TAIWANESE JOURNAL OF MATHEMATICS Vol. 11, No. 2, pp. 569-576, June 2007 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON \mathcal{I} -CAUCHY SEQUENCES

Anar Nabiev, Serpil Pehlivan and Mehmet Gürdal

Abstract. The concept of \mathcal{I} -convergence is a generalization of statistical convergence and it is dependent on the notion of the ideal \mathcal{I} of subsets of the set \mathbb{N} of positive integers. In this paper we prove a decomposition theorem for \mathcal{I} -convergent sequences and we introduce the notions of \mathcal{I} Cauchy sequence and \mathcal{I}^* -Cauchy sequence, and then study their certain properties.

1. INTRODUCTION AND BACKGROUND

P. Kostyrko et al. [12] introduced the concept of \mathcal{I} -convergence of sequences in a metric space and studied some properties of this convergence. Note that \mathcal{I} -convergence is an interesting generalization of statistical convergence.

The concept of statistical convergence was introduced by Steinhaus [21] in 1951 (see also Fast [5]) and has been discussed and developed by many authors including [2, 4, 7-9, 15-18, 20].

Let \mathbb{N} denote the set of all positive integers and (X, ρ) be a linear metric space. Recall that a sequence $(x_n)_{n \in \mathbb{N}}$ of elements of X is said to be statistically convergent to $x \in X$ if the set $A(\varepsilon) = \{n \in \mathbb{N} : \rho(x_n, x) \ge \varepsilon\}$ has natural density zero for each $\varepsilon > 0$.

In general, statistically convergent sequences satisfy many of the properties of ordinary convergent sequences in metric spaces. For instance, a statistically convergent sequence is statistically Cauchy, ([7, 19]) in an arbitrary metric space. In this paper we investigate some properties of \mathcal{I} -convergent sequences in a linear metric space. In section 2 we prove the decomposition theorem of \mathcal{I} -convergent sequences in a linear metric space and give some results regarding this theorem. In section 3 we introduce the notions of \mathcal{I} -Cauchy sequence and \mathcal{I}^* -Cauchy sequence, and study their certain properties.

Received December 16, 2005, revised April 10, 2006.

Communicated by Sen-Yen Shaw.

²⁰⁰⁰ Mathematics Subject Classification: Primary 40A05; Secondary 40A99, 46A99.

Key words and phrases: Statistical convergence, Statistical Cauchy sequence, \mathcal{I} -Convergence, \mathcal{I} -Cauchy, \mathcal{I}^* -Cauchy, Ideals of sets.

Now we give some definitions and notations.

Definition 1. [14] Let $Y \neq \emptyset$. A family $\mathcal{I} \subset 2^Y$ of subsets of Y is said to be an ideal in Y provided that the following conditions hold:

(a) $\emptyset \in \mathcal{I}$ (b) $A, B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$ (c) $A \in \mathcal{I}, B \subset A$ imply $B \in \mathcal{I}$.

Definition 2. [11] Let $Y \neq \emptyset$. A non-empty family $\mathcal{F} \subset 2^Y$ is said to be a filter on Y if the following are satisfied:

(a) $\emptyset \notin \mathcal{F}$ (b) $A, B \in \mathcal{F}$ imply $A \cap B \in \mathcal{F}$ (c) $A \in \mathcal{F}, A \subset B \subset Y$ imply $B \in \mathcal{F}$.

Lemma 1. [13] Let \mathcal{I} be a proper ideal in Y (i.e. $Y \notin \mathcal{I}$), $Y \neq \emptyset$. Then the family of sets

$$\mathcal{F}(\mathcal{I}) = \{ M \subset Y : \exists A \in \mathcal{I} : M = Y \setminus A \}$$

is a filter in Y. It is called the filter associated with the ideal \mathcal{I} .

Definition 3. [13] A proper ideal \mathcal{I} is said to be admissible if $\{x\} \in \mathcal{I}$ for each $x \in Y$.

Definition 4. [12, 13] Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a proper ideal in \mathbb{N} and (X, ρ) be a metric space. The sequence $x = (x_n)$ of elements of X is said to be \mathcal{I} -convergent to $\xi \in X$ if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{n \in \mathbb{N} : \rho(x_n, \xi) \ge \varepsilon\}$ belongs to \mathcal{I} .

