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RELATIONS BETWEEN DISTRIBUTION COSINE FUNCTIONS AND
ALMOST-DISTRIBUTION COSINE FUNCTIONS

Marko Kosti€¢ and Pedro J. Miana

Abstract. In this paper, we give connections between distribution cosine func-
tions (defined in [10]) and almost-distribution cosine functions (introduced in
[13]). We prove several equalities involving trigonometric convolution prod-
ucts and distribution cosine functions as well as some relations between dis-
tribution cosine functions and ultradistribution semigroups.

1. INTRODUCTION AND PRELIMINARIES

The class of distribution cosine functions is introduced in [10] as a unification
of the concept of (local) a—times integrated cosine functions, o > 0. By applying
fractional integration and derivation, several results on equivalence between almost-
distribution cosine functions and global o—times integrated cosine functions with
corresponding growth order are proved in [13]. In this paper, we obtain necessary
and sufficient conditions under a closed linear operator A generates an almost-
distribution cosine function in terms of distribution cosine functions. In order to
do that, we employ our results from [13] and [10]. In the last section, we relate
distribution cosine functions to ultradistribution semigroups and prove an extension
of [6, Theorem 3.1] obtained by V. Keyantuo. The paper is illustrated by some
examples and can be viewed as a continuation of [13] and [10].

Let us introduce the terminology of distribution spaces used in the paper and
the basic definitions from [13] and [10].

The space of all compactly supported C°°-functions from R into C is denoted
by D. It is equipped with the usual inductive limit topology. Its dual is D’. We
assume that D’ is supplied with strong topology; D, is the subspace of D which
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consists of the elements supported by [0, co). In the sequel, we assume that E is a
complex Banach space in this paper. Further on, D'(L(FE)) = L(D, L(FE)) is the
space of continuous linear functions from D into L(E) equipped with the topology
of uniform convergence on bounded subsets of D; Dj(L(E)) is the subspace of
D'(L(E)) consisted of elements supported by [0, o).

Let K C R and Di := {¢ € D : suppy C K}. Recall, if k£ € Ny, then the
distribution 6 (%) is defined by () () = (—1)kp*)(0), ¢ € D.

Let Dy = {f € C*>([0,00)) : f is compactly supported}. Define £ : D —
Dy by K(p)(t) = ¢(t), t >0, ¢ € D. We know that D, is an (LF) space and
due to the theorem of R. T. Seeley [15], there exists a linear continuous operator
A : Dy — D satisfying LA = Ip, .

We use the convolution product x, of measurable complex valued functions f

and g : f 0 g(t) —fft—s s)ds. If f, g € Dy, put fog(t) ffs—

t)g(s)ds, t > 0. Clearly, f og € Dy. The cosine convolution product f *. g IS
defined by f *. g := 2(f *0 g+ f o g+ go f); the sine convolution product by
fxsg:= —(f x0g — fog— go f) and the sine-cosine convolution product by
frscg=3(f*0g—fog+gof). Notice, fx.g, f*sg, f*scg € D, see for
example [16].

Hereafter we assume that A is a closed linear operator. Its domain, range and
null space are denoted by D(A), R(A) and Ker(A), respectively; [D(A)] denotes
the Banach space D(A) equipped with the graph norm.

We need the next short review from [10]. Let a € Dj_, ;) be a fixed test

function with f x)dxr = 1. Then, with o chosen in this way, for every fixed

v €D we deflne I(gp) €D by

T

1(p)(x) = / (1) - at) / p(u)duldt, v € R,

—00 —00

Recall, I(¢) € D, I(¢') = ¢ and %I(ap)(m) = o(z) — a(x) 70 o(u)du, = € R.

D. We have G~! € D'(L(E)) and (G~') = G; more precisely, —G~!(¢
G(I(¢)) = G(¢), ¢ € D. We know that suppG C [0, 00) implies suppG
[0, 00).

