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ON THE FUZZY SHEAF OF THE FUNDAMENTAL GROUPS

Erdal Güner and Sabahattin Balci

Abstract. Let X be a fuzzy path connected space and Haλ be the fundamental
group of X based for any aλ ∈ X, that is π1(X, aλ). Constructing the fuzzy
sheaf of the fundamental groups of X, it is shown that there is a covariant
functor from the category of fuzzy path connected topological spaces and
fuzzy continuous mappings to the category of fuzzy sheaves and fuzzy sheaf
homomorphisms.

1. INTRODUCTION

Let X be a set and I the unit interval [0, 1]. A fuzzy set X is characterized by
a membership function µA which associates with each point x ∈ X its ”grade of
membership” µA(x) ∈ I .

Definition 1. A fuzzy point in X is a fuzzy set with membership function µaλ

defined by

µaλ
(x) =

{
λ, x = a

0, otherwise

for all x ∈ X . Where 0 < λ ≤ 1.
We denote by kλ the fuzzy set in X with the constant membership function

µkλ
(x) = λ for all x ∈ X [3].

Definition 2. A fuzzy topology on a set X is a family τ of fuzzy sets in X
which satisfies the following conditions:

(i) k0, k1 ∈ τ

(ii) If A,B ∈ τ , then A ∩B ∈ τ
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(iii) If Aj ∈ τ for all j ∈ J , then
⋃

j∈J

Aj ∈ τ [1] .

The pair (X, τ) is called a fuzzy topological space. Every member of τ is called
an open fuzzy set. The complement of an open fuzzy set is called a closed fuzzy
set.

Definition 3. Let τ be a fuzzy topology on a set X . A subfamily B of τ is
called a base for τ if each member of τ can be expressed as the union of members
of B.

Definition 4. Let (X, τ1) , (Y, τ2) be two fuzzy topological spaces. A mapping
f of (X, τ1) into (Y, τ2) is fuzzy continuous iff for each open fuzzy set V in τ2 the
inverse image f−1(V ) is in τ1. Conversely, f is fuzzy open iff for each open fuzzy
set U in τ1, the image f(U) is in τ2 [2] .

Definition 5. A bijective mapping f of fuzzy topological space (X, τ1) onto
a fuzzy topological space (Y, τ2) is called a fuzzy homeomorphism if it is fuzzy
continuous and fuzzy open.

Definition 6. A mapping f of fuzzy topological space (X, τ1) into a fuzzy
topological space (Y, τ2) is called a fuzzy sheaf if it is a locally fuzzy homeomor-
phism.

Definition 7. Let (X, τ) be a fuzzy topological space. If α : (I, ε̃) → (X, τ)
is a fuzzy continuous function and the fuzzy set A is connected in (I, ε̃I) with
A(0) > 0 and A(1) > 0, then the fuzzy set α(A) in (X, τ) is called a fuzzy path
in (X, τ).

The fuzzy point (α(0))A(0) = α(0A(0)) and (α(1))A(1) = α(1A(1)) are called
the initial point and the terminal point of the fuzzy path α(A), respectively [5].

Definition 8. Let aλ be a fuzzy point in a fuzzy topological space (X, τ). A
fuzzy path α(A) in (X, τ) is called a fuzzy loop in (X, τ) based at aλ if α(0A(0)) =
α(1A(1)) = aλ.

Definition 9. Let F be a fuzzy set in a fuzzy topological space (X, τ). If for
any two fuzzy points aλ and bµ in F , there is a fuzzy path from aλ to bµ contained
in F , then F is said to be fuzzy path connected in (X, τ).

If F = X in the above definition, we call (X, τ) a fuzzy path connected.

2. THE FUZZY SHEAF OF THE FUNDAMENTAL GROUP OF FUZZY TOPOLOGICAL SPACE

Let X be a fuzzy path connected topological space and Haλ
be the fundamental

group of X based for any aλ ∈ X , that is Haλ
= π1(X, aλ) [4] .
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Let X = (X, xp) be a pointed fuzzy topological space, for an arbitrary fixed
fuzzy point xp ∈ X . Let us denote the disjoint union of all fundamental groups
obtained for each aλ ∈ X , by H , i.e., H =

∨
aλ∈X

Haλ
.