If $x = (x_n)$ is \mathcal{I} -convergent to ξ then we write \mathcal{I} - $\lim_{n \to \infty} x_n = \xi$. In this case the element $\xi \in X$ is called \mathcal{I} -limit of the sequence $x = (x_n) \in X$.

There are many examples of ideals $\mathcal{I} \subset 2^{\mathbb{N}}$ in [12, 13], and basic properties of \mathcal{I} -convergence have been studied in these works. Note that the μ -statistical convergence of [1] is in a sense equivalent to \mathcal{I} -convergence (see [13]).

Definition 5. [12] An admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ is said to have the property (AP) if for any sequence $\{A_1, A_2, ...\}$ of mutually disjoint sets of \mathcal{I} , there is a sequence $\{B_1, B_2, ...\}$ of sets such that each symmetric difference $A_i \Delta B_i$ (i = 1, 2, ...) is finite and $\bigcup_{i=1}^{\infty} B_i \in \mathcal{I}$.

Definition 5 is similar to the condition (APO) used in [6].

In [12], the concept of \mathcal{I}^* -convergence which is closely related to the \mathcal{I} -convergence has been introduced.

570

Definition 6. [12] A sequence $x = \{x_n\}_{n \in \mathbb{N}}$ of elements of X is said to be \mathcal{I}^* -convergent to $\xi \in X$ if and only if there exists a set $M \in \mathcal{F}(\mathcal{I})$, $M = \{m_1 < m_2 < \ldots < m_k < \ldots\} \subset \mathbb{N}$ such that $\lim_{n \to \infty} \rho(x_{m_k}, \xi) = 0$.

In paper [12] it is proved that \mathcal{I} and \mathcal{I}^* -convergence are equivalent for admissible ideals with property (AP).

Lemma 2. ([12]) Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal with the property (AP) and (X, ρ) be an arbitrary metric space. Then \mathcal{I} - $\lim_{n \to \infty} x_n = \xi$ if and only if there exists a set $P \in \mathcal{F}(\mathcal{I})$, $P = \{p_1 < p_2 < ... < p_k < ...\}$ such that $\lim_{k \to \infty} \rho(x_{p_k}, \xi) = 0$.

Remark 1. Let $\mathcal{I} = \mathcal{I}_d$ and $X = \mathbb{R}$ with the usual metric, where $\mathcal{I}_d = \{A \subset \mathbb{N} : d(A) = 0\}$, and d(A) is the natural density of the set $A \subset \mathbb{N}$. Then Lemma 2 is equivalent to the relation between statistical convergence and "almost all" convergence of a real number sequence (x_n) considered in [7].

2. The Decomposition Theorem

In this section we prove a decomposition theorem for $\mathcal I$ -convergent sequences.

Theorem 1. Let (X, ρ) be a linear metric space, $x = (x_n) \in X$ and $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal with property (AP). Then the following conditions are equivalent:

(a) \mathcal{I} - $\lim_{n \to \infty} x_n = \xi$

(b) There exist $y = (y_n) \in X$ and $z = (z_n) \in X$ such that x = y + z, $\lim_{n \to \infty} \rho(y_n, \xi) = 0$ and $supp \ z \in \mathcal{I}$, where $supp \ z = \{n \in \mathbb{N} : z_n \neq \theta\}$ and θ is the zero element of X.

Proof. Let \mathcal{I} - $\lim_{n\to\infty} x_n = \xi$. Then by Lemma 2 we conclude that there exists a set $M \in \mathcal{F}(\mathcal{I})$, $M = \{m_1 < m_2 < \ldots < m_k < \ldots\}$ such that $\lim_{k\to\infty} \rho(x_{m_k},\xi) = 0$. Now define the sequence $y = (y_n)$ in X as

(2.1)
$$y = \begin{cases} x_n & , n \in M \\ \xi & , n \in \mathbb{N} \setminus M \end{cases}$$

It is clear that $\lim_{n\to\infty} \rho(y_n,\xi) = 0$. Further, put $z_n = x_n - y_n$, $n \in \mathbb{N}$. Since $\{k \in \mathbb{N} : x_k \neq y_k\} \subset \mathbb{N} \setminus M \in \mathcal{I}$ we have $\{k \in \mathbb{N} : z_k \neq 0\} \in \mathcal{I}$. It follows that $supp \ z \in \mathcal{I}$ and by (2.1) we get x = y + z.