Now we repeat the definition of a distribution cosine function, (DCF) in short,
and its generator ([10]). An element G € D{(L(E)) is called a pre-(DCF) if it
satisfies

(DCF): G Hexov) =G H9)G(®) + G(0)GT (¥), », ¥ €D,

Next, we define a primitive of G € D’(L(E)), G L oyGl(p) = -G ( )) 7
)
1

S
C
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and it is called a distribution cosine function, in short (DCF), if it additionally
satisfies

(DCF) : z=y=0ifand only if G()z+ G (p)y =0 forall p € Dy.
If G is a (DCF), then its generator (A, D(A)) is defined by
€y {(z,y) € E?: G7H(¢")z =G (p)y forall p € Do},

where z € D(A) and Az :=y. Because of (DCF3), A is a function and it is easy
to see that A is a closed linear operator in E. Moreover, if v € D and = € E, then
G()A C AG(Y), G()x € D(A), G™H()x € D(A) and the next equalities are
valid: AG(¥)x = G(¢")x +¢'(0)x, AG~ (Y)r = —G(Y")x — ¥(0)x, see [10,
Proposition 2.7]. The exponential region E(«, ) := {n+i& :n > 3, |§] < e}
is introduced in [1]. If n € N, then we define E™(«, §) by E™(a, 8) :={z": z €
E(a, 3)}. Recall [10], a closed linear operator A generates a (DCF) iff there are
constants o, 8, M > 0 and n € Ny so that

E?(a, B) C p(A) and |[R(\: A)|| < M(1+ [AD™, X € E%(a, B).

If G is a (DCF), then we know that ¢(t) = (t), t > 0, for some ¢, ¥ € D,
implies G(¢) = G(¢).

Operator cosine functions in any Banach space define distribution cosine func-
tions. Differential operators in Euclidean spaces generate (global) «-times integrated
cosine functions which define distribution cosine functions, see examples in [5].
More elaborate examples appear in [10, Section 6] and in the forth section of this

paper.

2. ConvoLuTioN ProbucTs AND DisTRIBUTION COSINE FUNCTIONS

We starts proving an analogue of a formula cos(t + s) = cos(t) cos(s) —
sin(t) sin(s) for distribution cosine functions.

Proposition 2.1. Let G be a distribution cosine function generated by (A, D(A)).
Then

Gpxo )z = G(e)G()z+ AGT ()G (¥)z, ¢, €D, z€E.

Proof. Notice, if ¢, ¥ € D, then (p*o)'(t) = @' %0 (t) + p(0)(t), t € R.
Since A generates the distribution cosine function G' and G(p) = —G~1(¢'), ¢ €
D, we have

Gl o) = —p(0)G )z — G (¢ %0 1)
= G(p)G(W)z+ (—p(0) — G(¢))G (1)

(
= G(p)G(W)a+ AGTH ()G (Y)z,
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forany = € FE. ]

In the next theorem we characterize pre-distribution cosine functions by convo-
lution products.

Theorem 2.2. Let G € Dj(L(E)) satisfy G(p)G () = G(¢)G(p), ¢, ¥ € D.
Then the following are equivalent:

() G is a pre-(DCF) and G~ (A(f o g — g o ) = G(A()G ' (Al9)) -
G A(f)G(A(g)), forall f, g€ D

(i) GTHA(f %5 9)) = GTHA()G(A(g)), for all f, g €Dy

Proof. (i) = (ii). Note, f %o g(t) = (9 *scf+f*scg)(t)v (fog—gOf)(t) =
(9#sc f— fxscg)(t) and A(f x0g)(t) = A(f) x0 A(g)(t), fort = O and f, g € Dy.
Moreover, G~1(¢) =0 if p € D(_oo,0 and we obtain

GTHA(g *se [+ [ #se 9)) = GTHA(S))G(Ag)) + GA(F))GTH(A(9)),

( G
G Mg *se [ = [ rse 9)) = GAF)GTH(A(g) = GTHA(S)G(A(9)).
It, in turn, implies G~Y(A(f *sc 9)) = G7YH(A(f))G(A(g)) forall f, g € Do. (In
this direction, we do not use G(¢)G(v)) (V)G(p), ¢, Y € D).
(i) = (i). Fixp, ¥ € D. Since G(p) )=G)G ( ), we have G~1(0)G () =
C;(w)G‘l(w)-AsiC( ) x0 (1) () = (K(4) *5cK () +K(p) 5K (1)) (2) for ¢ = 0,
then

G (pxov) = GTHAK(9) %K (1)) = GTHAK (1) %K (10) +K(0) %5cK (1))
=GHAK(9))GAK (W) HGTHAK(4)G(AK(¢)) =GTH@) G HGT ()G (p)

=G ()W) +G ()G ().
Hence, G is a pre-(DCF). Since G(¢)G(v) = G(¢)G(p), ¢, ¥ € D, the second
equality follows from the assumption (ii):

