MULTIPLE POSITIVE SOLUTIONS OF CONJUGATE BOUNDARY VALUE PROBLEMS ON TIME SCALES

Chuan Jen Chyan and Patricia J. Y. Wong

Abstract. We consider the following differential equation on a time scale \boldsymbol{T}

$$
y^{\Delta \Delta}(t)+P(t, y(\sigma(t)))=0, t \in[a, b] \cap \boldsymbol{T}
$$

subject to conjugate boundary conditions

$$
y(a)=0, \quad y\left(\sigma^{2}(b)\right)=0
$$

where $a, b \in \boldsymbol{T}$ and $a<\sigma(b)$. By using different fixed point theorems, criteria are established for the existence of three positive solutions of the boundary value problem. Examples are also included to illustrate the results obtained.

1. Introduction

In this paper we shall consider the conjugate boundary value problem on a time scale T

$$
\begin{align*}
& y^{\Delta \Delta}(t)+P(t, y(\sigma(t)))=0, t \in[a, b] \tag{1.1}\\
& y(a)=0, \quad y\left(\sigma^{2}(b)\right)=0
\end{align*}
$$

where $a, b \in \boldsymbol{T}$ with $a<\sigma(b)$, and $P:[a, \sigma(b)] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
To understand the notations used in (1.1), we recall some standard definitions as follows. The reader may refer to [1.1] for an introduction to the subject.
(a) Let \boldsymbol{T} be a time scale, i.e., \boldsymbol{T} is a closed subset of \mathbb{R}. We assume that \boldsymbol{T} has the topology that it inherits from the standard topology on \mathbb{R}. Throughout, for any $a, b(>a)$, the interval $[a, b]$ is defined as $[a, b]=\{t \in \boldsymbol{T} \mid a \leq t \leq b\}$. Analogous notations for open and half-open intervals will also be used in the paper.

[^0](b) For $t<\sup \boldsymbol{T}$ and $s>\inf \boldsymbol{T}$, the forward jump operator σ and the backward jump operator ρ are respectively defined by
$$
\sigma(t)=\inf \{\tau \in \boldsymbol{T} \mid \tau>t\} \in \boldsymbol{T} \quad \text { and } \quad \rho(s)=\sup \{\tau \in \boldsymbol{T} \mid \tau<s\} \in \boldsymbol{T}
$$
(c) Fix $t \in \boldsymbol{T}$. Let $y: \boldsymbol{T} \rightarrow \mathbb{R}$. We define $y^{\Delta}(t)$ to be the number (if it exists) with the property that given $\epsilon>0$, there is a neighborhood U of t such that for all $s \in U$,
$$
\left|[y(\sigma(t))-y(s)]-y^{\Delta}(t)[\sigma(t)-s]\right|<\epsilon|\sigma(t)-s| .
$$

We call $y^{\Delta}(t)$ the delta derivative of $y(t)$. Define $y^{\Delta \Delta}(t)$ to be the delta derivative of $y^{\Delta}(t)$, i.e., $y^{\Delta \Delta}(t)=\left(y^{\Delta}(t)\right)^{\Delta}$.
(d) If $F^{\Delta}(t)=f(t)$, then we define the integral

$$
\int_{a}^{t} f(\tau) \Delta \tau=F(t)-F(a)
$$

A solution y of (1.1) will be sought in $C\left[a, \sigma^{2}(b)\right]$, the space of continuous functions $\left\{y:\left[a, \sigma^{2}(b)\right] \rightarrow\right\}$. We say that y is a positive solution if $y(t) \geq 0$ for $t \in\left[a, \sigma^{2}(b)\right]$.

Boundary value problems have attracted a lot of attention in the recent literature, due mainly to the fact that they model many physical phenomena which include gas diffusion through porous media, nonlinear diffusion generated by nonlinear sources, thermal self-ignition of a chemically active mixture of gases in a vessel, catalysis theory, chemically reacting systems, adiabatic tubular reactor processes, as well as concentration in chemical or biological problems, just to name a few. In all these physical problems, only positive solutions are meaningful. Many papers have discussed the existence of single, double and triple positive solutions of boundary value problems on the real and discrete domains, we refer to $[6,8,12,13,15,17-19]$ and the monographs $[2,3]$ which give a good documentary of the literature. A recent trend is to consider boundary value problems on time scales, which include the real and the discrete as special cases, see $[1,4,9-11,14]$.

In the present work, both fixed point theorems of Leggett and Williams [16] as well as of Avery [5] are used to derive criteria for the existence of triple positive solutions of (1.1). In addition, estimates on the norms of these solutions are also provided. Not only that new results are obtained, we also discuss the relationship between the results in terms of generality, and illustrate the importance of the results through some examples. Moreover, it is noted that the boundary value problem (1.1) considered has a nonlinear term P which is more general than those discussed in the literature.

The paper is outlined as follows. In Section 2 we state the necessary definitions and fixed point theorems. Our main results and discussion are presented in Section 3. Finally, some examples are included in Section 4 to illustrate the importance of the results obtained.

3. Preliminaries

In this section we shall state some necessary definitions and the relevant fixed point theorems. Let B be a Banach space with norm $\|\cdot\|$.

Definition 2.1. Let $C(\subset B)$ be a nonempty closed convex set. We say that C is a cone provided the following conditions are satisfied:
(a) If $u \in C$ and $\alpha \geq 0$, then $\alpha u \in C$;
(b) If $u \in C$ and $-u \in C$, then $u=0$.

Definition 2.2. Let $C(\subset B)$ be a cone. A map ψ is a nonnegative continuous concave functional on C if the following conditions are satisfied:
(a) $\psi: C \rightarrow \mathbb{R}^{+} \cup\{0\}$ is continuous;
(b) $\psi(t y+(1-t) z) \geq t \psi(y)+(1-t) \psi(z)$ for all $y, z \in C$ and $0 \leq t \leq 1$.

Definition 2.3. Let $C(\subset B)$ be a cone. A map β is a nonnegative continuous convex functional on C if the following conditions are satisfied:
(a) $\beta: C \rightarrow \mathbb{R}^{+} \cup\{0\}$ is continuous;
(b) $\beta(t y+(1-t) z) \leq t \beta(y)+(1-t) \beta(z)$ for all $y, z \in C$ and $0 \leq t \leq 1$.

Let γ, β, Θ be nonnegative continuous convex functionals on C and α, ψ be nonnegative continuous concave functionals on C. For nonnegative numbers $w_{i}, 1 \leq$ $i \leq 3$, we shall introduce the following notations:

$$
\begin{aligned}
& C\left(w_{1}\right)=\left\{u \in C \mid\|u\|<w_{1}\right\} \\
& C\left(\psi, w_{1}, w_{2}\right)=\left\{u \in C \mid \psi(u) \geq w_{1} \text { and }\|u\| \leq w_{2}\right\} \\
& P\left(\gamma, w_{1}\right)=\left\{u \in C \mid \gamma(u)<w_{1}\right\}, \\
& P\left(\gamma, \alpha, w_{1}, w_{2}\right)=\left\{u \in C \mid \alpha(u) \geq w_{1} \text { and } \gamma(u) \leq w_{2}\right\}, \\
& Q\left(\gamma, \beta, w_{1}, w_{2}\right)=\left\{u \in C \mid \beta(u) \leq w_{1} \text { and } \gamma(u) \leq w_{2}\right\}, \\
& P\left(\gamma, \Theta, \alpha, w_{1}, w_{2}, w_{3}\right)=\left\{u \in C \mid \alpha(u) \geq w_{1}, \Theta(u) \leq w_{2} \text { and } \gamma(u) \leq w_{3}\right\}, \\
& Q\left(\gamma, \beta, \psi, w_{1}, w_{2}, w_{3}\right)=\left\{u \in C \mid \psi(u) \geq w_{1}, \beta(u) \leq w_{2} \text { and } \gamma(u) \leq w_{3}\right\}
\end{aligned}
$$

The following fixed point theorems are needed later. The first is usually called Leggett-Williams' fixed point theorem, and the second is known as the five-functional fixed point theorem.

Theorem 2.1. [16]. Let $C(\subset B)$ be a cone, and $w_{4}>0$ be given. Assume that ψ is a nonnegative continuous concave functional on C such that $\psi(u) \leq\|u\|$ for all $u \in \bar{C}\left(w_{4}\right)$, and let $S: \bar{C}\left(w_{4}\right) \rightarrow \bar{C}\left(w_{4}\right)$ be a continuous and completely continuous operator. Suppose that there exist numbers w_{1}, w_{2}, w_{3} where $0<w_{1}<$ $w_{2}<w_{3} \leq w_{4}$ such that
(a) $\left\{u \in C\left(\psi, w_{2}, w_{3}\right) \mid \psi(u)>w_{2}\right\} \neq \emptyset$, and $\psi(S u)>w_{2}$ for all $u \in$ $C\left(\psi, w_{2}, w_{3}\right)$;
(b) $\|S u\|<w_{1}$ for all $u \in \bar{C}\left(w_{1}\right)$;
(c) $\psi(S u)>w_{2}$ for all $u \in C\left(\psi, w_{2}, w_{4}\right)$ with $\|S u\|>w_{3}$.

