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WEAKLY COMPLETELY CONTINUOUS SUBSPACES
OF OPERATOR IDEALS

S. Mohammad Moshtaghioun

Abstract. By introducing the concept of weakly completely continuous sub-
spaces of operator ideals, it will be given some characterizations of this con-
cept, specially in terms of relative weak compactness of all point evaluations
related to that subspace. Also it is shown that the only Banach spaces such
that all closed subspace of an operator ideal between them has this property,
are reflexive Banach spaces.

1. INTRODUCTION

Let X and Y be two Banach spaces and by the meaning of [2] or [8], let U
be an arbitrary Banach operator ideal. A linear subspace M ⊆ U(X, Y ) of the
component U(X, Y ) of operator ideal U is called strongly completely continuous
(in short, scc) in U(X, Y ) (resp. in K(X, Y )) if for each two Banach spaces
W and Z and any compact operators R : Y → W and S : Z → X , the left
and right multiplication operators LR and RS as operators from M into U(X, W )
and U(Z, Y ) (resp. into K(X, W ) and K(Z, Y )) respectively, are compact, where
LR(T ) = RT and RS(T ) = TS, for T ∈ M. But if under the same conditions, the
operators LR and RS are weakly compact, then we say that M is weakly completely
continuous (in short, wcc) in U(X, Y ) (resp. in K(X, Y )).

Note that by [7] (see also [2, p. 482]), for any Hilbert space H , a bounded
linear operator R ∈ L(H) is compact if and only if the left multiplication operator
LR : L(H) → L(H) is weakly compact. This shows that it is not possible to
remove or weaken the compactness of the operators R and S in the definitions of
(scc) and (wcc).
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In [5], the authors introduced the concept of (scc) subspaces of operator ideals,
which extends complete continuity of closed subalgebras of K(X) of all compact
operators on a Banach space X , and obtained some characterizations of this concept.
For instance, if M ⊆ U(X, Y ) is (scc) in U(X, Y ), then all of the point evaluations
M1(x) and M̃1(y∗) are relatively compact in Y and X∗ respectively, where x ∈ X

and y∗ ∈ Y ∗, M1(x) = {Tx : T ∈ M1} and M̃1(y∗) = {T ∗y∗ : T ∈ M1}, and
M1 is the closed unit ball of M. The converse of this assertion is also valid if U
is a closed operator ideal.
Here, we will prove that the same conclusions, among some improvements, hold for
(wcc) subspaces instead of (scc) subspaces.
The main motivation of these concepts has been some recent work [1], [6], [10]
and [12], dealing with some necessary or sufficient conditions for the Schur or
the Dunford- Pettis property of subspaces of some special operator ideals. So the
notions of (scc) and (wcc) for subspaces M ⊆ U(X, Y ), may help to clarify that
setting.

Throughout of this article, X, Y, Z and W are arbitrary Banach spaces, the
closed unit ball of a Banach space X is denoted by X1; X∗ is the dual of X and T ∗

refers to the adjoint of the operator T . U is an arbitrary (Banach) operator ideal and
U(X, Y ) is applied for the component of U . We use ‖T‖ and A(T ) for operator
norm and ideal norm of any operator T ∈ U respectively. For arbitrary Banach
spaces X and Y we use L(X, Y ), K(X, Y ) and I(X, Y ) for the components of
operator ideals of all bounded linear, compact and integral operators between Banach
spaces X and Y respectively. Our notations are standard and we refer the reader to
[2] and [3] for another undefined notations and terminologies.

2. MAIN RESULTS

For Banach spaces X, Y, Z and W and bounded operators R : Y → W and
S : Z → X , define the wedge product operator S ∧R from U(X, Y ) into U(Z, W )
by (S∧R)T = RTS. In [9], [11] and [13], the authors investigated the weak com-
pactness of the wedge product operators on some operator ideals and C∗- algebras.
In particular:

Theorem 2.1. (Saksman- Tylli and Racher). Let X, Y, Z and W be four Banach
spaces and let R : Y → W and S : Z → X be two weakly compact operators. If
R or S is compact, then the wedge product operator S ∧ R is a weakly compact
operator from L(X, Y )(resp. I(X, Y )) into L(Z, W )(resp. I(Z, W )).