G (A(fog—gof) =G (A(g*s f = f % 9))

= G(A(f)GH(A(g)) — GTHA(N))G(A9)),
forall f, g € D,. |

3. DisTrRIBUTION COSINE FUNCTIONS AND ALMOST-DISTRIBUTION COSINE FUNCTIONS

We need the definition of an almost-distribution cosine function and its generator,
see [13]. An element G € L(D4,L(FE)) is called an almost-distribution cosine
function if it satisfies
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() G(f *xc9) =G(f)G(9), f, g € D4, and
(i) Nyep, Ker(G(f)) = {0}

The generator A of G is defined by A := {(x,y) € E? : G(f)y = G(f")x +
f/(0)z, forall f € Dy}. Itis known that A is a closed linear operator. Further
on, G(f)A C AG(f), G(f)x € D(A) and AG(f)x = G(f")x+ f'(0)z, f € Ds.
Recall, a global n-times integrated cosine function (C,,(t)):>o defines an almost-
distribution cosine functions G (cf. [13]) by

G(f)e= (-1 [ f0)Cu(t)edt,  w€B. feD..

0

Theorem 3.1. Let G be a (DCF) generated by A. Then GA is an almost-
distribution cosine function generated by A.

Proof. First of all, we have GA € L(D., L(E)). Since G is a (DCF) generated

by A, it follows (0 Ker(G(¢)) = {0} ([10]). Hence, the condition (ii) in the
peD
definition of an almogt-distribution cosine function is fulfilled. In order to prove

(i), let us fix f, g € Dy. Suppose
(2)  suppf Usuppg U (suppf + suppg) U supp(f o g) Usupp(go f) C [0, al,

for some a € (0, 00). This implies supp(f *. g) C [0,a] and supp(A(f *. g)) C
(=00, a). Due to [10, Theorem 3.6], there exists an n € N such that A is the
generator of an n-times integrated cosine function (Cy,(t)):e[o,24)- Then the proof
of [10, Theorem 3.2] and [10, Corollary 3.11] imply

o0

Glp)a = (~1)" / (O Co(t)adt, 7€ B, ¢ € Do)
0

Therefore,

GA(fx.g) = / (f*c9))"™ (t)Cp(t)xdt = /f* 9) Cy (t)xdt.
0 0

Clearly, GA(f) = (—-1)" ff(” (t)Cy(t)zdt. Hence, we have to prove

o0 o0 o0

® (1" [(f 59)0)Cu(e)di= (1" / FO@C0) [97(6)C(s)adsat.

0 0



536 Marko Kosti¢ and Pedro J. Miana

This can be obtained as in the proof of [13, Theorem 4] with @« = n € N. We want
only to notice that (2) implies that Fubini theorem can be applied in the proofs of
[14, Proposition 1.1] and [13, Theorem 4]. Let B be the generator of GA. We will
prove A = B. Suppose (z,y) € A. Then G=(¢")z = G~ (p)y, for all p € Dy.
We will show

(4) GA(f)y = GA(f")z + £/(0)z, for all f € Dy,

which implies (z,y) € B and A C B. Fix an f € D.. Taking into account [10,
Proposition 2.7], we have

GA(f)y = GA(f)Ar = AG(A(f))x = GUA()) )z + (A(F)) (0.
Since (A(f))"(t) = A(f")(¢), ¢ > 0, one can continue as follows
= G(A(f")z + f'(0)z,
and (4) holds. Suppose now (z,y) € B. Then we know
(5) GA(f)y = GA(f")z + ['(0)x, ¥f € Dy

One must prove that G (") = G~(¢)y, ¢ € Dy. Suppose suppy C [0, 5],
for some b > 0. An analysis made in Introduction of [10] gives that supp/(y) C

[—2, b]. Note, %I(ap)(t) = ¢'(t) — (t) 70 o(u)du, t € R, and consequently,
L 1()(t) = ¢ (1), t > 0. Then () (t) = A(K(I()))(t), t > 0, (K(I(0)))(0) =
#(0) — a(0) [ plu)du = ¢(0) = 0 and A((K(I(0)))(t) = (I(#)"(t) =
¢'(t), t > 0. Now one obtains from (5):

