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A CHARACTERIZATION OF DUAL LORENTZIAN
SPHERICAL CURVES IN THE DUAL LORENTZIAN SPACE

Nihat Ayylldlz, A. Ceylan Çöken and Ahmet Yücesan

Abstract. A differential equation characterizing the dual Lorentzian spherical
curves and an explicit solution of this differential equation are given. Also,
without the precondition on the dual torsion is nowhere pure-dual, a necessary
and sufficient condition for a curve to be dual Lorentzian spherical is presented.
In addition, thanks to dual geodesic trihedron, torsion and curvature of dual
Lorentzian curve

→
x̂(s) have been calculated.

1. INTRODUCTION

Semi-Riemannian metric is quite important in differential geometry as well as
in physics in which it plays a central role in the theory relativity especially as
Lorentzian metric. Semi-Euclidean spaces R

n+1
ν reduce to R

n if ν = 0. For n ≥ 1,
R

n+1
1 is called Minkowski (n + 1)−space; if n = 3 it is the simplest example of a

relativistic spacetime [10].
Minkowski geometry is a non-Euclidean geometry in a finite number of di-

mensions that is different from elliptic and hyperbolic geometry (and from the
Minkowskian geometry of spacetime). Here the linear structure is the same as
the Euclidean one but distance is not uniform in all directions. Instead of the
usual sphere in Euclidean space, the unit ball is a general symmetric convex set.
Therefore, although the parallel axiom is valid, Pythagoras theorem is not [12 ].

Theory of space curves of Riemannian manifold M is fully developed and its
local and global geometry is well-known. If M is proper semi-Riemannian, there
are three categories of curves, namely, spacelike, timelike and null, depending on
their causal character [10].
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The differential equation characterizing a real spherical curve is

d

ds
[

1
τ(s)

dρ

ds
] + ρ(s)τ(s) = 0,

where s is the length of arc, ρ(s) = 1
κ(s) is the radius of curvature and τ(s) is the

torsion of the curve.
In the 1971, an explicit solution was first given by Breuer and Gottlieb as

ρ(s) = a cos

s∫
0

τ(s)ds + b sin

s∫
0

τ(s)ds,

where a and b are arbitrary constants.
A year later Wong observed that whereas the differential equation holds true

only locally (for τ �= 0), the Breuer-Gottlieb solution holds regardless of a possible
vanishing of τ at some point and is therefore a global characterization of a spherical
curve.

Wong’s observation was derived by using a global differential condition of his
then a curve in R

3 lies in a sphere iff there is a function f ∈ C 1 so that fτ = ρ
′ ,

f
′
= −τρ [9].
This paper gives a characterization of dual Lorentzian spherical curves in the

dual Lorentzian space.

2. PRELIMINARIES

Let R
3 = {(x1, x2, x3) | x1, x2, x3 ∈ R} be a 3-dimensional vector space,−→x = (x1, x2, x3) and −→y = (y1, y2, y3) be two vectors in R

3, the Lorentzian scalar
product of −→x and −→y is defined by

< −→x ,−→y >= −x1y1 + x2y2 + x3y3.

(R3, <, >) is called 3-dimensional Lorentzian space, or Minkowski 3-space. We
denote R

3
1 as (R3, <, >).

For any −→x = (x1, x2, x3), −→y = (y1, y2, y3) ∈ R
3
1, the Lorentzian vector product

of −→x and −→y is defined by

−→x ∧−→y = (x2y3 − x3y2, x1y3 − x3y1, x2y1 − x1y2),

where −→e1 ∧−→e2 = −−→e3 , −→e2 ∧−→e3 = −→e1 and −→e3 ∧ −→e1 = −−→e2 [1].
Moreover −→x in R

3
1 is called a spacelike vector, a lightlike vector or a timelike

vector if<−→x ,−→x >> 0, or −→x =
−→
0 , <−→x ,−→x > = 0 and <−→x �=−→

0 > or <−→x ,−→x >< 0,
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respectively. For −→x ∈ R
3
1, the norm of −→x is defined by ‖ −→x ‖=

√
|< −→x ,−→x >|,

and −→x is called a unit vector if ‖ −→x ‖= 1 [10].
Let

α : I ⊂ R → R
3
1

t → α(t) = (α1(t), α2(t), α3(t))

be a smooth regular curve in R
3
1, where I is an open interval. For any t ∈ I ,

the curve α is called a spacelike curve, a lightlike curve or a timelike curve if
< −→α ′

,−→α ′
>> 0, < −→α ′

,−→α ′
>= 0 or < −→α ′

,−→α ′
>< 0 respectively [10].

The Lorentzian and hyperbolic spheres with radius 1 in R
3
1 are defined by

S2
1 = {−→x = (x1, x2, x3) ∈ R

3
1 | < −→x ,−→x >= 1},

and
H2

0 = {−→x = (x1, x2, x3) ∈ R
3
1 | < −→x ,−→x >= −1},

respectively [10].
Dual numbers had been introduced by W.K. Clifford (1849 − 1879) as a tool

for his geometrical investigations. After him E.Study used dual numbers and dual
vectors in his research on line geometry and kinematics. He devoted special attention
to the representation of oriented lines by dual unit vectors and defined the famous
mapping: The set of oriented lines in a Euclidean three-dimension space R

3 is one
to one correspondence with the points of a dual space D

3 of triples of dual numbers
[8].

Definition 2.1. By a dual number x̂, we mean an ordered pairs of the form
(x, x0) for ∀x, x0 ∈ R. Let the set R × R be demonstrated as D. Two inner
operations and an equality on D = {(x, x0)| x, x0 ∈ R} are defined as follows:

(i) Inner production ⊕ : D × D → D for x̂ = (x, x0), ŷ = (y, y0) is defined as

x̂ ⊕ ŷ = (x, x0) ⊕ (y, y0) = (x + y, x0 + y0)

and is called the addition in D.