Now suppose that there exist two sequences $y = (y_n) \in X$ and $z = (z_n) \in X$ such that x = y + z, $\lim_{n \to \infty} \rho(y_n, \xi) = 0$ and $supp \ z \in \mathcal{I}$. We will prove

that \mathcal{I} - $\lim x_n = \xi$. Define $M = \{m_k\}$ to be a subset of \mathbb{N} such that M = $\{m \in \mathbb{N} : z_m = 0\}$. Since $supp \ z = \{m \in \mathbb{N} : z_m \neq 0\} \in \mathcal{I}$, we have $M \in \mathcal{I}$ $\mathcal{F}(\mathcal{I})$, hence $x_n = y_n$ if $n \in M$. Thus, we conclude that there exists a set $M = \{m_1 < m_2 < ...\}, M \in \mathcal{F}(\mathcal{I}) \text{ such that } \lim \rho(x_{m_k}, \xi) = 0.$ Now, by Lemma 2 it follows that \mathcal{I} - $\lim_{n \to \infty} x_n = \xi$. Hence the proof is complete.

Corollary 1. \mathcal{I} - $\lim_{n\to\infty} x_n = \xi$ if and only if there exist $(y_n) \in X$ and $(z_n) \in X$ such that $x_n = y_n + z_n$, $\lim_{n\to\infty} \rho(y_n, \xi) = 0$ and \mathcal{I} - $\lim_{n\to\infty} z_n = 0$.

Proof. Let $z_n = x_n - y_n$, where (y_n) is the sequence defined by (2.1). Then

 $\lim_{n \to \infty} \rho(y_n, \xi) = 0, \text{ and by Theorem 1 in [13] we conclude that } \mathcal{I} - \lim_{n \to \infty} z_n = 0.$ Let $x_n = y_n + z_n$, where $\lim_{n \to \infty} \rho(y_n, \xi) = 0$ and $\mathcal{I} - \lim_{n \to \infty} z_n = 0$. Since $\mathcal{I} - \lim_{n \to \infty} y_n = \xi$, then by Theorem 1 in [13] we get $\mathcal{I} - \lim_{n \to \infty} x_n = \xi$.

Remark 2. From the proof of Theorem 1, it is clear that if (b) is satisfied then the ideal \mathcal{I} need not have the property (AP). In fact, let $x_n = y_n + z_n$, $\lim_{n \to \infty} \rho(y_n, \xi) = 0$ and $supp \ z \in \mathcal{I}$ where \mathcal{I} is an admissible ideal which has not the property (AP). Since $A(\varepsilon) = \{n \in \mathbb{N} : \rho(z_n, 0) \ge \varepsilon\} \subset \{n \in \mathbb{N} : z_n \ne 0\} \in \mathcal{I}$ for each $\varepsilon > 0$, we have \mathcal{I} - $\lim_{n \to \infty} z_n = 0$. Thus, we have \mathcal{I} - $\lim_{n \to \infty} x_n = \xi$.

Remark 3. By Theorem 1 we can obtain the decomposition theorem for a statistically convergent sequence considered in [1] and [20].

By Remark 2 and Theorem 1 we get the following theorem.

Theorem 2. Let $C_0(\mathcal{I}, X)$ be the set of all sequences which are \mathcal{I} -convergent to the zero element of the linear metric space (X, ρ) and let $Supp (\mathcal{I}, X)$ be the set of all sequences $z \in C_0(\mathcal{I}, X)$ with supp $z \in \mathcal{I}$. Then $C_0(\mathcal{I}, X) \supset Supp(\mathcal{I}, X)$ for each admissible ideal \mathcal{I} .

3. \mathcal{I} -Cauchy Sequences

Now we introduce the notions of \mathcal{I} Cauchy sequence and \mathcal{I}^* -Cauchy sequence.