As a corollary, if X and Y are two reflexive Banach spaces, then each operator
ideal U(X, Y ) and so each linear subspace M ⊆ U(X, Y ) is (wcc) in K(X, Y ),
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since U(X, Y ) is a linear subspace of L(X, Y ) and the identity operator on a
reflexive space is weakly compact. Also for reflexive Banach spaces X and Y , the
operator ideal I(X, Y ) of all integral operators is (wcc). It follows that each linear
subspace M ⊆ I(X, Y ) is (wcc) in I(X, Y ).

At the first characterization of weak complete continuity of subspaces M ⊆
U(X, Y ) we have the following theorem:

Theorem 2.2. Let X and Y be arbitrary Banach spaces and M ⊆ U(X, Y ) be
a linear subspace. Then M is (wcc) in U(X, Y ) if and only if for each two operators
R : Y → W and S : Z → X , the restricted wedge operator S∧R : M → U(Z, W )
is weakly compact, whenever R or S is compact.

Proof. Because of S ∧ R = LR ◦ RS = RS ◦ LR and by the ideal property of
weakly compact operators, the necessity condition of this theorem is straightforward.
The sufficiency condition of theorem follows by choosing R compact and S the
identity operator on X , respectively S compact and R the identity operator on Y .

By the same method, if one replace the weak compactness of S ∧ R by (norm)
compactness of this operator, then one obtains a similar characterization of (scc)
subspaces of arbitrary operator ideal.

Now we will obtain another criteria for (wcc) subspaces of operator ideals with
respect to relative weak compactness of all point evaluations related to that subspace,
which are similar to theorems of [5].

Theorem 2.3. Let X and Y ∗ have the approximation property and M ⊆
U(X, Y ) be a linear subspace. If all of the point evaluations M 1(x) and M̃1(y∗)
are relatively weakly compact in Y and X ∗ respectively, then M is (wcc) in
U(X, Y ).

Proof. Let R : Y → W be a compact operator. Since Y ∗ has the approximation
property, there exists a finite rank sequence Rn : Y → W such that ‖Rn −R‖ → 0
as n → ∞.

We claim that each multiplication operator LRn : M → U(X, W ) is weakly
compact and for this, it is enough to consider the particular case Rn = y∗ ⊗w, for
y∗ ∈ Y ∗ and w ∈ W . Now define U : X∗ → U(X, W ) by Ux∗ = x∗ ⊗ w. Then
for each T ∈ M,

LRnT = RnT = T ∗y∗ ⊗ w = U(T ∗y∗).

By assumption, M̃1(y∗) = {T ∗y∗ : T ∈ M1} and so LRnM1 = U(M̃1(y∗)) is
relatively weakly compact. This shows that each LRn is weakly compact. Since

‖LRn − LR‖ ≤ ‖Rn − R‖ → 0 as n → ∞,
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the left multiplication operator LR : M → U(X, W ) is weakly compact. Similarly,
for compact operator S : Z → X , the approximation property of X yields a finite
rank sequence Sn : Z → X such that ‖Sn − S‖ → 0 as n → ∞.