G Hp)y = —G(I(p))y = —G(AK(I(#)))y

= —(GA((KI(9)))")z + (K(I(¢)))(0)x)
= —GA((K(I(9)))")z = —=G(¢)z = G ("),

which gives (z,y) € A and ends the proof. [ |

Corollary 3.2. Let G be a (DCF) generated by A. Then

G(A(f*s 9)) = AGTHA(f)GTH(Al9),  f. g€ Dy

Proof. Take f, g € D,. Since f*og = f*. g+ f *s g, we apply Proposition
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2.1 and Theorem 3.1 to obtain the equality. ]

Relations between distribution cosine functions and equations of convolution
type are analyzed in [10]. The use of [10, Theorem 3.10] enables one to briefly
prove the following and to show directly some other results (see for example [10,
Proposition 4.10]):

Theorem 3.3. Let GG; be an almost-distribution cosine function generated by
A. Then A is the generator of a (DCF) G given by G(¢) = G1(K(p)), ¢ € D.

Proof.  Note, if suppy C (—o0,0), then K(¢) = 0 in D, which clearly
implies suppG C [0,00) and G € D{(L(E)). Recall, G(f)A C AG(f), G(f)x €
D(A), and AG(f)z = G(f")x + f’(O) x, f € Dy; see [13, p. 178]. We want to
prove that

AG(p)z=G(¢"Nx+ ¢'(0)z, z € E, p € D, and

©) G(p)Azx = G(¢")x + ¢'(0)z, x € D(A), p € D.

Let z € E and ¢ € D. Then AG(p)z = AG1(K(p))z = G1((K(p)))x +
O (0)x = G1(K(e")x + ¢'(0)z = G(¢")z + ¢'(0)x. Since G1A C AG,, the
second equality in (6) can be proved similarly. It is evident that (6) implies G €
Dy(L(E, [D(A)])). Moreover,

G*P=5/®Id[D(A)] and PG = 4§ @ Idg,

where we use the terminology given in [10, Section 3]: P = " ® I — 6 ®
A € DY(L([D(A)], E)), Idjpay denotes the inclusion D(A) — E and (6 ®

Ldipay)(p)z = (=1)!e® (0)z, (6W @ I)(p)z = (=1)F® (0)z, (6@ A)(p)z =

©(0)Az, ¢ € D, z € D(A), k € Ny and (¢' ® Idg)(p)r = —¢'(0)x, ¢ €
D, xz € E. An application of [10, Theorem 3.10] gives that G is a (DCF) generated
by A. ]

Corollary 3.4. Every almost-distribution cosine function is uniquely deter-
mined by its generator.

Proof. Suppose G; and G4 are almost-distribution cosine functions generated
by a closed linear operator A. Put G;(¢) := G;(K(p)), ¢ € D, i = 1,2. Due to
Theorem 3.3, G; and G, are distribution cosine functions generated by A and one
can use [10, Corollary 3.11] in order to obtain that G; = Go, i.e., G1(K(¢)) =
G2(K(p)), ¢ € D. Since K : D — D, is a surjective mapping, we have G; = Go.
This ends the proof. ]
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We note that the definition of a (local) «a-times integrated cosine function
(Ca(t))ico,r), 0 < 7 < oo, is taken in the sense of [10, Definition 1.1]. The
next result follows from [10, Theorem 3.6, Proposition 3.12], Theorem 3.1 and
Theorem 3.3:

Theorem 3.5. Let A be a closed linear operator. Then the next assertions
are equivalent:
(i) A is the generator of a (DCF).
(if) A is the generator of an almost-distribution cosine function.

(iif) There exist 7 > 0 and n € N such that A is the generator of an n-times
integrated cosine function on [0, 7).

(iv) Forevery 7 > 0 there is an n € N such that A is the generator of an n-times
integrated cosine function on [0, 7).

(v) p(A) # 0 and there exist A € p(A), n € N and 7 € (0, oo] such that A is
the generator of an R(\ : A)™-cosine function on [0, 7).

(vi) There are constants «, 3, M > 0 and n € Ng so that
E*(a,B) C p(A) and ||[R(A: A)|| < M1+ [X\D™, X € E*a, ).

Some other equivalent conditions can be found in [10].

