty} e_{i}^{*}(x) y_{i}^{*}$ for each $x \in X$. Then $\left\|T_{i}\right\| \leq \varepsilon / 4 M$. From (3), there exists an $n_{0} \in \mathbb{N}$ such that for each $m, n>n_{0}$,

$$
\left|y_{i}^{*}\left(\sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, m}\right) y_{k, m}-\sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, n}\right) y_{k, n}\right)\right| \leq \varepsilon / 2 l, \quad i=1,2, \cdots, l .
$$

Thus for each $m, n>n_{0}$,

$$
\begin{aligned}
\left|\left\langle z_{m}-z_{n}, T\right\rangle\right|= & \left|\sum_{k=1}^{\infty}\left\langle T x_{k, m}, y_{k, m}\right\rangle-\sum_{k=1}^{\infty}\left\langle T x_{k, n}, y_{k, n}\right\rangle\right| \\
= & \left|\sum_{k=1}^{\infty}\left\langle\sum_{i=1}^{\infty} e_{i}^{*}\left(x_{k, m}\right) y_{i}^{*}, y_{k, m}\right\rangle-\sum_{k=1}^{\infty}\left\langle\sum_{i=1}^{\infty} e_{i}^{*}\left(x_{k, n}\right) y_{i}^{*}, y_{k, n}\right\rangle\right| \\
= & \left|\sum_{i=1}^{\infty}\left(\sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, m}\right) \cdot y_{i}^{*}\left(y_{k, m}\right)-\sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, n}\right) \cdot y_{i}^{*}\left(y_{k, n}\right)\right)\right| \\
\leq & \sum_{i=1}^{l}\left|y_{i}^{*}\left(\sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, m}\right) y_{k, m}-\sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, n}\right) y_{k, n}\right)\right| \\
& +\left|\sum_{i=l+1}^{\infty} \sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, m}\right) \cdot y_{i}^{*}\left(y_{k, m}\right)\right|+\left|\sum_{i=l+1}^{\infty} \sum_{k=1}^{\infty} e_{i}^{*}\left(x_{k, n}\right) \cdot y_{i}^{*}\left(y_{k, n}\right)\right| \\
\leq & \varepsilon / 2+\left|\left\langle z_{m}, T_{l}\right\rangle\right|+\left|\left\langle z_{n}, T_{l}\right\rangle\right| \\
\leq & \varepsilon / 2+\left(\left\|z_{m}\right\|_{X \hat{\otimes} Y}+\left\|z_{n}\right\|_{X \hat{\otimes} Y}\right) \cdot\left\|T_{l}\right\| \leq \varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

Therefore, $\left\{z_{n}\right\}_{1}^{\infty}$ is a weakly Cauchy sequence in $X \hat{\otimes} Y$, and hence, by Rosenthal's ℓ_{1}-theorem again, $X \hat{\otimes} Y$ contains no copy of ℓ_{1}.

Next suppose that $X \hat{\otimes} Y$ contains no copy of ℓ_{1}. It is obvious that X and Y contain no copy of ℓ_{1}. Let $\left\{e_{n}\right\}_{1}^{\infty}$ be an unconditional basis of X. By [4, p.21, Theorem 1.c.9], $\left\{e_{n}\right\}_{1}^{\infty}$ is also a shrinking basis. Now for each $T \in(X \hat{\otimes} Y)^{*}=$ $\mathcal{L}\left(X, Y^{*}\right)$, let $y_{n}^{*}=T e_{n}$ for each $n \in \mathbb{N}$. If T is not compact, by Lemma 2, there are $\varepsilon_{0}>0$, a subsequence $n_{1}<n_{2}<\cdots$, and a sequence $\left\{x_{k}\right\}_{1}^{\infty}$ in B_{X} such that

$$
\left\|\sum_{i=n_{k}}^{\infty} e_{i}^{*}\left(x_{k}\right) y_{i}^{*}\right\|_{Y^{*}}>\varepsilon_{0}, \quad k=1,2, \cdots
$$

Moreover, there exists a sequence $\left\{y_{k}\right\}_{1}^{\infty}$ in B_{Y} such that

$$
\begin{equation*}
\left|\sum_{i=n_{k}}^{\infty} e_{i}^{*}\left(x_{k}\right) y_{i}^{*}\left(y_{k}\right)\right|>\varepsilon_{0}, \quad k=1,2, \cdots \tag{4}
\end{equation*}
$$

Let $z_{k}=x_{k} \otimes y_{k}, k=1,2, \cdots$. Then $z_{k} \in B_{X \hat{\otimes} Y}$ for each $k \in \mathbb{N}$. It follows from Rosenthal's ℓ_{1}-theorem that $\left\{z_{k}\right\}_{1}^{\infty}$ has a subsequence, without loss of generality, say itself, which is weakly Cauchy. By Lemma 3, $\left\{I_{T}\left(z_{k}\right)\right\}_{1}^{\infty}$ is a weakly Cauchy sequence in ℓ_{1}, and hence relatively weakly sequentially compact. Thanks to the Schur property, it is a relatively sequentially compact subset of ℓ_{1}. Thus there exists
an $m \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{i=m}^{\infty}\left|I_{T}\left(z_{k}\right)_{i}\right|=\sum_{i=m}^{\infty}\left|e_{i}^{*}\left(x_{k}\right) y_{i}^{*}\left(y_{k}\right)\right|<\varepsilon_{0}, \quad k=1,2, \cdots . \tag{5}
\end{equation*}
$$

Pick an $n_{k}>m$. Then from (4) and (5),

$$
\varepsilon_{0}<\left|\sum_{i=n_{k}}^{\infty} e_{i}^{*}\left(x_{k}\right) y_{i}^{*}\left(y_{k}\right)\right| \leq \sum_{i=m}^{\infty}\left|e_{i}^{*}\left(x_{k}\right) y_{i}^{*}\left(y_{k}\right)\right|<\varepsilon_{0}
$$

Contradiction. This shows that T must be compact.

References

1. J. Diestel, Sequence and Series in Banach Spaces, Graduate Texts in Math. 92, Springer-Verlag, New York, 1984.
2. J. Diestel and J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
3. G. Emmanuele, Banach spaces in which Dunford-Pettis sets are relatively compact, Arch. Math. (Basel), 58 (1992), 477-485.
4. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Sequence Spaces, SpringerVerlag, 1977.

Xiaoping Xue
Department of Mathematics,
Harbin Institute of Technology,
Harbin, 150001,
P. R. China

E-mail: xiaopingxue@263.net
Yongjin Li
Department of Mathematics,
Sun Yat-sen University,
Guangzhou, 510275,
P. R. China

E-mail: stslyj@zsu.edu.cn

Qingying Bu
Department of Mathematics,
University of Mississippi,
University, MS 38677,
U.S.A.

E-mail: qbu@olemiss.edu

[^0]: Received September 21, 2005, accepted October 7, 2006.
 Communicated by Bor-Luh Lin.
 2000 Mathematics Subject Classification: Primary 46B28, 46M05.
 Key words and phrases: Projective tensor product, Non-containment of ℓ_{1}.
 *The first named author was supported by the National Natural Science Foundation of China, Grant no. 10571035.
 **The third named author gratefully acknowledges the International Office of Harbin Institute of Technology to support his visiting to the Department of Mathematics, Harbin Institute of Technology from mid-May to mid-June in 2005.