(ii) Inner production 
 : D × D → D for x̂ = (x, x0), ŷ = (y, y0) is defined as

x̂ 
 ŷ = x̂ŷ = (x, x0) 
 (y, y0) = (xy, xy0 + x0y)

and is called the multiplication in D.

(iii) If x = y, x0 = y0 for x̂ = (x, x0), ŷ = (y, y0) ∈ D, x̂ and ŷ are equal and it
is indicated as x̂ = ŷ.
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Definition 2.2. If the operations of addition, multiplication and equality on the
set D = R×R with set of real numbers R are defined as above, the set D is called
the dual numbers system and the element ∀ (x, x0) ∈ D is called a dual number.

Definition 2.3. In a dual number x̂ = (x, x0) ∈ D, the real number x is called
the real part of x̂ and the real number x0 is called the dual part of x̂.

Definition 2.4. The dual number (1, 0) = 1 is called unit element of multipli-
cation operation in D or real unit in D.

Definition 2.5. The dual number (0, 1) is to be demonstrated with ξ in short,
and the (0, 1) = ξ is to be called dual unit. In accordance with the definition of the
operation of multiplication, it can easily be seen that ξ2 = 0. Also, the dual number
x̂ = (x, x0) ∈ D can be written as x̂ = x + ξx0 [7].

The set of D = {x̂ = x + ξx0| x, x0 ∈ R} of dual numbers is a commutative
ring according to the operations

(i) (x + ξx0)⊕ (y + ξy0) = (x + y) + ξ(x0 + y0)
(ii) (x + ξx0)
 (y + ξy0) = xy + ξ(xy0 + yx0).

The dual number x̂ = x+ξx0 divided by the dual number ŷ = y+ξy0 providing
y �= 0 can be defined as

x̂

ŷ
=

x + ξx0

y + ξy0
=

x

y
+ ξ

x0y − xy0

y2
.

The set of

D
3 = D × D × D = {−→̂x |−→̂x = (x1 + ξx01, x2 + ξx02, x3 + ξx03)

= (x1, x2, x3) + ξ(x01, x02, x03)

= −→x + ξ−→x0,
−→x ∈ R

3,−→x0 ∈ R
3}

is a modul on the ring D.

Definition 2.6. Let
−→̂
x = −→x +ξ−→x0,

−→̂
y = −→y +ξ−→y0 ∈ D

3. The Lorentzian inner
product of

−→̂
x and

−→̂
y is defined by

<
−→̂
x ,

−→̂
y >=< −→x ,−→y > +ξ(< −→x ,−→y0 > + < −→x0,

−→y >).

We call the dual space D
3 together with this Lorentzian inner product as dual

Lorentzian space and indicate it by D
3
1 [14].

Definition 2.7. Let
−→̂
x = −→x +ξ−→x0 ∈ D

3
1.

−→̂
x is said to be spacelike, timelike and

lightlike (null) if the vector −→x is spacelike, timelike and lightlike (null), respectively.



A Characterization of Dual Lorentzian Spherical Curves in the Dual Lorentzian Space 1003

If −→x �= 0, the norm
∥∥∥−→̂x ∥∥∥ of

−→̂
x = −→x + ξ−→x0 is defined by

∥∥∥−→̂x ∥∥∥ =
√∣∣∣< −→̂

x ,
−→̂
x >

∣∣∣ = (‖−→x ‖ ,
< −→x ,−→x0 >

‖−→x ‖ ).

A dual Lorentzian vector
−→̂
x with norm 1 is called a dual Lorentzian unit vector. It

follows that
−→̂
x is a dual timelike unit vector (resp., dual spacelike unit vector) if

the relations <−→x ,−→x >= −1, (resp., <−→x ,−→x >= 1) and <−→x ,−→x0>= 0 hold [14].

Definition 2.8. Let
−→̂
x = −→x + ξ−→x0 ∈ D

3
1.

(i) The set Ŝ2
1 = {−→̂x = −→x + ξ−→x0 |

∥∥∥−→̂x −−→̂
m

∥∥∥ = (1, 0); −→x ,−→x0 ∈ R
3
1,

−→x
spacelike} is called the dual Lorentzian unit sphere with the center

−→̂
m in D

3
1.

(ii) The set Ĥ2
0 = {−→̂x = −→x + ξ−→x0 |

∥∥∥−→̂x −−→̂
m

∥∥∥ = (1, 0); −→x ,−→x0 ∈ R
3
1,

−→x
timelike} is called the dual hyperbolic unit sphere with the center

−→̂
m in D

3
1

[14].

If every xi(t) and x0i(t), 1 ≤ i ≤ 3, real valued functions are differentiable,
the dual curve

x̂ : I → D
3
1

t →
→

x̂(t) = (x1(t) + ξx01(t), x2(t) + ξx02(t), x3(t) + ξx03(t))

=
→

x(t) + ξ
→

x0(t)

in D
3
1 is a differentiable. We call the real part

→
x(t) as indicatrix of

→
x̂(t). The dual

arc length of the curve
→

x̂(t) from t1 to t is defined as

(2.1) ŝ =

t∫
t1

∥∥∥∥∥ →
x̂(t)

′∥∥∥∥∥ dt =

t∫
t1

∥∥∥∥∥ →
x(t)

′∥∥∥∥∥ dt + ξ

t∫
t1

<
→
t ,

→
x0

′
> dt = s + ξs0.