Then, S has (at least) three fixed points u^{1}, u^{2} and u^{3} in $\bar{C}\left(w_{4}\right)$. Furthermore, we have

$$
\begin{align*}
& u^{1} \in C\left(w_{1}\right), \quad u^{2} \in\left\{u \in C\left(\psi, w_{2}, w_{4}\right) \mid \psi(u)>w_{2}\right\} \tag{2.1}\\
& \text { and } \quad u^{3} \in \bar{C}\left(w_{4}\right) \backslash\left(C\left(\psi, w_{2}, w_{4}\right) \cup \bar{C}\left(w_{1}\right)\right) .
\end{align*}
$$

Theorem 2.2. [5]. Let $C(\subset B)$ be a cone. Assume that there exist positive numbers w_{5}, M, nonnegative continuous convex functionals γ, β, Θ on C, and nonnegative continuous concave functionals α, ψ on C, with

$$
\alpha(u) \leq \beta(u) \quad \text { and } \quad\|u\| \leq M \gamma(u)
$$

for all $u \in \bar{P}\left(\gamma, w_{5}\right)$. Let $S: \bar{P}\left(\gamma, w_{5}\right) \rightarrow \bar{P}\left(\gamma, w_{5}\right)$ be a continuous and completely continuous operator. Suppose that there exist nonnegative numbers $w_{i}, 1 \leq i \leq 4$ with $0<w_{2}<w_{3}$ such that
(a) $\left\{u \in P\left(\gamma, \Theta, \alpha, w_{3}, w_{4}, w_{5}\right) \mid \alpha(u)>w_{3}\right\} \neq \emptyset$, and $\alpha(S u)>w_{3}$ for all $u \in P\left(\gamma, \Theta, \alpha, w_{3}, w_{4}, w_{5}\right)$;
(b) $\left\{u \in Q\left(\gamma, \beta, \psi, w_{1}, w_{2}, w_{5}\right) \mid \beta(u)<w_{2}\right\} \neq \emptyset$, and $\beta(S u)<w_{2}$ for all $u \in Q\left(\gamma, \beta, \psi, w_{1}, w_{2}, w_{5}\right) ;$
(c) $\alpha(S u)>w_{3}$ for all $u \in P\left(\gamma, \alpha, w_{3}, w_{5}\right)$ with $\Theta(S u)>w_{4}$;
(d) $\beta(S u)<w_{2}$ for all $u \in Q\left(\gamma, \beta, w_{2}, w_{5}\right)$ with $\psi(S u)<w_{1}$.

Then, S has (at least) three fixed points u^{1}, u^{2} and u^{3} in $\bar{P}\left(\gamma, w_{5}\right)$. Furthermore, we have

$$
\begin{equation*}
\beta\left(u^{1}\right)<w_{2}, \quad \alpha\left(u^{2}\right)>w_{3}, \quad \text { and } \quad \beta\left(u^{3}\right)>w_{2} \quad \text { with } \quad \alpha\left(u^{3}\right)<w_{3} . \tag{2.2}
\end{equation*}
$$

3. Main Results

Let the Banach space

$$
\begin{equation*}
B=\left\{y \mid y \in C\left[a, \sigma^{2}(b)\right]\right\} \tag{3.1}
\end{equation*}
$$

be equipped with norm

$$
\begin{equation*}
\|y\|=\sup _{t \in\left[a, \sigma^{2}(b)\right]}|y(t)| . \tag{3.2}
\end{equation*}
$$

To apply the fixed point theorems in Section 2, we need to define an operator $S: B \rightarrow B$ so that a solution y of the boundary value problem (1.1) is a fixed point of S, i.e., $y=S y$. For this, let $G(t, s)$ be the Green's function of the boundary value problem

$$
\begin{gather*}
-y^{\Delta \Delta}(t)=0, t \in[a, b] \\
y(a)=0, \quad y\left(\sigma^{2}(b)\right)=0 . \tag{3.3}
\end{gather*}
$$

If y is a solution of (1.1), then it can be represented as

$$
y(t)=\int_{a}^{\sigma(b)} G(t, s) P(s, y(\sigma(s))) \Delta s, t \in\left[a, \sigma^{2}(b)\right]
$$

Hence, we shall define the operator $S: B \rightarrow B$ by

$$
\begin{equation*}
S y(t)=\int_{a}^{\sigma(b)} G(t, s) P(s, y(\sigma(s))) \Delta s, t \in\left[a, \sigma^{2}(b)\right] . \tag{3.4}
\end{equation*}
$$

It is clear that a fixed point of the operator S is a solution of (1.1).
Our first lemma gives the properties of the Green's function $G(t, s)$ which will be used later.

Lemma 3.1. We have the following:
(a) $0 \leq G(t, s) \leq G(\sigma(s), s),(t, s) \in\left[a, \sigma^{2}(b)\right] \times[a, \sigma(b)]$;
(b) for fixed δ such that $0<\delta<\frac{1}{2}$ and $\left[a+\delta\left(\sigma^{2}(b)-a\right), \sigma^{2}(b)-\delta\left(\sigma^{2}(b)-a\right)\right] \neq$ \emptyset, we have

$$
G(t, s) \geq k G(\sigma(s), s),(t, s) \in\left[a+\delta\left(\sigma^{2}(b)-a\right), \sigma^{2}(b)-\delta\left(\sigma^{2}(b)-a\right)\right] \times[a, \sigma(b)]
$$

where the constant $0<k<1$ is given by

$$
k=\min \left\{\delta, \delta \frac{\sigma^{2}(b)-a}{\sigma^{2}(b)-\sigma(a)}\right\}
$$

Proof. It is known that [7]

$$
G(t, s)= \begin{cases}\frac{(t-a)\left(\sigma^{2}(b)-\sigma(s)\right)}{\sigma^{2}(b)-a}, & t \leq s \tag{3.5}\\ \frac{(\sigma(s)-a)\left(\sigma^{2}(b)-t\right)}{\sigma^{2}(b)-a}, & \sigma(s) \leq t\end{cases}
$$

Hence, (a) is obvious. To prove (b), first we consider the case $t \leq s$. Then, from (3.5) we find for $(t, s) \in\left[a+\delta\left(\sigma^{2}(b)-a\right), \sigma^{2}(b)-\delta\left(\sigma^{2}(b)-a\right)\right] \times[a, \sigma(b)]$,

$$
\begin{equation*}
\frac{G(t, s)}{G(\sigma(s), s)}=\frac{t-a}{\sigma(s)-a} \geq \frac{a+\delta\left(\sigma^{2}(b)-a\right)-a}{\sigma^{2}(b)-a}=\delta \tag{3.6}
\end{equation*}
$$

Next, when $\sigma(s) \leq t$, it is clear that for $(t, s) \in\left[a+\delta\left(\sigma^{2}(b)-a\right), \sigma^{2}(b)-\delta\left(\sigma^{2}(b)-\right.\right.$ $a)] \times[a, \sigma(b)]$,

$$
\begin{align*}
& \frac{G(t, s)}{G(\sigma(s), s)}=\frac{\sigma^{2}(b)-t}{\sigma^{2}(b)-\sigma(s)} \geq \frac{\sigma^{2}(b)-\left[\sigma^{2}(b)-\delta\left(\sigma^{2}(b)-a\right)\right]}{\sigma^{2}(b)-\sigma(a)} \\
& =\delta \frac{\sigma^{2}(b)-a}{\sigma^{2}(b)-\sigma(a)} \tag{3.7}
\end{align*}
$$

Combining (3.6) and (3.7) gives (b) immediately.
Lemma 3.2. The operator S defined in (3.4) is continuous and completely continuous.

Proof. From (3.5), we have $G(t, s) \in C\left[a, \sigma^{2}(b)\right], t \in\left[a, \sigma^{2}(b)\right]$ and the map $t \rightarrow G(t, s)$ is continuous from $\left[a, \sigma^{2}(b)\right]$ to $C\left[a, \sigma^{2}(b)\right]$. This together with $P:[a, \sigma(b)] \times \rightarrow \mathbb{R}$ is continuous ensures (as in [1]) that S is continuous and completely continuous.

For clarity, we shall list the conditions that are needed later. Note that in these conditions we use the notation $y^{\sigma}=y \circ \sigma$, and the sets \tilde{K} and K are given by

$$
\tilde{K}=\left\{y \in B \mid y(t) \geq 0 \text { for } t \in\left[a, \sigma^{2}(b)\right]\right\}
$$

and

$$
K=\left\{y \in \tilde{K} \mid y(t)>0 \text { for some } t \in\left[a, \sigma^{2}(b)\right]\right\}=\tilde{K} \backslash\{0\} .
$$

(C1) Assume that

$$
P\left(t, y^{\sigma}\right) \geq 0, y \in \tilde{K}, t \in[a, \sigma(b)] \quad \text { and } \quad P\left(t, y^{\sigma}\right)>0, y \in K, t \in[a, \sigma(b)]
$$

(C2) There exist continuous functions f, μ, ν with $f: \mathbb{R}^{+} \cup\{0\} \rightarrow \mathbb{R}^{+} \cup\{0\}$ and $\mu, \nu:[a, \sigma(b)] \rightarrow \mathbb{R}^{+} \cup\{0\}$ such that

$$
\mu(t) f\left(y^{\sigma}\right) \leq P\left(t, y^{\sigma}\right) \leq \nu(t) f\left(y^{\sigma}\right), y \in \tilde{K}, t \in[a, \sigma(b)]
$$

(C3) There exists a number $0<c \leq 1$ such that

$$
\mu(t) \geq c \nu(t), t \in[a, \sigma(b)]
$$

Now, let δ be fixed, where $0<\delta<\frac{1}{2}$ and $\left[a+\delta\left(\sigma^{2}(b)-a\right), \sigma^{2}(b)-\delta\left(\sigma^{2}(b)-\right.\right.$ $a)] \neq \emptyset$. Let $\left[a, \sigma^{2}(b)\right]$ be such that

$$
\begin{align*}
& \xi \equiv \min \left\{t \in \boldsymbol{T} \mid t \geq a+\delta\left[\sigma^{2}(b)-a\right]\right\} \quad \text { and } \tag{3.8}\\
& w \equiv \max \left\{t \in \boldsymbol{T} \mid t \leq \sigma^{2}(b)-\delta\left[\sigma^{2}(b)-a\right]\right\}
\end{align*}
$$

exist and satisfy

$$
\begin{equation*}
a<a+\delta\left[\sigma^{2}(b)-a\right] \leq \xi<\rho(w) \leq w \leq \sigma^{2}(b)-\delta\left[\sigma^{2}(b)-a\right]<\sigma^{2}(b) \tag{3.9}
\end{equation*}
$$

Next, we define a cone in B as

$$
\begin{gather*}
C=\left\{y \in B \mid y^{\Delta \Delta}(t) \leq 0 \text { for } t \in[a, b], y(a)=0=y\left(\sigma^{2}(b)\right),\right. \text { and } \tag{3.10}\\
\left.y(t) \geq 0 \text { for } t \in\left[a, \sigma^{2}(b)\right]\right\}
\end{gather*}
$$

Remark 3.1.