H is a set over X and the mapping ψ : H → X defined by ψ(σaλ
) =

ψ([α(A)]aλ
) = aλ for any σaλ

= [α(A)]aλ
∈ Haλ

⊂ H is onto.
Let W ⊂ X be an open fuzzy set. Define a mapping s : W → H such that

s(aλ) = [γ−1(H) ∗ α(A) ∗ γ(G)]aλ
for each aλ ∈ W . Where [α(A)]xp ∈ Hxp

is any element and [γ(G)] is an arbitrary fixed fuzzy homotopy class defines an
homomorphism between Haλ

and Hxp . Then, the change of s depends on only the
change of σxp = [α(A)]xp. Furthermore ψ ◦ s = 1W . Let us denote the totality of
the mappings s defined on W by Γ(W,H).

If B is a fuzzy base for X , then B∗ = {s(W ) : W ∈ B, s ∈ Γ(W,H)} is a
fuzzy base for H . The mappings ψ and s are fuzzy continuous in this topology.
Moreover ψ is a locally fuzzy topological mapping. Then (H, ψ) is a fuzzy sheaf
over X . (H, ψ) or only H is called ”The fuzzy sheaf of the fundamental groups”
over X .

For any open fuzzy set W ⊂ X , an element s of Γ(W,H) is called a fuzzy
section of the fuzzy sheaf H over W . Furthermore, the group Haλ

= π1(X, aλ) is
called the stalk of the fuzzy sheaf H for any aλ ∈ X .

3. CHARACTERIZATIONS

Let X1, X2 be fuzzy path connected topological spaces and H1, H2 be the
corresponding fuzzy sheaves, respectively.

We begin by giving the following definitions.

Definition 10. Let f ∗ : H1 → H2 be a mapping. If f∗ is fuzzy continuous, a
homomorphism on each stalk of H1 and maps every stalk of H1 into a stalk of H2,
then it is called a fuzzy sheaf homomorphism.

Let f : X1 → X2 be a fuzzy continuous mapping and f∗ : H1 → H2 be a
fuzzy sheaf homomorphism. If f∗((H1)aλ1

) ⊂ (H2)f(aλ1
) for each aλ1 ∈ X1, then

f∗ is called a stalk preserving fuzzy sheaf homomorphism with respect to f .

Definition 11. Let f ∗ : H1 → H2 be a fuzzy sheaf homomorphism. If f∗ is
also a bijection, then f ∗ is called a fuzzy sheaf isomorphism.

Theorem 1. Let f : X1 → X2 be a fuzzy continuous mapping. Then there is
a stalk preserving fuzzy sheaf homomorphism f ∗ : H1 → H2 with respect to f .

Proof. Let aλ1 ∈ X1 be any point and α(A) be a fuzzy loop based at aλ1 .
Then (f ◦ α)(A) is a fuzzy loop based at f(aλ1) and [(f ◦ α)(A)] ∈ Hf(aλ1

).
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On the other hand, if α1(A1) and α2(A2) are fuzzy loops based at aλ1 in X1

such that α1(A1) �aλ1
α2(A2) then (f ◦ α1)(A1) �f(aλ1

) (f ◦ α2)(A2). Thus we
can define the mapping f ∗ : H1 → H2 such that

f∗(σaλ1
) = f∗([α(A)]aλ1

) = [(f ◦ α)(A)]f(aλ1
)

for any [α(A)]aλ1
= σaλ1

∈ (H1)aλ1
⊂ H1.

(1) f∗ is fuzzy continuous.

Let U2 ⊂ f∗(H1) ⊂ H2, be an open fuzzy set. Without loss of generality,
we assume that U2 = s2(W2) where W2 ⊂ X2 is an open fuzzy set and
s2 ∈ Γ(W2, H2). Thus ψ2(U2) = ψ2(s2(W2)) = W2. Since f is fuzzy
continuous, f−1(W2) = W1 ⊂ X1 is an open fuzzy set. Now let σf(aλ1

) ∈ U2

be an element. Then there exists at least one element σaλ1
∈ U1 = (f∗)−1(U2)

such that f ∗(σaλ1
) = f∗([α(A)]aλ1

) = [(f ◦ α)(A)]f(aλ1
).

Since ψ1(σaλ1
) = aλ1 ∈ W1, there is a fuzzy section s1 ∈ Γ(W1, H1)

such that s1(aλ1) = σaλ1
and s1(W1) ⊂ H1 is an open fuzzy set. Also

s1(W1) ⊂ U1. It is easily seen that U1 =
⋃
i∈I

s1i (W1).

Therefore, U1 ⊂ H1 is an open fuzzy set, that is f∗ is a fuzzy continuous
mapping.

(2) f∗ preserves the stalk with respect to f .