4. AN APPLICATION

The main aim of this section is to present some new relations between distribu-
tion cosine functions and ultradistribution semigroups of [2, 3] and [9]. We recall
the basic notions and notations from the theory of ultradistribution spaces and ultra-
distribution semigroups. In this section, we always assume that (M,,),, is a sequence
of positive numbers, M, = 1, such that the following conditions are fulfilled:

(M.1) M2 < M, M, q, peN,
(MZ) Mp < AHP minogigpMiMp_z‘, p € N, for some A, H > 0,

(M3) 3552, L < oo,

Let s > 1. The Gevrey sequences (p!®), (p*®) or (I'(1 + ps)) satisfy the above
conditions. The associated function of (1M,,) is defined by M (p) := sup,cp, In %,
p > 0; M(0) := 0. We know that there exists a sufficiently small ¢ > 0 so
that M(p) = 0 if p € [0,¢]. Furthermore, M : [0,00) — [0, 00) is increasing,

lim ]‘igf) = 0, lim (]1\2{2; = 0, k € N and, for every Gevrey sequence, there
p—00 p—00

exists a constant Cs > 0 such that the associated function satisfies lim f—(”f =1.
p—00 Csp's
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We refer to [7] for the fundamental facts concerning projective and inductive
limits of locally convex spaces. Let us introduce now the basic ultradistribution
type spaces used in this paper. For more details, see [7-9]. Let K be a compact

subset of R and ~ > 0. The space D%p’h is consisted of all functions ¢ € C*°(R)
with suppg C K and ||¢||ag,n 1= sup{mj\z(tn :t e K, pe Ny} < oo. Recall,
(D%”’h, ||®||az,,») is @ Banach space and the spaces D%MP) and D%M"} are defined as

follows: D%MP) :=proj Iimh_,ooD?fp’h and D%Mp} :=ind Iimh_,OD?fp’h. Let (K,)
be a sequence of compact subsets of R with smooth boundary such that |J K, =R

neN
and that K,, C (K,1)°. Then we define the space of Beurling ultradifferentiable
functions DMr) = DM)(R) := ind Iimn_,ooD%p) and the space of Roumieu

ultradifferentiable functions D{M»} = DIMp}(R) :=ind Iimn_,ong\f”}. Note only
that these definitions do not depend on the choice of a sequence (K,,). With the
notation « for both cases of brackets, we denote by D'*(E) := L(D*(R), E) the
space of continuous linear functions from D*(R) into E; Dy (E) denotes the space
of elements in D*(E) which are supported by [0,c0). We refer to [8] for the
definition of convolution of vector valued ultradifferentiable functions and vector
valued ultradistributions. The next definition of an ultradistribution semigroup of
x-class and its generator was employed by H. Komatsu in [9].

Definition 4.1. Let A be a closed linear operator. An element G € D (L(E))
is an ultradistribution semigroup of +-class generated by A if G € D (L(E, [D(A)]))
satisfies
G*P=5/®Id[D(A)] and P« G = (5/®IdE.

If £k >0and C >0, put Q¢ :={X € C:Re(A\) > M(k|\|)+ C}.

Lemma 4.2. ([9]) A closed linear operator A is the generator of an ultra-
distribution class of the Beurling class (Roumieu class) if and only if there exist
k> 0 and C > 0 (for every & > 0 there exists a suitable C;, > 0) such that
Qe C p(A) (o, C p(A)) and that ||[R(\ : A)|| < CeMERN X ¢ O ¢
(IR : A)|| < CreMFN X € Qp ).

Let (N,) and (R,,) be sequences of positive numbers which satisfy (M.1). Fol-
lowing Z. Chou (cf. for example [7, Definition 3.9, p. 53]), we write N, < R,, if

and only if, for every ¢ € (0, 00), sup Nﬁjp

p€Ng
Now we are able to state the main result of this section. It is a generalization

of [6, Theorem 3.1] where the corresponding result is proved for the class of dense
exponential distribution cosine functions (see [10]). Furthermore, we want to give
more precise information concerning a corresponding sequence (1,) and to clarify

< Q.
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some differences between the Beurling case and the Roumieu case (see Example
4.4 given below).

Theorem 4.3. Suppose that a closed linear operator A generates a distribution
cosine function. If (M,) additionally satisfies M, < p!®, for some s € (1, 2), then
+iA generate (M,)-ultradistribution semigroups of -class.

Proof. We will prove the assertion only for A since the same arguments
work for —iA. Due to Theorem 3.5, there exist o, 3, M > 0 and n € N such
that E2(a, 3) C p(A) and that |[|[R(\ : A)|| < M(1 + [A\])™, A € E*(a, 3). Put
I := E?(a, ) and I := iI". Then it can be easily seen that I" = I, U T, U T,
where:

(1) T} is a part of the parabola {z + iy : = 3% — %}; further on, T’} is
contained in some compact subset of C,
(2) Ty = {t? — €2t 4 2tei - t > 3} and [y = {t? — €2 — 2teti - t > ().