From now on we will take the arc length s of
→

x(t) as the parameter instead of t.

3. FRENET FORMULAE

Now, we will obtain equations relative to the derivatives of Frenet vectors
throughout the curve in D

3
1. Let

x̂ : I → D
3
1

s →
→

x̂(s) =
→

x(s) + ξ
→

x0(s)
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be a C4 curve with the arc length parameter s of the indicatrix. Then,

d
→
x̂

dŝ
=

d
→
x̂

ds
· ds

dŝ
=

→
t̂

is called the unit tangent vector of
→

x̂(s). By the aid of the equation (2.1), we have

ŝ = s + ξ

s∫
s1

<
→
t ,

→
x0

′
> ds

and from this dŝ
ds = 1 + ξ �, where the prime denotes differentiation with respect

to the arc length s of indicatrix and �=<
→
t ,

→
x0

′
>. Since

→
t̂ has constant length

1, its differentiation with respect to ŝ, which is given by

d
→
t̂

dŝ
=

d
→
t̂

ds
· ds

dŝ
=

d2
→
x̂

dŝ2
= κ̂

→
n̂,

measures the way the curve is turning in D
3
1. The norm of the vector d

→
t̂

dŝ is called

curvature function of
→

x̂(s). We impose the restriction that the function κ̂ : I → D

is never pure dual. Then, the unit vector
→
n̂ = 1

κ̂

d
→
t̂

dŝ is called the normal of
→

x̂(s).

The vector
→
b̂ is called the binormal of

→
x̂(s). We call the vectors

→
t̂ ,

→
n̂ ,

→
b̂ Frenet

trihedron of
→

x̂(s) at the point x̂(s). The equalities relative to derivatives of Frenet

vectors
→
t̂ ,

→
n̂ ,

→
b̂ throughout the curve are written in the matrix form

(3.1)
d

dŝ


→
t̂
→
n̂
→
b̂

 =

 0 κ̂ 0
−ε→

t̂
ε→

n̂
κ̂ 0 τ̂

0 −ε→
n̂
ε→

b̂
τ̂ 0




→
t̂
→
n̂
→
b̂


such that <

→
t̂ ,

→
t̂ >= ε→

t̂
, <

→
n̂,

→
n̂ >= ε→

n̂
, <

→
b̂ ,

→
b̂ >= ε→

b̂
, and

<
→
t̂ ,

→
n̂ >=<

→
t̂ ,

→
b̂ >=<

→
b̂ ,

→
n̂ >= 0. The function τ̂ : I → D is called the

torsion of
→

x̂(s). The formulae (3.1) are called the Frenet formulae.
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4. DUAL LORENTZIAN OSCULATING SPHERE AND DUAL LORENTZIAN SPHERICAL

CURVES

The geometric place of the dual Lorentzian spheres with 3-contact points with
→

x̂(s) in the point x̂(s) of the curve
→

x̂(s) ∈ D
3
1 can be given by the following theorem.

Theorem 4.1. Let the curve
→

x̂(s) ⊂ D
3
1 be given with the coordinate neigh-

bourhood (I, x̂). Let the Frenet trihedron in the point x̂(s) corresponding to s ∈ I

be {
→
t̂ ,

→
n̂,

→
b̂ }. The geometric place of the dual Lorentzian spheres with 3-contact

points with
→

x̂(s) in the point x̂(s) of the curve
→

x̂(s) ∈ D
3
1 is

→
m̂ =

→
x̂ − m̂2

→
n̂ − m̂3

→
b̂ .

Proof. Let the coordinate neighbourhood (I, x̂) be given as the arc-length

parameter for
→

x̂(s). Let, in the point x̂(s), the center of the dual Lorentzian spheres

with 3-contact points with
→

x̂(s) be
→
m̂ and the radius be r̂. Accordingly, let us take

the function

ĥ : I → D

s → ĥ(s) =
∣∣∣∣< →

x̂ −
→
m̂,

→
x̂ −

→
m̂ >

∣∣∣∣ − r̂2

into consideration. For the curve
→

x̂(s) to have 3-contact points with the spheres of

Ŝ2
1 = {

→
x̂ =

→
x + ξ

→
x0 |

∥∥∥∥→
x̂ −

→
m̂

∥∥∥∥ = (1, 0);
→
x,

→
x0 ∈ R

3
1,

→
x spacelike},

it must be that

ĥ(s) =
dĥ

dŝ
=

d2ĥ

dŝ2
= 0.

This equations give us <
→
x̂ −

→
m̂,

→
t̂ >= 0 and <

→
x̂ −

→
m̂,

→
n̂ >= −ε→

t̂
ρ̂, (where

ρ̂ = 1
κ̂

is radius of curvature of
→

x̂(s)). On the other hand, it can be written that

→
x̂ −

→
m̂ = m̂1

→
t̂ + m̂2

→
n̂ + m̂3

→
b̂

for the base {
→
t̂ ,

→
n̂,

→
b̂ }, where m̂i ∈ D, 1 � i � 3. Thus,

m̂1 = 0, m̂2 = −ε→
t̂
ε→

n̂
ρ̂, m̂3 = ∓

√∣∣∣∣ε→
b̂
r̂2 − ε→

n̂
ε→

b̂

1
κ̂2

∣∣∣∣
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are obtained. If so,
→
m̂ =

→
x̂ − m̂2

→
n̂ − m̂3

→
b̂

is found, where
→
m̂ and r̂ change as the dual Lorentzian spheres change.

Corollary 4.1. Let the curve
→

x̂(s) ⊂ D
3
1 be given with the coordinate neigh-

bourhood (I, x̂). The centers of dual Lorentzian spheres with 3-contact points with
→

x̂(s) in the point x̂(s) lie on straight line.