Definition 7. Let (X, ρ) be a linear metric space and $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. Then a sequence $\{x_n\}_{n \in \mathbb{N}}$ in X is called an \mathcal{I} -Cauchy sequence in X if for every $\varepsilon > 0$ there exists $N = N(\varepsilon)$ such that

$$A(\varepsilon) = \{ n \in \mathbb{N} : \rho(x_n, x_N) \ge \varepsilon \} \in \mathcal{I}.$$

Definition 8. Let (X, ρ) be a linear metric space and $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. Then a sequence $x = (x_n)$ in X is called an \mathcal{I}^* -Cauchy sequence if there exists a set $M = \{m_1 < m_2 < ... < m_k < ...\} \subset \mathbb{N}, M \in \mathcal{F}(\mathcal{I})$ such that the subsequence $x_M = (x_{m_k})$ is an ordinary Cauchy sequence in X, i.e.,

$$\lim_{k,p\to\infty}\rho\left(x_{m_k},x_{m_p}\right)=0.$$

Theorem 3. Let \mathcal{I} be an admissible ideal. If $x = (x_n)$ is an \mathcal{I}^* -Cauchy sequence then it is \mathcal{I} -Cauchy.

Proof. Let $x = (x_n)$ be an \mathcal{I}^* -Cauchy sequence. Then by definition, there exists a set $M = \{m_1 < m_2 < ... < m_k < ...\} \subset \mathbb{N}, M \in \mathcal{F}(\mathcal{I})$ such that $\rho(x_{m_k}, x_{m_p}) < \varepsilon$ for every $\varepsilon > 0$ and for all $k, p > k_0 = k_0(\varepsilon)$. Let $N = N(\varepsilon) = m_{k_0+1}$. Then for every $\varepsilon > 0$, we have

$$\rho\left(x_{m_k}, x_N\right) < \varepsilon, \qquad k > k_0.$$

Now let $H = \mathbb{N} \setminus M$. It is clear that $H \in \mathcal{I}$ and

$$(3.1) \qquad A(\varepsilon) = \{ n \in \mathbb{N} : \rho(x_n, x_N) \ge \varepsilon \} \subset H \cup \{ m_1 < m_2 < \dots < m_{k_0} \}$$

Then the set on the right hand side of (3.1) belongs to \mathcal{I} . Therefore, for every $\varepsilon > 0$ we can find an $N = N(\varepsilon)$ such that $A(\varepsilon) \in \mathcal{I}$, i.e. (x_n) is \mathcal{I} -Cauchy. Hence the proof is complete.

Now we will prove that \mathcal{I} -convergence implies the \mathcal{I} -Cauchy condition.

Lemma 3. Let \mathcal{I} be an arbitrary admissible ideal. Then \mathcal{I} - $\lim_{n\to\infty} x_n = \xi$ implies that (x_n) is an \mathcal{I} -Cauchy sequence.

Proof. Let \mathcal{I} - $\lim_{n\to\infty} x_n = \xi$. Then for each $\varepsilon > 0$, we have $A(\varepsilon) = \{n \in \mathbb{N} : \rho(x_n, \xi) \ge \varepsilon\} \in \mathcal{I}$. Since \mathcal{I} is an admissible ideal, there exists an $n_0 \in \mathbb{N}$ such that $n_0 \notin A(\varepsilon)$. Let $B(\varepsilon) = \{n \in \mathbb{N} : \rho(x_n, x_{n_0}) \ge 2\varepsilon\}$. Taking into account the inequality $\rho(x_n, \xi) + \rho(x_{n_0}, \xi) \ge \rho(x_n, x_{n_0})$ we observe that if $n \in B(\varepsilon)$ then $\rho(x_n, \xi) + \rho(x_{n_0}, \xi) \ge 2\varepsilon$.

On the other hand, since $n_0 \notin A(\varepsilon)$ we have $\rho(x_{n_0}, \xi) < \varepsilon$. Here we conclude that $\rho(x_n, \xi) > \varepsilon$, hence $n \in A(\varepsilon)$. Observe that $B(\varepsilon) \subset A(\varepsilon) \in \mathcal{I}$ for each $\varepsilon > 0$. This gives that $B(\varepsilon) \in \mathcal{I}$, i.e. (x_n) is an \mathcal{I} -Cauchy sequence.

To prove that an \mathcal{I} -Cauchy sequence coincides with an \mathcal{I}^* -Cauchy sequence for admissible ideals with property (AP), we need the following lemma.