The fact that the dual of any finite rank operator
∑m

i=1 z∗i ⊗xi is
∑m

i=1 xi ⊗ z∗i ,
as an operator from X∗ to Z∗, combined with the weak compactness of all point
evaluations M1(x) yields the weak compactness of multiplication operators L̃S∗

n
:

M → U(Y ∗, Z∗) where L̃S∗
n
T = S∗

nT ∗, for all T ∈ M. Note that, since each S∗
n

is finite rank, the composition operators S∗
nT ∗ belong to U(Y ∗, Z∗), although T ∗

may not belong to U(Y ∗, X∗). Hence each M̃1Sn = S∗
nM̃1 is relatively weakly

compact in U(Y ∗, Z∗) and so one can deduce that each M1Sn is relatively weakly
compact in U(Z, Y ); in fact if we consider the particular case Sn = z∗ ⊗ x, then
for each T ∈ M,

TSn = z∗ ⊗ Tx and (TSn)∗ = S∗
nT ∗ = Tx ⊗ z∗.

So
A(TSn) = A((TSn)∗) = ‖Tx‖.‖z∗‖.

Finally, the relation RSM1 = M1S ⊆ ‖S − Sn‖(U(Z, Y ))1 + M1Sn, shows that
the right multiplication operator RS : M → U(Z, Y ) is weakly compact.

If one assumes that all point evaluations M1(x) and M̃1(y∗) are relatively
compact, then the same method proves the following theorem:

Theorem 2.4. Let X and Y ∗ have the approximation property and M ⊆
U(X, Y ) be a linear subspace. If all of the point evaluations M 1(x) and M̃1(y∗)
are relatively compact in Y and X ∗ respectively, then M is (scc) in U(X, Y ).

In the following, we investigate some operator ideals such that the approximation
assumptions of the theorem is unnecessary. In general, for arbitrary operator ideal
U and Banach spaces X and Y , if M ⊆ U(X, Y ), the relative weak compactness
of all point evaluations is sufficient for the (wcc) of M in K(X, Y ) :

Theorem 2.5. Let X and Y be arbitrary Banach spaces and M ⊆ U(X, Y ) be
a linear subspace. If all of the point evaluations M 1(x) and M̃1(y∗) are relatively
weakly compact in Y and X ∗ respectively, then M is (wcc) in K(X, Y ).

Proof. Let R : Y → V be a compact operator. Choose a Banach space W with
the approximation property and an isometric embedding J : V → W (for instance,
W = l∞(V ∗

1 )). Since JR : Y → W is compact and W has the approximation
property, the proof of theorem 2.3 shows that the operator LJR : M → K(X, W )
is weakly compact. Since LJR = LJ ◦ LR and LJ : L(X, V ) → L(X, W ) is an
isometric embedding, the operator LR is also weakly compact.
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Similarly, for compact operator S : Z → X , if J : Z∗ → l∞((Z∗∗)1) is
an isometric embedding and (Sn) is a finite rank approximating sequence for the
compact operator JS∗, then the assumption of the relative weak compactness of all
M1(x) combined with the fact that each Sn is a finite sum of one rank operators
x ⊗ z with x ∈ X and z ∈ l∞((Z∗∗)1), shows that each LSn as operator from
M̃ is weakly compact. Hence LJS∗ and so LS∗ as operator from M̃ is weakly
compact. This means that M̃1S = S∗M̃1 and so RSM1 = M1S is relatively
weakly compact in K(Z, X).

If we replace the weak compactness of all point evaluations M1(x) and M̃1(y∗)
by relative compactness of them, we have another proof for theorem 2.2 of [5]. The
following corollary is a refinement of theorem 2.5 for closed operator ideal and it
will be proved by the method of corollary 2.3 of [5]. Recall that an operator ideal
U is closed if all components U(X, Y ) is closed in L(X, Y ).

Corollary 2.6. Let U be a closed operator ideal and M ⊆ U(X, Y ) be a
linear subspace such that all of the point evaluations M 1(x) and M̃1(y∗) are
relatively weakly compact. Then M is (wcc) in U(X, Y ).