Proof. From Theorem 4.1, it is written

→
m̂ =

→
x̂ + ε→

t̂
ε→

n̂
ρ̂
→
n̂ + λ̂

→
b̂ , λ̂ = ∓

√∣∣∣∣ε→
b̂
r̂2 − ε→

n̂
ε→

b̂

1
κ̂2

∣∣∣∣.
Hence, this equation with the parameter λ̂ ∈ D illustrates a straight line parallel to
→
b̂ and passing through the point

→
ĉ =

→
x̂ + ε→

t̂
ε→

n̂
ρ̂
→
n̂ .

Definition 4.1. The line
→
m̂ =

→
x̂ + ε→

t̂
ε→

n̂
ρ̂
→
n̂ + λ̂

→
b̂ , geometric place of centers

of the dual Lorentzian spheres with 3−contact points with
→

x̂(s) in the point x̂(s)

of the curve
→

x̂(s) ∈ D
3
1, is called curvature axis in the point x̂(s) of the curve

→
x̂(s).

Definition 4.2. The point
→
ĉ =

→
x̂ + ε→

t̂
ε→

n̂
ρ̂
→
n̂ is called the center of curvature

in the point x̂(s) of the curve
→

x̂(s).

Definition 4.3. The sphere having 4-contact points with the curve
→

x̂(s) in the

point x̂(s) of the curve
→

x̂(s) is called dual Lorentzian osculating sphere or dual
Lorentzian curvature sphere.

Theorem 4.2. Let the curve
→

x̂(s) ⊂ D
3
1 be given with coordinate neighbour-

hood (I, x̂). If
→
m̂ is center of the dual Lorentzian osculating sphere in the point

x̂(s), it is
→
m̂ =

→
x̂ + ε→

t̂
ε→

n̂
ρ̂
→
n̂ + ε→

t̂
ε→

b̂

1
τ̂

dρ̂

dŝ

→
b̂ .

Proof. Let
→
m̂ be the center of the dual Lorentzian osculating sphere with

4-contact points with the curve
→

x̂(s) and r̂ be the radius. Let us take the function



A Characterization of Dual Lorentzian Spherical Curves in the Dual Lorentzian Space 1007

ĥ : I → D

s → ĥ(s) =
∣∣∣∣< →

x̂ −
→
m̂,

→
x̂ −

→
m̂ >

∣∣∣∣ − r̂2

into consideration. For the curve
→

x̂(s) to have 4-contact points with the dual
Lorentzian sphere of

Ŝ2
1 = {

→
x̂ =

→
x + ξ

→
x0 |

∥∥∥∥→
x̂ −

→
m̂

∥∥∥∥ = (r, 0);
→
x,

→
x0 ∈ R

3
1,

→
x spacelike},

it must be that

(4.1) ĥ(s) =
dĥ

dŝ
=

d2ĥ

dŝ2
=

d3ĥ

dŝ3
= 0.

Thus, from this equations,

(4.2) <
→
x̂ −

→
m̂,

→
t̂ >= 0,

(4.3) <
→
x̂ −

→
m̂,

→
n̂ >= −ε→

t̂
ρ̂,

and

(4.4) τ̂ <
→
x̂ −

→
m̂,

→
b̂ >= −ε→

t̂

dρ̂

dŝ

are obtained. Then, in the form of the base {
→
t̂ ,

→
n̂,

→
b̂ }, the center of dual Lorentzian

osculating sphere can be written as

→
x̂ −

→
m̂ = α̂

→
t̂ + β̂

→
n̂ + ∂̂

→
b̂ ,

where α̂, β̂ and ∂̂ are dual numbers. By the aid of the equations (4.2), (4.3) and
(4.4), the dual numbers α̂, β̂ and ∂̂ are found as

α̂ = 0, β̂ = −ε→
t̂
ε→

n̂
ρ̂, and ∂̂ = −ε→

t̂
ε→

b̂

1
τ̂

dρ̂

dŝ
.

Thus, we see that the center of the dual Lorentzian osculating sphere is uniquely
determined by

(4.5)
→
m̂ =

→
x̂ + ε→

t̂
ε→

n̂
ρ̂
→
n̂ + ε→

t̂
ε→

b̂

1
τ̂

dρ̂

dŝ

→
b̂ .

Corollary 4.2. Let the curve
→

x̂(s) ⊂ D
3
1 be given with coordinate neighbour-

hood (I, x̂). If r̂ is the radius of dual Lorentzian osculating sphere in the point
x̂(s), it is
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r̂ =

√∣∣∣∣ε→
n̂
ρ̂2 + ε→

b̂
[
1
τ̂

dρ̂

dŝ
]2

∣∣∣∣.
Proof. According to Theorem 4.2, the center of the dual Lorentzian osculating

sphere in the point x̂(s) is

→
m̂ =

→
x̂ + ε→

t̂
ε→

n̂
ρ̂
→
n̂ + ε→

t̂
ε→

b̂

1
τ̂

dρ̂

dŝ

→
b̂ .

Therefore, from
∣∣∣∣< →

x̂ −
→
m̂,

→
x̂ −

→
m̂ >

∣∣∣∣ = r̂2, we get

(4.6) r̂ =

√∣∣∣∣ε→
n̂
ρ̂2 + ε→

b̂
[
1
τ̂

dρ̂

dŝ
]2

∣∣∣∣.
Theorem 4.3. Let Ŝ2

1 ⊂ D
3
1 be a dual Lorentzian sphere with center O. If

→
x̂(s) ⊂ Ŝ2

1 , dual Lorentzian osculating sphere in all of the points of the curve
→

x̂(s)
is Ŝ2

1 .