(a) Note that $C \subseteq \tilde{K}$. Moreover, a fixed point of S obtained in C will be a positive solution of the boundary value problem (1.1).
(b) Let $y \in C$. Then, since $y^{\Delta \Delta}(t) \leq 0$ for $t \in[a, b], y^{\Delta}(t)$ is nonincreasing for $t \in[a, \sigma(b)]$, and so $y^{\Delta}(a) \geq y^{\Delta}(\sigma(b))$. Noting that y is nonnegative on $\left[a, \sigma^{2}(b)\right]$ and also $y(a)=0=y\left(\sigma^{2}(b)\right)$, it follows that $y^{\Delta}(a) \geq 0 \geq$ $y^{\Delta}(\sigma(b))$, and the maximum of y over the interval $\left[a, \sigma^{2}(b)\right]$ occurs at some $t \in\left(a, \sigma^{2}(b)\right)$. Indeed, if we define

$$
\begin{align*}
& \eta_{1}=\sup \left\{t \in\left[a, \sigma^{2}(b)\right] \mid y^{\Delta}(t) \geq 0\right\} \quad \text { and } \\
& \eta_{2}=\inf \left\{t \in\left[a, \sigma^{2}(b)\right] \mid y^{\Delta}(t)<0\right\}, \tag{3.11}
\end{align*}
$$

then

$$
\left\{\begin{array}{l}
y(t) \text { is nondecreasing for } t \in\left[a, \eta_{1}\right], \text { and is nonincreasing for } t \in\left[\eta_{2}, \sigma^{2}(b)\right], \\
\eta_{1} \leq \eta_{2}, \\
\text { if } \eta_{1} \neq \eta_{2}, \text { then } \sigma\left(\eta_{1}\right)=\eta_{2}, \\
\|y\|=\max \left\{y\left(\eta_{1}\right), y\left(\eta_{2}\right)\right\} .
\end{array}\right.
$$

Taking into account all these and (3.8), (3.9), we see that

$$
\begin{align*}
\min _{t \in[\xi, w]} y(t) & = \begin{cases}y(\xi), & \xi<w \leq \eta_{1} \leq \eta_{2} \\
\min \{y(\xi), y(w)\}, & \xi \leq \eta_{1} \leq \eta_{2} \leq w \\
y(w), & \eta_{1} \leq \eta_{2} \leq \xi<w\end{cases} \tag{3.12}\\
& =\min \{y(\xi), y(w)\}
\end{align*}
$$

Lemma 3.3. Let (C1) hold. Then, the operator S maps C into itself.
Proof. Let $y \in C$. From (3.4), Lemma 3.1(a) and (C1) we have

$$
\begin{equation*}
S y(t)=\int_{a}^{\sigma(b)} G(t, s) P(s, y(\sigma(s))) \Delta s \geq 0, t \in\left[a, \sigma^{2}(b)\right] \tag{3.13}
\end{equation*}
$$

Next, it is clear from the property of Green's function that

$$
\begin{equation*}
S y(a)=0=S y\left(\sigma^{2}(b)\right) . \tag{3.14}
\end{equation*}
$$

Finally, from (3.4) and (C1) it follows that

$$
\begin{equation*}
(S y)^{\Delta \Delta}(t)=-P(t, y(\sigma(t))) \leq 0, t \in[a, b] . \tag{3.15}
\end{equation*}
$$

Hence, (3.13)-(3.15) give $S y \in C$.
Remark 3.2. If (C1) and (C2) hold, then from (3.4) and Lemma 3.1(a) it follows for $y \in \tilde{K}$ and $t \in\left[a, \sigma^{2}(b)\right]$ that

$$
\begin{equation*}
\int_{a}^{\sigma(b)} G(t, s) \mu(s) f(y(\sigma(s))) \Delta s \leq S y(t) \leq \int_{a}^{\sigma(b)} G(t, s) \nu(s) f(y(\sigma(s))) \Delta s \tag{3.16}
\end{equation*}
$$

Moreover, using (3.13), (3.16) and Lemma 3.1(a), we obtain for $t \in\left[a, \sigma^{2}(b)\right]$,

$$
\begin{aligned}
|S y(t)| & =S y(t) \leq \int_{a}^{\sigma(b)} G(t, s) \nu(s) f(y(\sigma(s))) \Delta s \\
& \leq \int_{a}^{\sigma(b)} G(\sigma(s), s) \nu(s) f(y(\sigma(s))) \Delta s
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\|S y\| \leq \int_{a}^{\sigma(b)} G(\sigma(s), s) \nu(s) f(y(\sigma(s))) \Delta s \tag{3.17}
\end{equation*}
$$

For subsequent results, we define the following constants for fixed numbers $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4} \in\left[a, \sigma^{2}(b)\right]$ where $\tau_{3}>\tau_{2}$ and $\tau_{4}>\tau_{1}$:

$$
\begin{align*}
& q=\sup _{t \in\left[a, \sigma^{2}(b)\right]} \int_{a}^{\sigma(b)} G(t, s) \nu(s) \Delta s \\
& r=\min \left\{\int_{\xi}^{\rho(w)} \frac{(\xi-a)\left(\sigma^{2}(b)-\sigma(s)\right) \mu(s)}{\sigma^{2}(b)-a} \Delta s\right. \\
& \left.\int_{\xi}^{\rho(w)} \frac{(\sigma(s)-a)\left(\sigma^{2}(b)-w\right) \mu(s)}{\sigma^{2}(b)-a} \Delta s\right\} \\
& d_{1}=\min \left\{\int_{\tau_{2}}^{\rho\left(\tau_{3}\right)} \frac{\left(\tau_{2}-a\right)\left(\sigma^{2}(b)-\sigma(s)\right) \mu(s)}{\sigma^{2}(b)-a} \Delta s\right. \tag{3.18}\\
& \left.\int_{\tau_{2}}^{\rho\left(\tau_{3}\right)} \frac{(\sigma(s)-a)\left(\sigma^{2}(b)-\tau_{3}\right) \mu(s)}{\sigma^{2}(b)-a} \Delta s\right\} \\
& d_{2}=\max _{t \in\left[\tau_{1}, \tau_{4}\right]} \int_{\tau_{1}}^{\rho\left(\tau_{4}\right)} G(t, s) \nu(s) \Delta s \\
& d_{3}=\max _{t \in\left[\tau_{1}, \tau_{4}\right]}\left[\int_{a}^{\tau_{1}} G(t, s) \nu(s) \Delta s+\int_{\rho\left(\tau_{4}\right)}^{\sigma(b)} G(t, s) \nu(s) \Delta s\right]
\end{align*}
$$

Lemma 3.4. Let (C1) and (C2) hold, and assume
(C4) for each $t \in\left[a, \sigma^{2}(b)\right]$, the function $G(t, s) \nu(s)$ is nonzero for some $s \in$ $[a, \sigma(b))$.

Suppose that there exists a number $d>0$ such that for $0 \leq x \leq d$,

$$
\begin{equation*}
f(x)<\frac{d}{q} \tag{3.19}
\end{equation*}
$$

Then,

$$
\begin{equation*}
S(\bar{C}(d)) \subseteq C(d) \subset \bar{C}(d) \tag{3.20}
\end{equation*}
$$

Proof. Let $y \in \bar{C}(d)$. Then, it follows that $0 \leq y(s) \leq d$ for $s \in\left[a, \sigma^{2}(b)\right]$. This implies

$$
\begin{equation*}
0 \leq y(\sigma(s)) \leq d, s \in[a, \sigma(b)] \tag{3.21}
\end{equation*}
$$

Noting (3.21), we apply (3.16), (C4), (3.19), (3.18) and obtain for $t \in\left[a, \sigma^{2}(b)\right]$,

$$
\begin{aligned}
S y(t) & \leq \int_{a}^{\sigma(b)} G(t, s) \nu(s) f(y(\sigma(s))) \Delta s \\
& <\int_{a}^{\sigma(b)} G(t, s) \nu(s) \frac{d}{q} \Delta s \\
& \leq q \frac{d}{q}=d
\end{aligned}
$$

Hence, $\|S y\|<d$. Coupling with the fact that $S y \in C$ (Lemma 3.3), we get $S y \in C(d)$. The conclusion (3.20) is now immediate.

The next lemma is similar to Lemma 3.4 and its proof is omitted.
Lemma 3.5. Let (C1) and (C2) hold. Suppose that there exists a number $d>0$ such that for $0 \leq x \leq d$,

$$
f(x) \leq \frac{d}{q}
$$

Then,

$$
S(\bar{C}(d)) \subseteq \bar{C}(d)
$$

We are now ready to establish existence criteria for three positive solutions. Our first result employs Theorem 2.1.

Theorem 3.1. Let (C1)-(C4) hold, and assume
(C5) the functions $\left[\sigma^{2}(b)-\sigma(s)\right] \mu(s)$ and $[\sigma(x)-a] \mu(x)$ are nonzero for some $s, x \in[\xi, \rho(w))$.