The proof of theorem 2.5 is based on the fact that for an isometric embedding
J : V → W , the left multiplication operator LJ : L(X, V ) → L(X, W ) is also
an embedding. In general, if the operator ideal U is injective, then the conclusion
of theorems 2.3 and 2.4 hold for that operator ideal, without any approximation
assumption.
An operator ideal U is said to be injective if for each Banach spaces X , V and W

and each isometric embedding J : V → W , the operator LJ : U(X, V ) → U(X, W )
is also an (isometric) embedding, and furthermore, an operator T ∈ L(X, V ) be-
longs to U if JT ∈ U . Many usual operator ideals are injective. For instance, the
(weakly) compact operator, the (Weakly) Banach- Saks operators, the uncondition-
ally converging operators and the p- summing operators between Banach spaces,
with 1 ≤ p < ∞, are standard examples. For additional examples see [2], [4] and
[8]. So we have the following theorem:

Theorem 2.7. Let U be an injective operator ideal, X and Y be arbitrary
Banach spaces and M ⊆ U(X, Y ) be a linear subspace. If all of the point eval-
uations M1(x) and M̃1(y∗) are relatively weakly compact (resp. norm compact)
in Y and X ∗ respectively, then M is (wcc) (resp. (scc)) in U(X, Y ).

The following theorem shows that the converse of the above theorems is also
valid in every operator ideal U which is analogous of theorem 2.5 of [5]:
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Theorem 2.8. Let M ⊆ U(X, Y ) be a linear subspace such that for some
Banach spaces W and Z, each finite rank operators R : Y → W and S : Z →
X; LR and RS, as operators from M into U(X, W ) and U(Z, Y ) respectively,
be weakly compact. Then all of the point evaluations M 1(x) and M̃1(y∗) are
relatively weakly compact.

Proof. Suppose that x ∈ X be arbitrary and consider the operator φx : M → Y

via φxT = Tx. Fix z∗ ∈ Z∗
1 and define the isometric embedding J : Y → U(Z, Y )

by Jy = z∗ ⊗ y. If S = z∗ ⊗ x, then clearly RS = Jφx and by assumption is
weakly compact. Since J is an isometric embedding, the operator φx is weakly
compact. This means that M1(x) is relatively weakly compact in Y . The same
argument shows that all M̃1(y∗) are relatively weakly compact in X∗.

Corollary 2.9. Let X and Y be Banach spaces and U be an operator ideal
that satisfy one of the following assertions

1 X and Y ∗ have the approximation property,
2 U is a closed operator ideal or,
3 U is an injective operator ideal.

If M ⊆ U(X, Y ) is a normed linear subspace, then the following are equivalent:

(a) All of the point evaluations M 1(x) and M̃1(y∗) are relatively weakly com-
pact in Y and X ∗ respectively.

(b) M is (wcc) in U(X, Y ).
(c) M is (wcc) in K(X, Y ).
(d) For some Banach spaces W and Z and any finite rank operators R : Y → W

and S : Z → X; LR and RS , as operators from M into U(X, W ) and
U(Z, Y ) (or into K(X, W ) and K(Z, Y )) respectively, are weakly compact.

Corollary 2.10. For Banach spaces X and Y the following are equivalent:

(a) X and Y are reflexive Banach spaces.
(b) U(X, Y ) is (wcc) in K(X, Y ), for all operator ideals U .
(c) U(X, Y ) is (wcc) in K(X, Y ), for some operator ideal U .

Proof. By the remark following theorem 2.1, (a) implies (b) and the implication
(b)→ (c) is clear. Now assume that (c) holds. Choose x ∈ X and x∗ ∈ X∗ such
that ‖x∗‖ = x∗(x) = 1 and let M = {x∗ ⊗ y : y ∈ Y }. Since M is (wcc) in
K(X, Y ), by theorem 2.8, M1(x) = Y1 is relatively weakly compact. So Y is
reflexive.
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Similarly, if we choose y ∈ Y and y∗ ∈ Y ∗ such that ‖y‖ = y∗(y) = 1 and
M = {x∗⊗y : x∗ ∈ X∗}, then by theorem 2.8, M̃1(y∗) = X∗

1 is relatively weakly
compact and so X∗ is reflexive.
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