This implies that, for every ¢ € (1, 1), we have

Lo ImOyE
A€T, [A|—oo |Re(N)]
It is clear that the curve T divides the complex plane into two disjunct open sets.
Denote by €2 one of such two sets which contains a ray (w, oc), for some w > 0.
Fix a k > 0. Since Q C p(iA) and ||R(- : ¢A)|| is polynomially bounded on €2, the
proof will be completed if one shows that there exists a suitable C, > 0 with

(8) {Ae C:Re(\) > M(kI\|)+ Cr} C Q.

(")

Note, (7) implies that, for every ¢ € (%, 1), there exists a sufficiently large K. > 0
satisfying

9) {AeC:Re(N\) > |[Im(N)|°+ K.} C Q.

Choose an s € (1,2) with M, < p!°. Then an application of [7, Lemma 3.10]

gives that there exists a constant C, s > 0 with p% < M(kp) +InCs, p > 0.
Moreover, there exists a suitable K1 > 0 such that (9) holds with ¢ = % Now it is

straightforward to see that (8) is valid with ¢}, = In Ch,s + K1. Indeed, if A € C

and Re(A) > M (k|A]) +1n Cys + K1, then Re(A) > |A|* + K1, and due to (9),
A e Q. ’ ’ ]

Since

(10) lim O V2,
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a Gevrey type sequence (1M,) fulfills the assumption of Theorem 4.3 if and only if
€ (1,2). The next illustrative example shows that Theorem 4.3 does not hold in
the case of a general sequence (M),).

Example 4.4. Let E := LP(R), 1 < p < oo and m(z) = (1— %) +iz, z € R.
Define a closed linear operator A on E by: Af(x) = m(x)f(z), x € R, D(A) :=
{f € E:mf € E}. As a matter of routine, one can check that A generates a dense
exponential (DCF) (cf. [10]) and that o(iA) = {z + (1 — &)i : = € R}. Suppose
now M, = p!?. We will show that iA generates an ultradistribution semigroup of
the Beurling class and that ¢ A is not the generator of an ultradistribution semigroup
of the Roumieu class. First of all, we know that there exist constants w > 0,
a > 0and b > 0 with ap/? < M(p), p > w and M(p) < bp'/2, p > 0. The
consideration is over if one shows that

(1) Q.o N o(iA) =0, for every k € (%, )
and a sufficiently large C' > 0, and that

4
(12) V.o N o(iA) # 0, for every k € (O’b_Q) and C' > 0.

Let k£ € ((;ig, o0). Choose a C' > . In order to obtain (11), note that, if z 4 iy €

.o, then x > C, k\/2? +y? > kax > kC > w. Thus, x = M (k+/2? +y?) +
C > avVky/x2 + y2 + C. This estimate ensures one to see that for a sufficiently
large C' > 0, the curve 9 ¢ lies above the graph of the function f(x) =

—\/% — x2; moreover, f(x) ~ —%, r — +oo. Therefore, the choice of

k implies that there exists a suitable 8 > 0 such that a part of the parabola
y= —%, x > (3 has the empty intersection with o (i A). It immediately implies (11)
while (12) follows similarly from the facts that, for every k € (O,I;%) and C' > 0, the
interior of the parabola y = —% is strictly contained in that of y = —% and that,
for x + iy € 00, we have x = M(ky/22 +y2) + C < bWVk/22 +y2 + C. At
the end of this analysis, we point out that the implication: G is an ultradistribution
semigroup of x-class = [\ Kern(G(¢)) = {0}, is not true in general (see [3]
peDS
and [11]). In the case of deﬁsely defined operators, the concept of regular ultra-
distribution semigroups of Beurling class was introduced by I. Cioranescu in [3]
for this purpose. An application of [3, Proposition 2.6] gives that the operator i A,
considered above, generates a regular ultradistribution semigroup of (p??)-class G

(cf. [3] for the notion), i.e., () Kern(G(y)) = {0} and |J Im(G(y)) is dense
peDS peDS
in E. Similarly, if M,, = p!®, s >O 2, then it can be proved that EA does not generate
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Itradistribution semigroup of the Beurling, resp., Roumieu class. Evidently, the

same assertions are valid for —;A.
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