Suppose that there exist numbers w_{1}, w_{2}, w_{3} with

$$
0<w_{1}<w_{2}<\frac{w_{2}}{k c} \leq w_{3}
$$

such that the following hold:
(P) $f(x)<\frac{w_{1}}{q}$ for $0 \leq x \leq w_{1}$;
(Q) one of the following holds:
(Q1) $\lim \sup _{x \rightarrow \infty} \frac{f(x)}{x}<\frac{1}{q}$;
(Q2) there exists a number $d\left(\geq w_{3}\right)$ such that $f(x) \leq \frac{d}{q}$ for $0 \leq x \leq d$;
(R) $f(x)>\frac{w_{2}}{r}$ for $w_{2} \leq x \leq w_{3}$.

Then, the boundary value problem (1.1) has (at least) three positive solutions $y^{1}, y^{2}, y^{3} \in C$ such that

$$
\begin{align*}
\left\|y^{1}\right\|<w_{1} ; \quad y^{2}(t) & >w_{2}, t \in[\xi, w] \\
\left\|y^{3}\right\|>w_{1} \quad \text { and } \min _{t \in[\xi, w]} y^{3}(t) & =\min \left\{y^{3}(\xi), y^{3}(w)\right\}<w_{2} . \tag{3.22}
\end{align*}
$$

Proof. We shall employ Theorem 2.1. First, we shall prove that condition (Q) implies the existence of a number w_{4} where $w_{4} \geq w_{3}$ such that

$$
\begin{equation*}
S\left(\bar{C}\left(w_{4}\right)\right) \subseteq \bar{C}\left(w_{4}\right) . \tag{3.23}
\end{equation*}
$$

Suppose that (Q2) holds. Then, by Lemma 3.5 we immediately have (3.23) where we pick $w_{4}=d$. Suppose now that (Q1) is satisfied. Then, there exist $N>0$ and $\epsilon<\frac{1}{q}$ such that

$$
\begin{equation*}
\frac{f(x)}{x}<\epsilon, x>N . \tag{3.24}
\end{equation*}
$$

Define $M_{0}=\max _{0 \leq x \leq N} f(x)$. In view of (3.24), it is clear that the following holds for all $x \in \mathbb{R}$,

$$
\begin{equation*}
f(x) \leq M_{0}+\epsilon x . \tag{3.25}
\end{equation*}
$$

Now, pick the number w_{4} so that

$$
\begin{equation*}
w_{4}>\max \left\{w_{3}, M_{0}\left(\frac{1}{q}-\epsilon\right)^{-1}\right\} . \tag{3.26}
\end{equation*}
$$

Let $y \in \bar{C}\left(w_{4}\right)$. Then, $0 \leq y(s) \leq w_{4}$ for $s \in\left[a, \sigma^{2}(b)\right]$. This implies

$$
\begin{equation*}
0 \leq y(\sigma(s)) \leq w_{4}, s \in[a, \sigma(b)] . \tag{3.27}
\end{equation*}
$$

Then, using (3.16), (3.25), (3.27) and (3.26) we find for $t \in\left[a, \sigma^{2}(b)\right]$,

$$
\begin{aligned}
S y(t) & \leq \int_{a}^{\sigma(b)} G(t, s) \nu(s) f(y(\sigma(s))) \Delta s \\
& \leq \int_{a}^{\sigma(b)} G(t, s) \nu(s)\left[M_{0}+\epsilon y(\sigma(s))\right] \Delta s \\
& \leq \int_{a}^{\sigma(b)} G(t, s) \nu(s)\left[M_{0}+\epsilon w_{4}\right] \Delta s \\
& \leq q\left(M_{0}+\epsilon w_{4}\right) \\
& <q\left[w_{4}\left(\frac{1}{q}-\epsilon\right)+\epsilon w_{4}\right]=w_{4} .
\end{aligned}
$$

This leads to $\|S y\|<w_{4}$ and so $S y \in C\left(w_{4}\right) \subset \bar{C}\left(w_{4}\right)$. Thus, (3.23) follows immediately.

Let $\psi: C \rightarrow \mathbb{R}^{+} \cup\{0\}$ be defined by

$$
\begin{equation*}
\psi(y)=\min _{t \in[\xi, w]} y(t)=\min \{y(\xi), y(w)\} \tag{3.28}
\end{equation*}
$$

where we have also used (3.12) in the second equality. Clearly, ψ is a nonnegative continuous concave functional on C and $\psi(y) \leq\|y\|$ for all $y \in C$.

We shall verify that condition (a) of Theorem 2.1 is satisfied. First, we note that

$$
y^{*}(t)=\frac{w_{2}+w_{3}}{2} \in\left\{y \in C\left(\psi, w_{2}, w_{3}\right) \mid \psi(y)>w_{2}\right\} .
$$

Thus, $\left\{y \in C\left(\psi, w_{2}, w_{3}\right) \mid \psi(y)>w_{2}\right\} \neq \emptyset$. Next, let $y \in C\left(\psi, w_{2}, w_{3}\right)$. Then, $w_{2} \leq \psi(y) \leq\|y\| \leq w_{3}$ provides $w_{2} \leq y(s) \leq w_{3}$ for $s \in[\xi, w]$, which leads to

$$
\begin{equation*}
w_{2} \leq y(\sigma(s)) \leq w_{3}, s \in[\xi, \rho(w)] . \tag{3.29}
\end{equation*}
$$

Noting (3.29), we apply (3.16), (3.29), (C5), (R) and (3.18) to get

$$
\begin{aligned}
\psi(S y) & =\min \{S y(\xi), S y(w)\} \\
& \geq \min \left\{\int_{a}^{\sigma(b)} G(\xi, s) \mu(s) f(y(\sigma(s))) \Delta s, \int_{a}^{\sigma(b)} G(w, s) \mu(s) f(y(\sigma(s))) \Delta s\right\} \\
& \geq \min \left\{\int_{\xi}^{\rho(w)} G(\xi, s) \mu(s) f(y(\sigma(s))) \Delta s, \int_{\xi}^{\rho(w)} G(w, s) \mu(s) f(y(\sigma(s))) \Delta s\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\min \left\{\int_{\xi}^{\rho(w)} \frac{(\xi-a)\left(\sigma^{2}(b)-\sigma(s)\right) \mu(s)}{\sigma^{2}(b)-a} f(y(\sigma(s))) \Delta s,\right. \\
& \left.\quad \int_{\xi}^{\rho(w)} \frac{(\sigma(s)-a)\left(\sigma^{2}(b)-w\right) \mu(s)}{\sigma^{2}(b)-a} f(y(\sigma(s))) \Delta s\right\} \\
& >\min \left\{\int_{\xi}^{\rho(w)} \frac{(\xi-a)\left(\sigma^{2}(b)-\sigma(s)\right) \mu(s)}{\sigma^{2}(b)-a} \frac{w_{2}}{r} \Delta s,\right. \\
& = \\
& \left.\quad \int_{\xi}^{\rho(w)} \frac{(\sigma(s)-a)\left(\sigma^{2}(b)-w\right) \mu(s)}{\sigma^{2}(b)-a} \frac{w_{2}}{r} \Delta s\right\} \\
& = \\
& w_{2} \\
& r
\end{aligned} w_{2} .
$$

Therefore, we have shown that $\psi(S y)>w_{2}$ for all $y \in C\left(\psi, w_{2}, w_{3}\right)$.
Next, condition (b) of Theorem 2.1 is fulfilled since by Lemma 3.4 and condition (P), we have $S\left(\bar{C}\left(w_{1}\right)\right) \subseteq C\left(w_{1}\right)$.

Finally, we shall show that condition (c) of Theorem 2.1 holds. Let $y \in$ $C\left(\psi, w_{2}, w_{4}\right)$ with $\|S y\|>w_{3}$. Using (3.16), Lemma 3.1(b), (C3) and (3.17), we get

$$
\begin{aligned}
\psi(S y)= & \min \{S y(\xi), S y(w)\} \\
\geq & \min \left\{\int_{a}^{\sigma(b)} G(\xi, s) \mu(s) f(y(\sigma(s))) \Delta s\right. \\
& \left.\int_{a}^{\sigma(b)} G(w, s) \mu(s) f(y(\sigma(s))) \Delta s\right\} \\
\geq & \min \left\{\int_{a}^{\sigma(b)} k G(\sigma(s), s) c \nu(s) f(y(\sigma(s))) \Delta s,\right. \\
& \left.\int_{a}^{\sigma(b)} k G(\sigma(s), s) c \nu(s) f(y(\sigma(s))) \Delta s\right\} \\
= & k c \int_{a}^{\sigma(b)} G(\sigma(s), s) \nu(s) f(y(\sigma(s))) \Delta s \\
\geq & k c\|S y\| k c w_{3} \geq k c \frac{w_{2}}{k c}=w_{2}
\end{aligned}
$$

Hence, we have proved that $\psi(S y)>w_{2}$ for all $y \in C\left(\psi, w_{2}, w_{4}\right)$ with $\|S y\|>w_{3}$.
It now follows from Theorem 2.1 that the boundary value problem (1.1) has (at least) three positive solutions $y^{1}, y^{2}, y^{3} \in \bar{C}\left(w_{4}\right)$ satisfying (2.1). It is easy to see that here (2.1) reduces to (3.22).

We shall now employ Theorem 2.2 to give other existence criteria. In applying Theorem 2.2 it is possible to choose the functionals and constants in many different ways. We shall present two results to show the arguments involved. In particular the first result is a generalization of Theorem 3.1.