Proof. We suppose that the curve
→

x̂(s) is given with coordinate neighbourhood
(I, x̂). According to Theorem 4.2, the center of dual Lorentzian osculating sphere
in the point x̂(s) is

→
m̂ =

→
x̂ + ε→

t̂
ε→

n̂
ρ̂
→
n̂ + ε→

t̂
ε→

b̂

1
τ̂

dρ̂

dŝ

→
b̂ .

On the other hand, by the aid of the base {
→
t̂ ,

→
n̂,

→
b̂ },

→
x̂(s) ∈ D

3
1 can be written as

→
x̂ = −ε→

t̂
ε→

n̂
ρ̂
→
n̂ − ε→

t̂
ε→

b̂

1
τ̂

dρ̂

dŝ

→
b̂ .

Thus, from equation (4.5) we get
→
m̂ = 0. So, it is d(

→
x̂ , 0) = (r, 0). Therefore, dual

Lorentzian osculating sphere in all of the points of the curve
→

x̂(s) is Ŝ2
1 .

Dual Lorentzian spherical curves are those curves satisfying the differential
equation in natural coordinates

(4.7)
∣∣∣∣ε→

n̂
ρ̂2 + ε→

b̂
[
1
τ̂

dρ̂

dŝ
]2

∣∣∣∣ = ĉ2, ĉ = any dual const.

Indeed, when a dual curve is spherical, its dual Lorentzian osculating spheres all co-
incide with the dual Lorentzian sphere on which the curve lies. Therefore, equation
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(4.5) holds, where according to equation (4.6) ĉ is the radius of the dual Lorentzian
osculating sphere.

The theorem below characterizes the relation between the centers and the radii
of dual Lorentzian osculating spheres.

Theorem 4.4. The radius of dual Lorentzian osculating sphere is constant if
and only if the centers of dual Lorentzian osculating spheres are constant.

Proof. Let the radius of dual Lorentzian osculating sphere be constant. In this
case, for τ̂ and ρ̂, not pure dual, and dρ̂

dŝ �= 0, if differentation of equation (4.7) is
taken, it is found

(4.8) ε→
t̂
ε→

n̂
ρ̂τ̂ + ε→

t̂
ε→

b̂

d

dŝ
[
1
τ̂

dρ̂

dŝ
] = 0.

On the other hand, since

d
→
m̂

dŝ
= [ε→

t̂
ε→

n̂
ρ̂τ̂ + ε→

t̂
ε→

b̂

d

dŝ
[
1
τ̂

dρ̂

dŝ
]]
→
b̂ ,

according to equation (4.8), we get d
→
m̂
dŝ = 0. This means that the centers of dual

Lorentzian osculating spheres remain fixed.
Conversely, let the center of dual Lorentzian osculating sphere be constant.

Hence, it is written d
→
m̂
dŝ = 0 or

ε→
t̂
ε→

n̂
ρ̂τ̂ + ε→

t̂
ε→

b̂

d

dŝ
[
1
τ̂

dρ̂

dŝ
] = 0.

On the other hand, since

ε→
t̂

τ̂ r̂
dρ̂
dŝ

dr̂

dŝ
= ε→

t̂
ε→

n̂
ρ̂τ̂ + ε→

t̂
ε→

b̂

d

dŝ
[
1
τ̂

dρ̂

dŝ
],

according to the equation above dr̂
dŝ = 0 is obtained. Thus, the radius of dual

Lorentzian osculating sphere is constant.

Theorem 4.5. Let the curve
→

x̂(s) ⊂ D
3
1 be given with coordinate neighbour-

hood (I, x̂). We suppose that τ̂ �= 0, ρ̂ �= 0 and dρ̂
dŝ �= 0 for ∀s ∈ I . In this case,

→
x̂(s) is dual Lorentzian spherical curve if and only if the center of dual Lorentzian
osculating sphere in the point x̂(s) is at the same point.

Proof. Let
→

x̂(s) be dual Lorentzian spherical curve. Then, according to Theo-
rem 4.3, the proof is abvious.
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Conversely, if the center of dual Lorentzian osculating sphere in the point x̂(s)

for ∀s ∈ I is constant point
→
û , with respect to Theorem 4.4, the radius of dual

Lorentzian osculating sphere is also the same constant r̂. Therefore,
d(

→
x̂(s),

→
û) = (r, 0) for all x̂(s). Thus, it is

→
x̂(s) ⊂ Ŝ2

1 .
Now, let us give the characterization for a curve to be spherical from type of

curvatures of it with the following theorem.

Theorem 4.6. Let the curve
→

x̂(s) ⊂ D
3
1 be given with coordinate neighbour-

hood (I, x̂).
→

x̂(s) with arc length parameter s ∈ I is dual Lorentzian spherical
curve if and only if

ε→
t̂
ε→

n̂
ρ̂τ̂ + ε→

t̂
ε→

b̂

d

ds
[
1
τ̂

dρ̂

ds

ds

dŝ
]
ds

dŝ
= 0.

Proof. Let
→

x̂(s) be dual Lorentzian spherical curve. In this case, the center
→
m̂

of dual Lorentzian osculating sphere for all s ∈ I is constant. Thus, from Theorem
4.4,

ε→
t̂
ε→

n̂
ρ̂τ̂ + ε→

t̂
ε→

b̂

d

ds
[
1
τ̂

dρ̂

ds

ds

dŝ
]
ds

dŝ
= 0

is obtained.
Conversely, let

ε→
t̂
ε→

n̂
ρ̂τ̂ + ε→

t̂
ε→

b̂

d

ds
[
1
τ̂

dρ̂

ds

ds

dŝ
]
ds

dŝ
= 0.