In fact, for any σaλ1
= [α(A)]aλ1

∈ H1

(f ◦ ψ1)([α(A)]aλ1
) = f(ψ1([α(A)]aλ1

)) = f(aλ1)

(ψ2 ◦ f∗)([α(A)]aλ1
) = ψ2(f∗([α(A)]aλ1

))

= ψ2([(f ◦ α)(A)]f(aλ1
)) = f(aλ1)

(3) For every aλ1 ∈ X1, the map f∗|(H1)aλ1
: (H1)aλ1

→ (H2)f(aλ1
) is homo-

morphism.

In fact, if α1(A1), β1(B1) are fuzzy loops based at aλ1 ∈ X1 and (f◦α1)(A1),
(f ◦ β1) (B1) are the corresponding fuzzy loops based at f(aλ1) ∈ X2,

γ(G) = (α1 ∗ β1)(G) = α1(A1) ∗ β1(B1)

=

{
α1((2t)A1(2t)) , 0 ≤ t ≤ 1

2

β1((2t− 1)B1(2t−1)) , 1
2 ≤ t ≤ 1
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and

(f ◦ γ)(G) =

{
f(α1((2t)A1(2t))) , 0 ≤ t ≤ 1

2

f(β1((2t− 1)B1(2t−1))) , 1
2 ≤ t ≤ 1

.

That is (f ◦ γ)(G) = (f ◦ α1)(A1) ∗ (f ◦ β1)(B1). Hence

f∗([α1(A1)]aλ1
).f∗([β1(B1)]aλ1

)=[(f ◦ α1)(A1)]f(aλ1
).[(f ◦ β1)(B1)]f(aλ1

)

=[(f ◦ α1)(A1) ∗ (f ◦ β1)(B1)]f(aλ1
)

=[f ◦ (α1(A1) ∗ β1(B1))]f(aλ1
)

=f∗([α1(A1) ∗ β1(B1)]aλ1
).

Now, let C be the category of fuzzy path connected topological spaces and
fuzzy continuous mappings and D be the category of fuzzy sheaves and fuzzy sheaf
homomorphisms. Let us define a mapping F : C → D as follows:

F (f) = f∗ : H1 → H2

for any fuzzy continuous mapping f : X1 → X2. Then

(1) If f = 1X , then F (1X) = 1F (X), since

(1X)∗([α(A)]aλ
) = [(1X ◦ α)(A)]aλ

= [α(A)]aλ

for any σaλ
= [α(A)]aλ

∈ Haλ
.

(2) If f1 : X1 → X2 and f2 : X2 → X3 are any two fuzzy continuous mappings,
then f2 ◦ f1 = f2f1 : X1 → X3 is also a fuzzy continuous mapping and

F (f2f1) = (f2f1)∗ : H1 → H3.

However, (f2f1)∗([α(A)]aλ
) = [(f2f1 ◦ α)(A)](f2f1)(aλ) for any [α(A)]aλ

∈
H1. Since

(f2f1 ◦ α)(A) �f(aλ) f2((f1 ◦ α)(A)),

it can be written that

[(f2f1 ◦ α)(A)](f2f1)(aλ) = [f2((f1 ◦ α)(A))](f2f1)(aλ)

= f∗2 [(f1 ◦ α)(A)]f1(aλ)

= (f∗2 ◦ f∗1 )([α(A)]aλ
).
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We then have:

Theorem 2. There is a covariant functor from the category of fuzzy path
connected topological spaces and fuzzy continuous mappings to the category of
fuzzy sheaves and fuzzy sheaf homomorphisms.

Let f : X1 → X2 be a fuzzy topological mapping, then there exists the fuzzy
continuous mapping f−1 : X2 → X1 such that ff−1 = 1X2 , f−1f = 1X1.

From Theorem 1, there are the mappings (f−1)∗ : H2 → H1, (ff−1)∗ =
(1X2)

∗ : H2 → H2, (f−1f)∗ = (1X1)
∗ : H1 → H1. From Theorem 2, (ff−1)∗ =

f∗(f−1)∗ = 1F (X2), (f−1f)∗ = (f−1)∗f∗ = 1F (X1). Hence (f−1)∗ = (f∗)−1.
Thus f ∗ is a fuzzy sheaf isomorphism.

Therefore, We can give the following corollary.

Corollary 3. Let f : X1 → X2 be a fuzzy topological mapping. Then the
corresponding fuzzy sheaves H1 and H2 are fuzzy isomorphic.
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Department of Mathematics,
Faculty of Science,
Ankara University,
Tandogan, Ankara, Turkey
E-mail: guner@science.ankara.edu.tr

Sabahattin Balci
Department of Mathematics,
Faculty of Science,
Ankara University,
andogan, Ankara, Turkey
E-mail: balci@science.ankara.edu.tr