Theorem 3.2. Let (C1)-(C3) hold. Assume there exist $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4} \in\left[a, \sigma^{2}(b)\right]$ with

$$
\begin{gather*}
a \leq \tau_{1} \leq \xi \leq \tau_{2}<\rho\left(\tau_{3}\right) \leq \rho(w) \leq \tau_{4} \leq \sigma^{2}(b) \\
\tau_{3} \leq \tau_{4}, \quad \tau_{1}<\rho\left(\tau_{4}\right) \leq \sigma(b) \tag{3.30}
\end{gather*}
$$

such that
(C6) the functions $\left[\sigma^{2}(b)-\sigma(s)\right] \mu(s)$ and $[\sigma(x)-a] \mu(x)$ are nonzero for some $s, x \in\left[\tau_{2}, \rho\left(\tau_{3}\right)\right) ;$
(C7) for each $t \in\left[\tau_{1}, \tau_{4}\right]$, the function $G(t, s) \nu(s)$ is nonzero for some $s \in$ $\left[\tau_{1}, \rho\left(\tau_{4}\right)\right)$.
Suppose that there exist numbers $w_{i}, 2 \leq i \leq 5$ with

$$
0<w_{2}<w_{3}<\frac{w_{3}}{k c} \leq w_{4} \leq w_{5} \quad \text { and } \quad w_{2}>\frac{d_{3}}{q} w_{5}
$$

such that the following hold:
(P) $f(x)<\frac{1}{d_{2}}\left(w_{2}-\frac{w_{5} d_{3}}{q}\right)$ for $0 \leq x \leq w_{2}$;
(Q) $f(x) \leq \frac{w_{5}}{q}$ for $0 \leq x \leq w_{5}$;
(R) $f(x)>\frac{w_{3}}{d_{1}}$ for $w_{3} \leq x \leq w_{4}$.

Then, the boundary value problem (1.1) has (at least) three positive solutions $y^{1}, y^{2}, y^{3} \in \bar{C}\left(w_{5}\right)$ such that

$$
\begin{gather*}
\max _{t \in\left[\tau_{1}, \tau_{4}\right]} y^{1}(t)<w_{2} ; \quad y^{2}(t)>w_{3}, t \in\left[\tau_{2}, \tau_{3}\right] \\
\max _{t \in\left[\tau_{1}, \tau_{4}\right]} y^{3}(t)>w_{2} \text { and } \min _{t \in\left[\tau_{2}, \tau_{3}\right]} y^{3}(t)=\min \left\{y^{3}\left(\tau_{2}\right), y^{3}\left(\tau_{3}\right)\right\}<w_{3} . \tag{3.31}
\end{gather*}
$$

Proof. In the context of Theorem 2.2, we define the following functionals on C :

$$
\begin{align*}
& \gamma(y)=\|y\| \\
& \psi(y)=\min _{t \in[\xi, w]} y(t)=\min \{y(\xi), y(w)\} \\
& \beta(y)=\Theta(y)=\max _{t \in\left[\tau_{1}, \tau_{4}\right]} y(t) \tag{3.32}\\
& \alpha(y)=\min _{t \in\left[\tau_{2}, \tau_{3}\right]} y(t)=\min \left\{y\left(\tau_{2}\right), y\left(\tau_{3}\right)\right\}
\end{align*}
$$

where we have used the idea of (3.12) in the definitions of ψ and α.
First, we shall show that the operator S maps $\bar{P}\left(\gamma, w_{5}\right)$ into $\bar{P}\left(\gamma, w_{5}\right)$. Let $x \in \bar{P}\left(\gamma, w_{5}\right)=\bar{C}\left(w_{5}\right)$. Then, we have $0 \leq x \leq w_{5}$. Together with (Q) and Lemma 3.5, we get $S\left(\bar{C}\left(w_{5}\right)\right) \subseteq \bar{C}\left(w_{5}\right)$, or equivalently $S: \bar{P}\left(\gamma, w_{5}\right) \rightarrow \bar{P}\left(\gamma, w_{5}\right)$.

Next, we shall prove that condition (a) of Theorem 2.2 is fulfilled. It is noted that

$$
y^{*}(t)=\frac{w_{3}+w_{4}}{2} \in\left\{\begin{array}{l|l}
y \in P\left(\gamma, \Theta, \alpha, w_{3}, w_{4}, w_{5}\right) & \alpha(y)>w_{3}
\end{array}\right\}
$$

and hence $\left\{y \in P\left(\gamma, \Theta, \alpha, w_{3}, w_{4}, w_{5}\right) \mid \alpha(y)>w_{3}\right\} \neq \emptyset$. Now, let $y \in P(\gamma, \Theta, \alpha, \mathrm{~m}$ $\left.w_{3}, w_{4}, w_{5}\right)$. Then, by definition we have $\alpha(y) \geq w_{3}$ and $\Theta(y) \leq w_{4}$ which imply $w_{3} \leq y(s) \leq w_{4}$ for $s \in\left[\tau_{2}, \tau_{3}\right]$. Thus, we have

$$
\begin{equation*}
w_{3} \leq y(\sigma(s)) \leq w_{4}, s \in\left[\tau_{2}, \rho\left(\tau_{3}\right)\right] \tag{3.33}
\end{equation*}
$$

Noting (3.33), we apply (3.16), (C6), (R) and (3.18) to obtain

$$
\begin{aligned}
\alpha(S y)= & \min \left\{S y\left(\tau_{2}\right), S y\left(\tau_{3}\right)\right\} \\
\geq & \min \left\{\int_{a}^{\sigma(b)} G\left(\tau_{2}, s\right) \mu(s) f(y(\sigma(s))) \Delta s, \int_{a}^{\sigma(b)} G\left(\tau_{3}, s\right) \mu(s) f(y(\sigma(s))) \Delta s\right\} \\
\geq & \min \left\{\int_{\tau_{2}}^{\rho\left(\tau_{3}\right)} G\left(\tau_{2}, s\right) \mu(s) f(y(\sigma(s))) \Delta s, \int_{\tau_{2}}^{\rho\left(\tau_{3}\right)} G\left(\tau_{3}, s\right) \mu(s) f(y(\sigma(s))) \Delta s\right\} \\
= & \min \left\{\int_{\tau_{2}}^{\rho\left(\tau_{3}\right)} \frac{\left(\tau_{2}-a\right)\left(\sigma^{2}(b)-\sigma(s)\right) \mu(s)}{\sigma^{2}(b)-a} f(y(\sigma(s))) \Delta s,\right] \\
> & \min \left\{\int_{\tau_{2}}^{\rho\left(\tau_{3}\right)} \frac{(\sigma(s)-a)\left(\sigma^{2}(b)-\tau_{3}\right) \mu(s)}{\sigma^{2}(b)-a} f(y(\sigma(s))) \Delta s\right\} \\
& \left.\int_{\tau_{2}}^{\rho\left(\tau_{3}\right)} \frac{(\sigma(s)-a)\left(\tau_{2}(b)-\tau_{3}\right) \mu(s)\left(\sigma^{2}(b)-\sigma(s)\right) \mu(s)}{\sigma^{2}(b)-a} \frac{w_{3}}{\sigma_{1}(b)-a} \Delta s\right\} \\
= & d_{1} \frac{w_{3}}{d_{1}}=w_{1}
\end{aligned}
$$

Hence, $\alpha(S y)>w_{3}$ for all $y \in P\left(\gamma, \Theta, \alpha, w_{3}, w_{4}, w_{5}\right)$.
We shall now verify that condition (b) of Theorem 2.2 is satisfied. Let w_{1} be such that $0<w_{1}<w_{2}$. We note that

$$
y^{*}(t)=\frac{w_{1}+w_{2}}{2} \in\left\{y \in Q\left(\gamma, \beta, \psi, w_{1}, w_{2}, w_{5}\right) \mid \beta(y)<w_{2}\right\}
$$

Hence, $\left\{y \in Q\left(\gamma, \beta, \psi, w_{1}, w_{2}, w_{5}\right) \mid \beta(y)<w_{2}\right\} \neq \emptyset$. Next, let $y \in Q\left(\gamma, \beta, \psi, w_{1}, w_{2}, w_{5}\right)$. Then, we have $\beta(y) \leq w_{2}$ and $\gamma(y) \leq w_{5}$ which provide

$$
\begin{align*}
& 0 \leq y(s) \leq w_{2}, s \in\left[\tau_{1}, \tau_{4}\right] \quad \text { or } \quad 0 \leq y(\sigma(s)) \leq w_{2}, s \in\left[\tau_{1}, \rho\left(\tau_{4}\right)\right] \tag{3.34}\\
& 0 \leq y(s) \leq w_{5}, s \in\left[a, \sigma^{2}(b)\right] \quad \text { or } 0 \leq y(\sigma(s)) \leq w_{5}, s \in[a, \sigma(b)]
\end{align*}
$$

Noting (3.16), (3.34), (C7), (P), (Q) and (3.18), we find

$$
\begin{aligned}
\beta(S y)= & \max _{t \in\left[\tau_{1}, \tau_{4}\right]} S y(t) \\
\leq & \max _{t \in\left[\tau_{1}, \tau_{4}\right]} \int_{a}^{\sigma(b)} G(t, s) \nu(s) f(y(\sigma(s))) \Delta s \\
= & \max _{t \in\left[\tau_{1}, \tau_{4}\right]}\left[\int_{a}^{\tau_{1}} G(t, s) \nu(s) f(y(\sigma(s))) \Delta s+\int_{\rho\left(\tau_{4}\right)}^{\sigma(b)} G(t, s) \nu(s) f(y(\sigma(s))) \Delta s\right. \\
& \left.+\int_{\tau_{1}}^{\rho\left(\tau_{4}\right)} G(t, s) \nu(s) f(y(\sigma(s))) \Delta s\right] \\
< & \max _{t \in\left[\tau_{1}, \tau_{4}\right]}\left[\int_{a}^{\tau_{1}} G(t, s) \nu(s) f(y(\sigma(s))) \Delta s+\int_{\rho\left(\tau_{4}\right)}^{\sigma(b)} G(t, s) \nu(s) \Delta s\right] \frac{w_{5}}{q} \\
& +\max _{t \in\left[\tau_{1}, \tau_{4}\right]}\left[\int_{\tau_{1}}^{\rho\left(\tau_{4}\right)} G(t, s) \nu(s) \Delta s\right] \frac{1}{d_{2}}\left(w_{2}-\frac{w_{5} d_{3}}{q}\right) \\
= & d_{3} \frac{w_{5}}{q}+d_{2} \frac{1}{d_{2}}\left(w_{2}-\frac{w_{5} d_{3}}{q}\right)=w_{2} .
\end{aligned}
$$