Thus, d
→
m̂
dŝ = 0 is found. This implies that

→
m̂ = constant. So, according to Theorem

4.5,
→

x̂(s) is dual Lorentzian spherical curve.
On the other hand, since the differential equation (4.8) can be written as

ε→
t̂
ε→

n̂
ρ̂τ̂ + ε→

t̂
ε→

b̂

d

ds
[
1
τ̂

dρ̂

ds

ds

dŝ
]
ds

dŝ
= 0,

if we put û(s) = ds
dŝ = 1 − ξ∆, the equation above is obtained as

ε→
t̂
ε→

b̂

d2ρ̂

ds2
+ ε→

t̂
ε→

b̂

û
′
(s)

û(s)
dρ̂

ds
+ ε→

t̂
ε→

n̂

τ̂2

û2(s)
ρ̂ = 0.

Here, if we make a parameter change like t =
s∫
0

τ̂
û(s)ds, we obtain

d2ρ̂

dt2
+ ε→

n̂
ε→

b̂
ρ̂ = 0.

There are two solutions for this differential equation with respect to causal character
of the curve:
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(i) If the dual Lorentzian spherical curve is timelike, the solution of the differ-
ential equation is

(4.9) ρ̂ = â cos(

s∫
0

τ̂ dŝ) + b̂ sin(

s∫
0

τ̂ dŝ),

where â and b̂ are arbitrary dual constants.

(ii) If the dual Lorentzian spherical curve is spacelike, the solution of the differ-
ential equation is

(4.10) ρ̂ = âe
−

s∫
0

τ̂dŝ
+ b̂e

s∫
0

τ̂dŝ
.

Hence, the equations (4.9) and (4.10) give a characterization of the dual Lorentzian
spherical curves.

The necessary and sufficient condition for the dual Lorentzian curve
→

x̂(s) to be
a dual Lorentzian spherical one, without having to assume that its torsion is nowhere
pure-dual, may be given as follows:

Theorem 4.7.
→

x̂(s) ⊂ D
3
1 is dual Lorentzian spherical curve if and only if

there is a differentiable function f̂ = f + ξf0 (f and f0 are real functions defined
on I) such that

(4.11) f̂ τ̂ =
dρ̂

dŝ
, and

df̂

dŝ
+ ε→

n̂
ε→

b̂
τ̂ ρ̂ = 0.

Proof. Let us first assume that the dual Lorentzian curve
→

x̂(s) ⊂ D3
1 lies in a

dual Lorentzian sphere with center
→
m̂. Define the differentiable function f̂ by

(4.12) f̂ = −ε→
t̂

<
→
x̂ −

→
m̂,

→
b̂ > .

Then, the equation (4.4) becomes f̂ τ̂ = dρ̂
dŝ , which is (4.11)1. Consequently, differ-

entiating (4.12) and making use of (4.3), we have that df̂
dŝ + ε→

n̂
ε→

b̂
τ̂ ρ̂ = 0, which is

(4.11)2.

Conversely, assume that
→

x̂(s) ⊂ D
3
1 is a dual Lorentzian curve and that there is

a differentiable function f̂ such that

f̂ τ̂ =
dρ̂

dŝ
, and

df̂

dŝ
+ ε→

n̂
ε→

b̂
τ̂ ρ̂ = 0.
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Let us consider the curve defined by

(4.13)
→
m̂ =

→
x̂ + ε→

t̂
ε→

n̂
ρ̂
→
n̂ + ε→

t̂
ε→

b̂
f̂
→
b̂

and the function r̂(s) defined by

(4.14) r̂2(s) =
∣∣∣∣< →

x̂ −
→
m̂,

→
x̂ −

→
m̂ >

∣∣∣∣ =
∣∣∣∣ε→

n̂
ρ̂2 + ε→

b̂
f̂2

∣∣∣∣ .

If we differentiate the equations (4.13) and (4.14) and make use of the equations

(3.1) and (4.11), we have that d
→
m̂
dŝ = 0 and dr̂

dŝ = 0. These show that
→
m̂ and r̂(s) are

constants. Hence, by Theorem 4.5, it follows that
→

x̂(s) is dual Lorentzian spherical
curve.

Now, differentiating the equation (4.9) (in this case, the curve
→

x̂(s) is timelike.)
and using the equation (4.11), we find that the function f̂ is

(4.15) f̂ = −â sin(

s∫
0

τ̂ dŝ) + b̂ cos(

s∫
0

τ̂ dŝ).

Similarly, if the curve
→

x̂(s) is spacelike, we obtain the function f̂ as

(4.16) f̂ = −âe
−

s∫
0

τ̂ dŝ
+ b̂e

s∫
0

τ̂dŝ
.

5. DUAL LORENTZIAN GEODESIC TRIHEDRON

Let
→
ê =

→
e + ξ

→
e0 be a dual unit vector in D

3
1.

→
e and →

e0 may be interprated
as the Plücker-vectors of an unambiguously determined line l in R

3
1 having →

e as
its direction vector and passing through the point →

p =
→
e ∧ →

e0. Providing l with a
positive sense according with the sense indicated by →

e , this line becomes an oriented
line as a spear. The vector →

e0 is called the moment of the spear (with respect to 0).
We denote the spear by (

→
e ,

→
e0). There exist a one-to-one correspondence between

the set of all spears in three dimensional space and the set of all dual unit vectors:

(
→
e ,

→
e0) �

→
ê =

→
e + ξ

→
e0.