Lemma 4. Let $\{P_i\}_{i=1}^{\infty}$ be a countable collection of subsets of \mathbb{N} such that $P_i \in \mathcal{F}(\mathcal{I})$ for each i, where $\mathcal{F}(\mathcal{I})$ is a filter associate with an admissible ideal \mathcal{I} with property (AP). Then there exists a set $P \subset \mathbb{N}$ such that $P \in \mathcal{F}(\mathcal{I})$ and the set $P \setminus P_i$ is finite for all i.

Proof. Let $A_1 = \mathbb{N} \setminus P_1$, $A_2 = (\mathbb{N} \setminus P_2) \setminus A_1$, $A_3 = (\mathbb{N} \setminus P_3) \setminus (A_1 \cup A_2)$, and $A_m = (\mathbb{N} \setminus P_m) \setminus (A_1 \cup A_2 \cup ... \cup A_{m-1})$, m = 2, 3, ... It is easy to see that $A_i \in \mathcal{I}$ for each i and $A_i \cap A_j = \emptyset$, when $i \neq j$. Then by (AP) property of \mathcal{I} we conclude that there exists a countable family of sets $\{B_1, B_2, ...\}$ such that $A_j \Delta B_j$ is a finite set for $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}$. Put $P = \mathbb{N} \setminus B$. It is clear that $P \in \mathcal{F}(\mathcal{I})$.

Now prove that the set $P \setminus P_i$ is finite for each *i*. Assume that there exists a $j_0 \in \mathbb{N}$ such that $P \setminus P_{j_0}$ has infinitely many elements. Since each $A_j \Delta B_j$ ($j = 1, 2, ..., j_0$) is a finite set, there exists $n_0 \in \mathbb{N}$ such that

(3.2)
$$\bigcup_{j=1}^{j_0} B_j \cap \{n \in \mathbb{N} : n > n_0\} = \bigcup_{j=1}^{j_0} A_j \cap \{n \in \mathbb{N} : n > n_0\}$$

If $n > n_0$ and $n \notin B$, then $n \notin \bigcup_{j=1}^{j_0} B_j$ and, by (3.2) $n \notin \bigcup_{j=1}^{j_0} A_j$. Since $A_{j_0} = (\mathbb{N} \setminus P_{j_0}) \setminus \bigcup_{j=1}^{j_0-1} A_j$ and $n \notin A_{j_0}$, $n \notin \bigcup_{j=1}^{j_0-1} A_j$ we have $n \in P_{j_0}$ for $n > n_0$. Therefore, for all $n > n_0$ we get $n \in P$ and $n \in P_{j_0}$. This shows that the set $P \setminus P_{j_0}$ has a finite number of elements. This contradicts to our assumption that the set $P \setminus P_{j_0}$ is an infinite set. Hence the proof is complete.

Theorem 4. If \mathcal{I} is an admissible ideal with property (AP) then the concepts \mathcal{I} -Cauchy sequence and \mathcal{I}^* -Cauchy sequence coincide.

Proof. If a sequence is \mathcal{I}^* -Cauchy, then it is \mathcal{I} -Cauchy by Theorem 3 where \mathcal{I} need not have the (AP) property. Now it is sufficient to prove that $x = (x_n)$ in X is a \mathcal{I}^* -Cauchy sequence under assumption that (x_n) is an \mathcal{I} -Cauchy sequence. Let $x = (x_n)$ in X be an \mathcal{I} -Cauchy sequence. Then by definition, there exists an $N = N(\varepsilon)$ such that

$$A(\varepsilon) = \{n \in \mathbb{N} : \rho(x_n, x_N) \ge \varepsilon\} \in \mathcal{I} \text{ for every } \varepsilon > 0.$$

Let $P_i = \{n \in \mathbb{N} : \rho(x_n, x_{m_i}) < \frac{1}{i}\}, i = 1, 2, ... \text{ where } m_i = N(\frac{1}{i}).$ It is clear that $P_i \in \mathcal{F}(\mathcal{I})$ for i = 1, 2, Since \mathcal{I} has the (AP) property, then by Lemma 4

there exists a set $P \subset \mathbb{N}$ such that $P \in \mathcal{F}(\mathcal{I})$, and $P \setminus P_i$ is finite for all *i*. Now we show that

$$\lim_{\substack{n,m\to\infty\\m,n\in P}} \rho\left(x_n, x_m\right) = 0.$$

To prove this, let $\varepsilon > 0$ and $j \in \mathbb{N}$ such that $j > \frac{2}{\varepsilon}$. If $m, n \in P$ then $P \setminus P_j$ is a finite set, so there exists k = k(j) such that $m \in P_j$ and $n \in P_j$ for all m, n > k(j). Therefore, $\rho(x_n, x_{m_j}) < \frac{1}{j}$ and $\rho(x_m, x_{m_j}) < \frac{1}{j}$ for all m, n > k(j). Hence it follows that

$$\rho(x_n, x_m) < \rho(x_n, x_{m_j}) + \rho(x_m, x_{m_j})$$
$$< \varepsilon \quad \text{for} \quad m, n > k(j).$$