Therefore, $\beta(S y)<w_{2}$ for all $y \in Q\left(\gamma, \beta, \psi, w_{1}, w_{2}, w_{5}\right)$.
Next, we shall show that condition (c) of Theorem 2.2 is met. Using Lemma 3.1(a), we observe that for $y \in C$,

$$
\begin{align*}
\Theta(S y) & =\max _{t \in\left[\tau_{1}, \tau_{4}\right]} S y(t) \\
& \leq \max _{t \in\left[\tau_{1}, \tau_{4}\right]} \int_{a}^{\sigma(b)} G(t, s) \nu(s) f(y(\sigma(s))) \Delta s \tag{3.35}\\
& \leq \int_{a}^{\sigma(b)} G(\sigma(s), s) \nu(s) f(y(\sigma(s))) \Delta s .
\end{align*}
$$

Moreover, (C3) and Lemma 3.1(b) yield for $y \in C$,

$$
\begin{align*}
\alpha(S y) & =\min _{t \in\left[\tau_{2}, \tau_{3}\right]} S y(t) \\
& \geq \min _{t \in\left[\tau_{2}, \tau_{3}\right]} \int_{a}^{\sigma(b)} G(t, s) \mu(s) f(y(\sigma(s))) \Delta s \tag{3.36}\\
& \geq \int_{a}^{\sigma(b)} k G(\sigma(s), s) c \nu(s) f(y(\sigma(s))) \Delta s .
\end{align*}
$$

A combination of (3.35) and (3.36) gives

$$
\begin{equation*}
\alpha(S y) \geq k c \Theta(S y), y \in C \tag{3.37}
\end{equation*}
$$

Let $y \in P\left(\gamma, \alpha, w_{3}, w_{5}\right)$ with $\Theta(S y)>w_{4}$. Then, it follows from (3.37) that

$$
\alpha(S y) \geq k c \Theta(S y)>k c w_{4} \geq k c \frac{w_{3}}{k c}=w_{3}
$$

Thus, $\alpha(S y)>w_{3}$ for all $y \in P\left(\gamma, \alpha, w_{3}, w_{5}\right)$ with $\Theta(S y)>w_{4}$.
Finally, we shall prove that condition (d) of Theorem 2.2 is fulfilled. Let $y \in Q\left(\gamma, \beta, w_{2}, w_{5}\right)$ with $\psi(S y)<w_{1}$. Then, we have $\beta(y) \leq w_{2}$ and $\gamma(y) \leq w_{5}$ which give (3.34). Using (3.16), (3.34), (C7), (P), (Q) and (3.18), we get as in an earlier part $\beta(S y)<w_{2}$ for all $y \in Q\left(\gamma, \beta, w_{2}, w_{5}\right)$ with $\psi(S y)<w_{1}$.

It now follows from Theorem 2.2 that the boundary value problem (1.1) has (at least) three positive solutions $y^{1}, y^{2}, y^{3} \in \bar{P}\left(\gamma, w_{5}\right)=\bar{C}\left(w_{5}\right)$ satisfying (2.2). It is clear that (2.2) reduces to (3.31) immediately.

Consider the special case when

$$
\tau_{1}=a, \quad \tau_{2}=\xi, \quad \tau_{3}=w \quad \text { and } \quad \tau_{4}=\sigma^{2}(b)
$$

Then, it is clear that

$$
\begin{equation*}
d_{1}=r, \quad d_{2}=q, \quad d_{3}=0 \tag{3.38}
\end{equation*}
$$

In this case Theorem 3.2 yields the following corollary.

Corollary 3.1. Let $(C 1)-(C 3)$ hold, and assume
(C6)' the functions $\left[\sigma^{2}(b)-\sigma(s)\right] \mu(s)$ and $[\sigma(x)-a] \mu(x)$ are nonzero for some $s, x \in[\xi, \rho(w)) ;$
$(C 7)^{\prime}$ for each $t \in\left[a, \sigma^{2}(b)\right]$, the function $G(t, s) \nu(s)$ is nonzero for some $s \in$ $[a, \sigma(b))$.

Suppose that there exist numbers $w_{i}, 2 \leq i \leq 5$ with

$$
0<w_{2}<w_{3}<\frac{w_{3}}{k c} \leq w_{4} \leq w_{5}
$$

such that the following hold:
(P) $f(x)<\frac{w_{2}}{q}$ for $0 \leq x \leq w_{2}$;
(Q) $f(x) \leq \frac{w_{5}}{q}$ for $0 \leq x \leq w_{5}$;
(R) $f(x)>\frac{w_{3}}{r}$ for $w_{3} \leq x \leq w_{4}$.

Then, the boundary value problem (1.1) has (at least) three positive solutions $y^{1}, y^{2}, y^{3} \in \bar{C}\left(w_{5}\right)$ such that

$$
\begin{aligned}
\left\|y^{1}\right\|<w_{2} ; \quad y^{2}(t) & >w_{3}, t \in[\xi, w] ; \\
\left\|y^{3}\right\|>w_{2} \quad \text { and } \min _{t \in[\xi, w]} y^{3}(t) & =\min \left\{y^{3}(\xi), y^{3}(w)\right\}<w_{3} .
\end{aligned}
$$

Remark 3.2. Corollary 3.1 is actually Theorem 3.1. Hence, Theorem 3.2 is more general than Theorem 3.1.

Another application of Theorem 2.2 yields the next result.
Theorem 3.3. Let (C1)-(C3) hold. Assume there exist numbers $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4} \in$ $\left[a, \sigma^{2}(b)\right]$ with

$$
\begin{equation*}
\xi \leq \tau_{1} \leq \tau_{2}<\rho\left(\tau_{3}\right) \leq \tau_{4} \leq w \quad \text { and } \quad \tau_{1}<\rho\left(\tau_{4}\right) \leq \sigma(b) \tag{3.39}
\end{equation*}
$$

such that (C6) and (C7) hold. Suppose that there exist numbers $w_{i}, 1 \leq i \leq 5$ with

$$
0<w_{1} \leq w_{2} \cdot k c<w_{2}<w_{3}<\frac{w_{3}}{k c} \leq w_{4} \leq w_{5} \quad \text { and } \quad w_{2}>\frac{d_{3}}{q} w_{5}
$$

such that the following hold:
(P) $f(x)<\frac{1}{d_{2}}\left(w_{2}-\frac{w_{5} d_{3}}{q}\right)$ for $w_{1} \leq x \leq w_{2}$;
(Q) $f(x) \leq \frac{w_{5}}{q}$ for $0 \leq x \leq w_{5}$;
(R) $f(x)>\frac{w_{3}}{d_{1}}$ for $w_{3} \leq x \leq w_{4}$.

Then, the boundary value problem (1.1) has (at least) three positive solutions $y^{1}, y^{2}, y^{3} \in \bar{C}\left(w_{5}\right)$ such that

$$
\begin{gather*}
\max _{t \in\left[\tau_{1}, \tau_{4}\right]} y^{1}(t)<w_{2} ; \quad y^{2}(t)>w_{3}, t \in\left[\tau_{2}, \tau_{3}\right] ; \\
\max _{t \in\left[\tau_{1}, \tau_{4}\right]} y^{3}(t)>w_{2} \quad \text { and } \min _{t \in\left[\tau_{2}, \tau_{3}\right]} y^{3}(t)=\min \left\{y^{3}\left(\tau_{2}\right), y^{3}\left(\tau_{3}\right)\right\}<w_{3} . \tag{3.40}
\end{gather*}
$$

Proof. In the context of Theorem 2.2, we define the following functionals on C :

$$
\begin{align*}
& \gamma(y)=\|y\|, \\
& \psi(y)=\min _{t \in\left[\tau_{1}, \tau_{4}\right]} y(t)=\min \left\{y\left(\tau_{1}\right), y\left(\tau_{4}\right)\right\}, \\
& \beta(y)=\max _{t \in\left[\tau_{1}, \tau_{4}\right]} y(t), \tag{3.41}\\
& \alpha(y)=\min _{t \in\left[\tau_{2}, \tau_{3}\right]} y(t)=\min \left\{y\left(\tau_{2}\right), y\left(\tau_{3}\right)\right\}, \\
& \Theta(y)=\max _{t \in\left[\tau_{2}, \tau_{3}\right]} y(t) .
\end{align*}
$$

First, using (Q) it can be shown (as in the proof of Theorem 3.2) that S : $\bar{P}\left(\gamma, w_{5}\right) \rightarrow \bar{P}\left(\gamma, w_{5}\right)$.

Next, using (R), (C6) and a similar argument as in the proof of Theorem 3.2, we can verify that condition (a) of Theorem 2.2 is fulfilled.