Actually, the set of dual unit vectors representing the oriented lines is a subset
of the set of dual unit vectors

{
→
x̂ =

→
x + ξ

→
x0

∣∣∣∣ <
→
x,

→
x >= 1, <

→
x,

→
x0 >= 0,

→
x,

→
x0 ∈ R

3}.
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If we consider the Lorentzian space R
3
1 instead of R

3 the correspondence of E. Study
mapping can be given as follows: Oriented timelike and spacelike lines in R

3
1 may

be represented by timelike and spacelike unit vectors with three-components in the
dual Lorentzian space D

3
1, respectively. A differentiable curve on the dual hyperbolic

unit sphere Ĥ2
0 corresponds to a timelike ruled surface while a differentiable curve

on the dual Lorentzian unit sphere Ŝ2
1 corresponds to any ruled surface. This

correspondence is one-to-one and allows the geometry of Lorentzian ruled surface
to be represented by the geometry of dual hyperbolic and Lorentzian spherical curves
on Ĥ2

0 and Ŝ2
1 , respectively [14].

Take into consideration a dual Lorentzian curve represented by
→
ê =

→
e +ξ

→
e0 on

the dual Lorentzian unit sphere Ŝ2
1 with the center 0 in the dual Lorentzian space

D
3
1, where s is the arc length of the indicatrix

→
e(s) and

→
e0(s) is the moment of

→
e(s)

with respect to 0. Then, <
→
e

′
,
→
e

′
>=<

→
t ,

→
t >= ε→

t
, the tangent vector

→
t =

→
e

′

is a unit vector parallel to the tangent of the indicatrix. The equation →
z ∧ →

e =
→
e0

has an infinity of solutions for the function
→

z(s). If
→

z0(s) is such a solution, the

set of all solutions is given by
→

z(s) =
→

z0(s) + λ(s)
→

e(s), where λ is a real scalar
function of s. Therefore, <

→
z

′
,
→
e

′
>=<

→
z0

′
,
→
e

′
> +ε→

t
λ is obtained. If we take

into consideration λ = λ0 = −ε→
t

<
→
z

′
,
→
e

′
>,

→
z0(s) + λ0(s)

→
e(s) =

→
c(s) is the

unique solution for
→

z(s) with <
→

c(s)
′

,
→

e(s)
′

>= 0. A dual curve given can be
represented by

(5.1)
→

ê(s) =
→

e(s) + ξ
→

c(s) ∧
→

e(s).

→
c is unambiguously determined by the curve

→
ê(s). According the (2.1), the arc

length of the curve
→

ê(s) is

(5.2) ŝ = s + ξ

s∫
0

<
→
t ,

→
e0

′
> ds = s + ξ

s∫
0

∆ds.

Thus, dŝ
ds = 1 + ξ∆ or ds

dŝ = 1 − ξ∆. On the other hand, since

<
→
t ,

→
e0

′
>=<

→
c(s)

′

∧
→

e(s),
→
t >= ∆, ∆

→
t = ε→

t

→
c(s)

′

∧
→

e(s) is obtained. Hence,

(5.3)
d
→
ê

dŝ
=

d
→
ê

ds

ds

dŝ
=

→
t̂ =

→
t + ξ

→
t0 =

→
t + ξ

→
c ∧→

t

is obtained. By introducing the dual unit vector
→
ĝ = ε→

e
ε→

t

→
e ∧ →

t =
→
g + ξ

→
g0,
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→
g = ε→

e
ε→

t

→
e ∧→

t is found. Thus, by the aid of the (5.1) and (5.3), we have that

(5.4)
→
ĝ =

→
g + ξ

→
c ∧→

g .

Here, we will call {
→
t̂ ,

→
ĝ ,

→
ê} the dual Lorentzian geodesic trihedron of the curve

→
ê(s). If the derivatives of Lorentzian inner products of

→
t̂ ,

→
ĝ and

→
ê are taken and

if the properties of the Lorentzian inner product are used, Frenet formulae for dual
Lorentzian geodesic trihedron are written in the matrix form as

(5.5)
d

dŝ


→
t̂
→
ĝ
→
ê

 =

 0 ε→
ĝ
γ̂ −ε→

ê
ε→

t̂
−ε→

t̂
γ̂ 0 0

1 0 0




→
t̂
→
ĝ
→
ê

 .

The dual valued function γ̂(s) in (5.5) is called the geodesic curvature of the curve
→

ê(s). From the equations (5.3), (5.4) and (5.5),

(5.6) γ̂ = ε→
ĝ
[γ + ξ(δ − γ∆)]

is found, where δ = −ε→
e

<
→
c

′
,
→
e >. Since ∆

→
t = ε→

t

→
c

′
∧→

e , we find that

(5.7) →
c

′
= −δ

→
e − ∆

→
g .

On the other hand, since d2
→
ê

dŝ2 = d
→
t̂

dŝ = κ̂

→
n̂ = ε→

ĝ
γ̂
→
ĝ − ε→

ê
ε→

t̂

→
ê ,

(5.8) κ̂ =

√∣∣∣∣ε→
n̂
ε→

ĝ
γ̂2 + ε→

ê

∣∣∣∣
is obtained. Thus, the dual radius of curvature is found ρ̂ = 1

κ̂
= 1√∣∣∣∣ε→n̂ ε→

ĝ
γ̂2+ε→

ê

∣∣∣∣
.