Thus, for any $\varepsilon > 0$ there exists $k = k(\varepsilon)$ such that for $n, m > k(\varepsilon)$ and $n, m \in P \in \mathcal{F}(\mathcal{I})$

$$\rho\left(x_n, x_m\right) < \varepsilon.$$

This shows that the sequence (x_n) in X is an \mathcal{I}^* -Cauchy sequence.

Note that all these results imply the similar theorems for statistically Cauchy sequences which are investigated in [7] and [19].

ACKNOWLEDGMENT

The authors are grateful to the referees for their careful reading of the article and their valuable suggestions.

REFERENCES

- 1. J. Connor, Two valued measures and summability, Analysis, 10 (1990), 373-385.
- J. Connor and J. Kline, On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl., 197 (1996), 392-399.
- 3. K. Dems, On I-Cauchy sequences, Real Anal. Exchange, 30(2004/2005), 123-128.
- P. Erdös and G. Tenenbaum, Sur les densities de certaines suites d'entiers, Proc. London Math. Soc. (Ser. 3) 59 (1989), 417-438.
- 5. H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
- 6. A. R. Freedman and J. J. Sember, Densities and summability, *Pacific J. Math.*, **95** (1981), 10-11.
- 7. J. A. Fridy, On statistical convergence, Analysis, 5 (1985) ,301-313.
- 8. J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc., 118 (1993), 1187-1192.
- 9. J. A. Fridy and H. I. Miller, A matrix characterization of statistical convergence, *Analysis*, **11** (1991), 59-66.

- 10. M. Gurdal, Some Types of Convergence, Doctoral Diss., S. Demirel Univ., Isparta, 2004.
- 11. J. L. Kelley, General Topology, Springer-Verlag, New York, 1955.
- P. Kostyrko, T. Salat and W. Wilczynski, *I* -Convergence, *Real Anal. Exchange*, 26(2) (2000), 669-686.
- P. Kostyrko, M. Macaj, T. Salat and M. Sleziak, *I* -Convergence and Extremal *I*-Limit Points, *Math. Slovaca*, 55 (2005), 443-464.
- 14. C. Kuratowski, Topologie I., PWN Warszawa 1958.
- 15. H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, *Trans. Amer. Math. Soc.*, **347** (1995), 1811-1819.
- 16. H. I. Miller and C. Orhan, On almost convergent and statistically convergent subsequences, *Acta Math. Hungar.*, **93(1-2)** (2001), 135-151.
- 17. S. Pehlivan, A. Guncan and M. A. Mamedov, Statistical cluster points of sequences in finite dimensional spaces, *Czechoslovak J. Math.*, **54** (2004), 95-102.
- S. Pehlivan and M. A. Mamedov, Statistical cluster points and Turnpike, *Optimization* 48 (2000), 93-106.
- 19. D. Rath and B. C. Tripathy, On statistically convergence and statistically Cauchy sequences, *Indian J. Pure Appl. Math.*, **25(4)** (1994), 381-386.
- 20. T. Salat, On statistically convergent sequences of real numbers, *Math. Slovaca*, **30** (1980), 139-150.
- 21. H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, *Colloq. Math.* **2** (1951), 73-74.

Anar Nabiev Suleyman Demirel University, Department of Mathematics, Dogu Campus, 32260, Isparta, Turkey E-mail: anar@fef.sdu.edu.tr

Serpil Pehlivan Suleyman Demirel University, Department of Mathematics, Dogu Campus, 32260, Isparta, Turkey E-mail: serpil@sdu.edu.tr

Mehmet Gürdal Suleyman Demirel University, Department of Mathematics, Dogu Campus, 32260, Isparta, Turkey E-mail: gurdal@fef.sdu.edu.tr