Now, we shall check that condition (b) of Theorem 2.2 is satisfied. It is clear that

$$
y^{*}(t)=\frac{w_{1}+w_{2}}{2} \in\left\{y \in Q\left(\gamma, \beta, \psi, w_{1}, w_{2}, w_{5}\right) \mid \beta(y)<w_{2}\right\} \neq \emptyset .
$$

For $y \in Q\left(\gamma, \beta, \psi, w_{1}, w_{2}, w_{5}\right)$, we have $\psi(y) \geq w_{1}, \beta(y) \leq w_{2}$ and $\gamma(y) \leq w_{5}$ which imply

$$
\begin{align*}
& w_{1} \leq y(s) \leq w_{2}, s \in\left[\tau_{1}, \tau_{4}\right] \quad \text { or } \quad w_{1} \leq y(\sigma(s)) \leq w_{2}, s \in\left[\tau_{1}, \rho\left(\tau_{4}\right)\right] ; \tag{3.42}\\
& 0 \leq y(s) \leq w_{5}, s \in\left[a, \sigma^{2}(b)\right] \text { or } 0 \leq y(\sigma(s)) \leq w_{5}, s \in[a, \sigma(b)] .
\end{align*}
$$

Using (3.16), (3.42), (C7), (P), (Q) and (3.18), we find, as in the proof of Theorem 3.2, that $\beta(S y)<w_{2}$ for all $y \in Q\left(\gamma, \beta, \psi, w_{1}, w_{2}, w_{5}\right)$.

Next, we shall show that condition (c) of Theorem 2.2 is met. We observe that, by (3.16) and Lemma 3.1(a), for $y \in C$,

$$
\begin{align*}
\Theta(S y) & \leq \max _{t \in\left[\tau_{2}, \tau_{3}\right]} \int_{a}^{\sigma(b)} G(t, s) \nu(s) f(y(\sigma(s))) \Delta s \tag{3.43}\\
& \leq \int_{a}^{\sigma(b)} G(\sigma(s), s) \nu(s) f(y(\sigma(s))) \Delta s
\end{align*}
$$

Moreover, using (3.16), (C3) and Lemma 3.1(c), we obtain (3.36) for $y \in C$. A combination of (3.36) and (3.43) yields (3.37). Following similar argument as in the proof of Theorem 3.2, we get $\alpha(S y)>w_{3}$ for all $y \in P\left(\gamma, \alpha, w_{3}, w_{5}\right)$ with $\Theta(S y)>w_{4}$.

Finally, we shall prove that condition (d) of Theorem 2.2 is fulfilled. By (3.16) and Lemma 3.1(a), we see that for $y \in C$,

$$
\begin{equation*}
\beta(S y)=\max _{t \in\left[\tau_{1}, \tau_{4}\right]} S y(t) \leq \int_{a}^{\sigma(b)} G(\sigma(s), s) \nu(s) f(y(\sigma(s))) \Delta s \tag{3.44}
\end{equation*}
$$

On the other hand, it follows from (3.16), (C3) and Lemma 3.1(b) that for $y \in C$,

$$
\begin{align*}
\psi(S y) & \geq \min _{t \in\left[\tau_{1}, \tau_{4}\right]} \int_{a}^{\sigma(b)} G(t, s) \mu(s) f(y(\sigma(s))) \Delta s \tag{3.45}\\
& \geq \int_{a}^{\sigma(b)} k G(\sigma(s), s) c \nu(s) f(y(\sigma(s))) \Delta s
\end{align*}
$$

A combination of (3.44) and (3.45) gives

$$
\begin{equation*}
\psi(S y) \geq k c \beta(S y), y \in C \tag{3.46}
\end{equation*}
$$

Let $y \in Q\left(\gamma, \beta, w_{2}, w_{5}\right)$ with $\psi(S y)<w_{1}$. Then, (3.46) leads to

$$
\beta(S y) \leq \frac{1}{k c} \psi(S y)<\frac{1}{k c} w_{1} \leq \frac{1}{k c} w_{2} \cdot k c=w_{2}
$$

Thus, $\beta(S y)<w_{2}$ for all $y \in Q\left(\gamma, \beta, w_{2}, w_{5}\right)$ with $\psi(S y)<w_{1}$.
It now follows from Theorem 2.2 that the boundary value problem (1.1) has (at least) three positive solutions $y^{1}, y^{2}, y^{3} \in \bar{P}\left(\gamma, w_{5}\right)=\bar{C}\left(w_{5}\right)$ satisfying (2.2). Furthermore, (2.2) reduces to (3.40) immediately.

4. Examples

In this section we shall present some examples to illustrate the usefulness of the results obtained. Throughout, we consider the time scale

$$
\boldsymbol{T}=\left\{2^{k} \mid k \in \mathbf{Z}\right\} \cup\{0\}
$$

Example 4.1. Consider the boundary value problem (1.1) with $a=2, b=$ $2^{9}=512$ and the nonlinear term

$$
P(t, x)=f(x)= \begin{cases}\frac{w_{1}}{2 q}, & 0 \leq x \leq w_{1} \tag{4.1}\\ l(x), & w_{1} \leq x \leq w_{2} \\ \frac{1}{2}\left(\frac{d}{q}+\frac{w_{2}}{r}\right), & x \geq w_{2}\end{cases}
$$

where $l(x)$ satisfies

$$
\begin{equation*}
l^{\prime \prime}(x)=0, \quad l\left(w_{1}\right)=\frac{w_{1}}{2 q}, \quad l\left(w_{2}\right)=\frac{1}{2}\left(\frac{d}{q}+\frac{w_{2}}{r}\right) \tag{4.2}
\end{equation*}
$$

and $w_{i}{ }^{\prime} s, d, q$ and r are as in the context of Theorem 3.1.
Let $\delta=\frac{1}{16}$. Then, it is easy to see that $\xi=256, w=1024$ and $k=\frac{1}{16}$. Taking the functions $\mu=\nu \equiv 1$ (this implies $c=1$), by direct computation we get

$$
\begin{equation*}
q=\frac{1046528}{3}=348842.67 \quad \text { and } \quad r=\frac{16646144}{341}=48815.67 \tag{4.3}
\end{equation*}
$$

We assume the w_{i} 's and d are numbers satisfying the relation

$$
\begin{equation*}
0<w_{1}<w_{2}<\frac{w_{2}}{k c}=16 w_{2} \leq w_{3} \leq d \tag{4.4}
\end{equation*}
$$

We shall check the conditions of Theorem 3.1. First, it is clear that (C1)-(C5) are fulfilled. Next, condition (P) is obviously satisfied. In view of (4.3) and (4.4), we have

$$
\begin{equation*}
\frac{w_{2}}{r}<\frac{d}{q} \quad\left(\text { or equivalently } d>\frac{q}{r} w_{2}=7.15 w_{2}\right) \tag{4.5}
\end{equation*}
$$

Hence, we find for $0 \leq x \leq d$,

$$
f(x) \leq \max \left\{l\left(w_{1}\right), l\left(w_{2}\right)\right\}=l\left(w_{2}\right)=\frac{1}{2}\left(\frac{d}{q}+\frac{w_{2}}{r}\right)<\frac{1}{2}\left(\frac{d}{q}+\frac{d}{q}\right)=\frac{d}{q}
$$

Thus, condition (Q2) is met. Finally, (R) is satisfied since for $w_{2} \leq x \leq w_{3}$, we have, noting (4.5),

$$
f(x)=\frac{1}{2}\left(\frac{d}{q}+\frac{w_{2}}{r}\right)>\frac{1}{2}\left(\frac{w_{2}}{r}+\frac{w_{2}}{r}\right)=\frac{w_{2}}{r}
$$

By Theorem 3.1, we conclude that the boundary value problem (1.1) with $a=$ $2, b=512$ and (4.1)-(4.4) has (at least) three positive solutions $y^{1}, y^{2}, y^{3} \in C$ such that

$$
\begin{gather*}
\left\|y^{1}\right\|<w_{1} ; \quad y^{2}(t)>w_{2}, t \in[256,1024] \\
\left\|y^{3}\right\|>w_{1} \quad \text { and } \quad \min _{t \in[256,1024]} y^{3}(t)=\min \left\{y^{3}(256), y^{3}(1024)\right\}<w_{2} \tag{4.6}
\end{gather*}
$$

To illustrate further, let us fix

$$
\begin{equation*}
w_{1}=1, \quad w_{2}=2 \quad \text { and } \quad w_{3}=d=32 \tag{4.7}
\end{equation*}
$$

Clearly, (4.4) is fulfilled. We find that the boundary value problem (1.1) with $a=2, b=512$, (4.7), (4.1)-(4.3) indeed has three positive solutions $y^{1}, y^{2}, y^{3} \in C$ that satisfy (4.6). In fact,

$$
\begin{gather*}
\left\|y^{1}\right\|=y^{1}(1024)=0.5<w_{1}=1 ; \quad y^{2}(t)>w_{2}=2, t \in[256,1024] ; \\
\left\|y^{3}\right\|=y^{3}(512)=1.1158>w_{1}=1 \tag{4.8}\\
\text { and } \quad \min _{t \in[256,1024]} y^{3}(t)=y^{3}(256)=0.5868<w_{2}=2
\end{gather*}
$$

The solutions are tabulated as follows:

t	4	8	16	32	64	128	256	512	1024
$y^{1}(t)$	0.0020	0.0058	0.0136	0.0289	0.0588	0.1156	0.2175	0.3743	0.5000
$y^{2}(t)$	0.0872	0.2616	0.6102	1.3074	2.6908	5.3218	10.0401	17.3026	23.1308
$y^{3}(t)$	0.0049	0.0146	0.0339	0.0725	0.1489	0.2988	0.5868	1.1158	1.0005