The natural trihedron {
→
t̂ ,

→
n̂ ,

→
b̂ } and the dual geodesic trihedron {

→
t̂ ,

→
ĝ ,

→
ê} have

one common axis
→
t̂ so that a single dual angle θ̂ = θ + ξθ0 specifies completely

their relative position. For timelike vector
→
t̂ and the angle θ̂ = θ + ξθ0 between

→
n̂

and
→
ĝ ,

(5.9)


→
t̂
→
ĝ
→
ê

 =

 1 0 0
0 cos θ̂ sin θ̂

0 − sin θ̂ cos θ̂




→
t̂
→
n̂
→
b̂


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can be written. On the other hand, if the equations (3.1) and (5.5) are used and if

the derivative of the equation
→
ĝ = cos θ̂

→
n̂ + sin θ̂

→
b̂ with respect to ŝ is taken,

(5.10) ρ̂ = sin θ̂, γ̂ = κ̂ cos θ̂,
dθ̂

dŝ
= −τ̂

is found. Since dθ̂
dŝ = −τ̂ ,

(5.11) θ̂(s) = θ̂(0) −
s
∫
0

τ̂ dŝ.

From the equations (5.5), (5.8), (5.9) and (5.10), the derivatives of the dual Lorentzian
geodesic trihedron with respect to the terms of Frenet trihedron are obtained in the
matrix form as

(5.12)
d

dŝ


→
t̂
→
ĝ
→
ê

 =

 0 κ̂ 0
γ̂ 0 0
1 0 0




t̂
→
n̂
→
b̂

 .

Also, from the equations (2.1), (5.9), (5.10) and (5.8), it is seen that

(5.13)
d

dŝ


→
t̂
→
n̂
→
b̂

 =

 0 γ̂ 1
κ̂ τ̂ ρ̂ τ̂ ρ̂γ̂

0 τ̂ ρ̂γ̂ τ̂ ρ̂




→
t̂
→
ĝ
→
ê

 .

From the equations (5.10)1, (5.10)2 and (5.8),

(5.14) sin θ̂ =
1√

γ̂2 + 1
, cos θ̂ =

γ̂√
γ̂2 + 1

is found. In addition, tan θ̂ = − 1
γ̂ is obtained. If the derivative of this equation is

taken,

(5.15) τ̂ = − d

dŝ
(arctan γ̂(s))

is obtained.
Now, to return to equation (4.9) again, the explicit characterization of a curve

→
x̂(s) can be expressed as

(5.16) ρ̂ = Â cos θ̂(s) + B̂ sin θ̂(s).
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Also, the function f̂ given in (4.15) takes the form

(5.17) f̂ = Â sin θ̂(s) − B̂ cos θ̂(s),

where Â = â cos θ̂(0) + b̂ sin θ̂(0) and B̂ = â sin θ̂(0)− b̂ cos θ̂(0). Since the dual
Lorentzian sphere is unit,

1 = Â2 + B̂2 = â2 + b̂2

is obtained from (4.14).
This time, the curve given be spacelike. Let us show the hyperbolic angle

between the vectors
→
ê and

→
b̂ as θ̂ = θ + ξθ0. In this situation, the formulae

(5.18)


→
t̂
→
ĝ
→
ê

 =

 1 0 0
0 cosh θ̂ sinh θ̂

0 sinh θ̂ cosh θ̂




→
t̂
→
n̂
→
b̂


can be written. If the equations (3.1) and (5.5) are used and if the derivative of the

equation
→
ĝ = cosh θ̂

→
n̂ + sinh θ̂

→
b̂ with respect to ŝ is taken,

(5.19) ρ̂ = sinh θ̂, γ̂ = κ̂ cosh θ̂, and
dθ̂

dŝ
= −τ̂

are obtained. On the other hand, since dθ̂
dŝ = −τ̂ , it is

(5.20) θ̂(s) = θ̂(0) −
s∫

0

τ̂ dŝ.

According to the equations (5.5), (5.8), (5.18) and (5.19), the derivatives of the
dual Lorentzian geodesic trihedron with respect to the terms of Frenet trihedron are
obtained in the matrix form as

(5.21)
d

dŝ


→
t̂
→
ĝ
→
ê

 =

 0 κ̂ 0
−γ̂ 0 0
1 0 0




→
t̂
→
n̂
→
b̂

 .

Hence, if we take into consideration the equations (3.1), (5.18), (5.19) and (5.8),
we obtain the formula

(5.22)
d

dŝ


→
t̂
→
n̂
→
b̂

 =

 0 γ̂ −1
−κ̂ −τ̂ ρ̂ τ̂ ρ̂γ̂

0 τ̂ ρ̂γ̂ −τ̂ ρ̂




→
t̂
→
ĝ
→
ê

 .



A Characterization of Dual Lorentzian Spherical Curves in the Dual Lorentzian Space 1017

From the equations (5.19)1, (5.19)2 and (5.8), it follows that

(5.23) sinh θ̂ =
1√|γ̂2 − 1| , cosh θ̂ =

γ̂√|γ̂2 − 1| .

In addition, tanh θ̂ = 1
γ̂ is obtained. If we differentiate of this equation, we find

that

(5.24) τ̂ =
1

|γ̂2 − 1|
dγ̂

dŝ
.

Now, to return to equation (4.10) again, the explicit characterization of a dual
Lorentzian curve

→
x̂(s) can be expressed as below

(5.25) ρ̂ = âe−(θ̂(0)−θ̂(s)) + b̂e(θ̂(0)−θ̂(s)).

On the other hand, the function f̂ given in (4.16) is written

(5.26) f̂ = −âe−(θ̂(0)−θ̂(s)) + b̂e(θ̂(0)−θ̂(s)).

Since the dual Lorentzian sphere is unit, 1 =
∣∣∣4âb̂

∣∣∣ is found from equation (4.14).

Remark 5.1. The properties given in this study are valid for dual hyperbolic
space in the dual Lorentzian space, too.
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