Example 4.2. Consider the boundary value problem (1.1) with $a=2, b=$ $2^{9}=512$ and the nonlinear term

$$
P(t, x)=f(x)= \begin{cases}\frac{1}{2 d_{2}}\left(w_{2}-\frac{w_{5} d_{3}}{q}\right), & 0 \leq x \leq w_{2} \tag{4.9}\\ l(x), & w_{2} \leq x \leq w_{3} \\ \frac{1}{2}\left(\frac{w_{3}}{r}+\frac{w_{3}}{d_{1}}\right), & x \geq w_{3}\end{cases}
$$

where $l(x)$ satisfies

$$
\begin{equation*}
l^{\prime \prime}(x)=0, \quad l\left(w_{2}\right)=\frac{1}{2 d_{2}}\left(w_{2}-\frac{w_{2} d_{3}}{q}\right), \quad l\left(w_{3}\right)=\frac{1}{2}\left(\frac{w_{3}}{r}+\frac{w_{3}}{d_{1}}\right) \tag{4.10}
\end{equation*}
$$

and w_{i} 's, d_{i} 's, q and r are as in the context of Theorem 3.2.
Fix $\delta=\frac{1}{17}$. Then, it follows that $\xi=128, w=1024$ and $k=\frac{1}{17}$. Taking the functions $\mu=\nu \equiv 1$ (this implies $c=1$), and $\tau_{1}=64, \tau_{2}=256, \tau_{3}=1024$ and $\tau_{4}=2048$, by direct computation we have

$$
\begin{array}{lll}
q=348842.67, & r=38341.44, \quad d_{1}=48815.67, \\
d_{2}=78196.36, & d_{3}=2525.09 . & \tag{4.11}
\end{array}
$$

We assume the w_{i} 's are numbers satisfying the relation

$$
\begin{equation*}
0<w_{2}<w_{3}<\frac{w_{3}}{k c}=17 w_{3} \leq w_{4} \leq w_{5}<\frac{q}{d_{3}} w_{2}=138.15 w_{2} . \tag{4.12}
\end{equation*}
$$

We shall check the conditions of Theorem 3.2. Clearly, (C1)-(C3), (C6) and (C7) are fulfilled. Next, condition (P) is obviously satisfied. From (4.11) and (4.12), we note that

$$
\begin{equation*}
r<d_{1}<d_{2} \quad \text { and } \quad \frac{w_{3}}{r}<\frac{w_{5}}{q}\left(\text { equivalent to } w_{5}>\frac{q}{r} w_{3}=9.1 w_{3}\right) \tag{4.13}
\end{equation*}
$$

Thus, we find for $0 \leq x \leq w_{5}$,

$$
f(x) \leq \max \left\{l\left(w_{2}\right), l\left(w_{3}\right)\right\}=l\left(w_{3}\right)=\frac{1}{2}\left(\frac{w_{3}}{r}+\frac{w_{3}}{d_{1}}\right)<\frac{1}{2}\left(\frac{w_{3}}{r}+\frac{w_{3}}{r}\right)=\frac{w_{3}}{r}<\frac{w_{5}}{q} .
$$

Hence, condition (Q) is met. Finally, (R) is satisfied since for $w_{3} \leq x \leq w_{4}$ we have, in view of (4.13),

$$
f(x)=\frac{1}{2}\left(\frac{w_{3}}{r}+\frac{w_{3}}{d_{1}}\right)>\frac{1}{2}\left(\frac{w_{3}}{d_{1}}+\frac{w_{3}}{d_{1}}\right)=\frac{w_{3}}{d_{1}} .
$$

It follows from Theorem 3.2 that the boundary value problem (1.1) with $a=$ $2, b=512$ and (4.9)-(4.12) has (at least) three positive solutions $y^{1}, y^{2}, y^{3} \in \bar{C}\left(w_{5}\right)$ such that

$$
\begin{gather*}
\max _{t \in[64,2048]} y^{1}(t)<w_{2} ; y^{2}(t)>w_{3}, t \in[256,1024] ; \\
\max _{t \in[64,2048]} y^{3}(t)>w_{2} \text { and } \min _{t \in[256,1024]^{3}} y^{3}(t)=\min \left\{y^{3}(256), y^{3}(1024)\right\}<w_{3} . \tag{4.14}
\end{gather*}
$$

As an example, fix
(4.15) $w_{2}=1, \quad w_{3}=2, \quad w_{5}=128$ and any w_{4} such that $17 w_{3} \leq w_{4} \leq w_{5}$
so that (4.12) holds. We find that the boundary value problem (1.1) with $a=2, b=$ 512, (4.9)-(4.11), (4.15) in fact has three positive solutions $y^{1}, y^{2}, y^{3} \in \bar{C}(128)$ satisfying (4.14). Indeed,

$$
\begin{align*}
& \max _{t \in[64,2048]} y^{1}(t)=y^{1}(1024)=0.1639<w_{2}=1 ; \\
& y^{2}(t)>w_{3}=2, t \in[256,1024] ; \\
& \max _{t \in[64,2048]} y^{3}(t)=y^{3}(1024)=1.0755>w_{2}=1 \text { and } \tag{4.16}\\
& \min _{t \in[256,1024]} y^{3}(t)=y^{3}(256)=0.2978<w_{3}=2 .
\end{align*}
$$

The solutions are tabulated as follows:

t	4	8	16	32	64	128	256	512	1024
$y^{1}(t)$	0.0006	0.0019	0.0045	0.0095	0.0193	0.0379	0.0713	0.1227	0.1639
$y^{2}(t)$	0.0603	0.1810	0.4224	0.9050	1.87013 .7172	7.0298	12.1291	16.2242	
$y^{3}(t)$	0.0024	0.0073	0.0169	0.0362	0.0746	0.1503	0.2978	0.5776	1.0755

Remark 4.1. In Example 4.2, noting (4.13) we find for $w_{3} \leq x \leq w_{4}$,

$$
f(x)=\frac{1}{2}\left(\frac{w_{3}}{r}+\frac{w_{3}}{d_{1}}\right)<\frac{1}{2}\left(\frac{w_{3}}{r}+\frac{w_{3}}{r}\right)=\frac{w_{3}}{r} .
$$

Thus, condition (R) of Corollary 3.1 is not satisfied. Recalling that Corollary 3.1 is actually Theorem 3.1, Example 4.2 illustrates the case when Theorem 3.2 is applicable but not Theorem 3.1. Hence, this example shows that Theorem 3.2 is indeed more general than Theorem 3.1.

References

1. R. P. Agarwal and D. O'Regan, Nonlinear boundary value problems on time scales, Nonlinear Anal., 44 (2001), 527-535.
2. R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer, Dordrecht, 1999.
3. R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer, Dordrecht, 1997.
4. D. Anderson, R. I. Avery, J. M. Davis, J. Henderson and W. Yin, Positive solutions of boundary value problems, in Advances in Dynamic Equations on Time Scales, 189-249, Birkhäuser Boston, Boston, 2003.
5. R. I. Avery, A generalization of the Leggett-Williams fixed point theorem, $M S R$ Hot-Line, 2 (1998), 9-14.
6. R. I. Avery and A. C. Peterson, Multiple positive solutions of a discrete second order conjugate problem, PanAmer. Math. J., 8 (1998), 1-12.
7. M. Bohner and A. C. Peterson, Dynamic Equations on Time Scales. An Introduction with Applications, Birkhäuser Boston, Boston, 2001.
8. C. J. Chyan and J. Henderson, Multiple solutions for $2 m$ th-order Sturm-Liouville boundary value problems, Comput. Math. Appl., 40 (2000), 231-237.
9. C. J. Chyan and J. Henderson, Eigenvalue problems for nonlinear differential equations on a measure chain, J. Math. Anal. Appl., 245 (2000), 547-559.
10. C. J. Chyan and J. Henderson, Twin solutions of boundary value problems for differential equations on measure chains, J. Comput. Appl. Math., 141 (2002), 123-131.
11. C. J. Chyan, J. Henderson and H. C. Lo, Positive solutions in an annulus for nonlinear differential equations on a measure chain, Tamkang J. Math., 30 (1999), 231-240.
12. J. M. Davis, P. W. Eloe and J. Henderson, Triple positive solutions and dependence on higher order derivatives, J. Math. Anal. Appl., 237 (1999), 710-720.
13. P. W. Eloe and J. Henderson, Positive solutions for $(n-1,1)$ conjugate boundary value problems, Nonlinear Anal., 28 (1997), 1669-1680.
14. L. H. Erbe and A. C. Peterson, Positive solutions for a nonlinear differential equation on a measure chain, Math. Comput. Modelling, 32 (2000), 571-585.
15. L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120 (1994), 743-748.
16. R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688.
17. W. Lian, F. Wong and C. Yeh, On the existence of positive solutions of nonlinear second order differential equations, Proc. Amer. Math. Soc., 124 (1996), 1117-1126.
18. P. J. Y. Wong, Positive solutions of difference equations with two-point right focal boundary conditions, J. Math. Anal. Appl., 224 (1998), 34-58.
19. P. J. Y. Wong, Triple positive solutions of conjugate boundary value problems, Comput. Math. Appl., 36 (1998), 19-35.
20. J. Henderson, Multiple solutions for $2 m$ th order Sturm-Liouville boundary value problems on a measure chain, J. Differ. Equations Appl., 6 (2000), 417-429.
21. J. Henderson, Double solutions of impulsive dynamic boundary value problems on a time scale, J. Differ. Equations Appl., 8 (2002), 345-356.
[^1]
[^0]: Received May 4, 2005, accepted September 8, 2005.
 Communicated by H. M. Srivastava.
 2000 Mathematics Subject Classification: 34B15, 34B18, 39A10.
 Key words and phrases: Time scale, Fixed point theorems, Boundary value problems.

[^1]: Chuan Jen Chyan
 Department of Mathematics,
 Tamkang University,
 Taipei 251, Taiwan.
 E-mail: chuanjen@mail.tku.edu.tw
 Patricia J. Y. Wong
 School of Electrical and Electronic Engineering,
 Nanyang Technological University,
 50 Nanyang Avenue, Singapore 639798,
 Singapore
 E-mail: ejywong@ntu.edu.sg

