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A PRODUCT OF DOUBLING MEASURES ON THE REAL LINE

J. M. Aldaz

Abstract. A product of doubling measures on the real line can be defined in
such a way that another doubling measure on the line is obtained. It follows
that doubling measures on the line form a semiring.

1. INTRODUCTION AND MAIN RESULT

The main result of this note shows that suitably normalized quasisymmetric
maps on the real line can be “multiplied” so that a new quasisymmetric map is
obtained (by suitably normalized we mean that they are increasing and fix zero). In
terms of doubling measures this means that they form a semiring. Before stating
our main theorem precisely we need some definitions.

A measure on a metric space X is doubling if there exists a constant K ≥ 1
such that for every x ∈ X and every t > 0, µ(B(x, 2t)) ≤ Kµ(B(x, t)), where
B(x, t) denotes the open ball of radius t centered at x. Specializing this definition
to the real line, one can easily check that for nontrivial measures this is equivalent
to the following: µ is doubling if there exists a constant K ≥ 1 such that for every
x ∈ R and every t > 0,

1
K

≤ µ([x, x + t])
µ([x − t, x])

≤ K.

A homeomorphism f : R → R is K-quasisymmetric if

1
K

≤ f(x + t) − f(x)
f(x)− f(x − t)

≤ K,

with K, x and t as before. Additional background information on doubling measures
and quasisymmetric maps can be obtained, for instance, from [2], as well as from
several other sources.
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It is clear from the definitions that there is a close relationship between doubling
measures and quasisymmetric maps on R. Given f quasisymmetric, the measure
µf defined on intervals by µf ([a, b]) := |f(b) − f(a)| is doubling. If we assume
that f is increasing, we can avoid the use of absolute value signs. Also, from the
viewpoint of the defined measure it makes no difference if we add or substract a
constant to f , so we may assume that f(0) = 0. Thus, with respect to measures
it is enough to consider increasing quasisymmetric maps that fix the origin. Given
µ, we shall say that f is the map associated to µ if f is increasing, f(0) = 0, and
µ = µf . In the other direction, every nontrivial doubling measure µ on R defines
an increasing quasisymmetric map fµ that fixes 0, by setting fµ(x) := µ([0, x]) if
x ≥ 0, and fµ(x) := −µ([x, 0]) if x < 0.

If f, g : [0,∞) → [0,∞) are homeomorfisms, their product fg is again a
homeomorphism. Here the order structure of the line is crucial: Both f and g are
nonnegative strictly increasing functions, and hence so is fg. But in general the
product of two bijections need not be a bijection, so the possibility of defining a
product via pointwise multiplication on collections of homeomorphisms defined on
topological rings seems to be rather limited. To define such a product • on R, we set,
for increasing homeomorfisms f, g : R → R that fix the origin, f•g(x) := f(x)g(x)
if x ≥ 0, and f • g(x) := −f(x)g(x) if x < 0. If in addition f and g are
quasisymmetric, then we call f • g their quasisymmetric product, the reason being
that f • g is indeed quasisymmetric, as will be shown later. Therefore, this product
induces a product of doubling measures via µf • µg := µf•g. Note that the sum of
two doubling measures µ and ν with doubling constants K1 and K2 respectively
is again a doubling measure: (µ + ν)(B(x, 2t)) = µ(B(x, 2t)) + ν(B(x, 2t)) ≤
K1µ(B(x, t)) + K2ν(B(x, t)) ≤ (K1 + K2)(µ + ν)(B(x, t)). So we have two
operations, addition and multiplication, defined on the set of doubling measures.
Also, given a < b, it is immediate from the definitions that (µf + µg)([a, b]) =
µf+g([a, b]), so addition of measures corresponds to addition of the associated maps.

Definition 1.1. ([4], Def. 2.1 pp. 8-9) A nonempty set S with two binary
operations +, · defined on it is called a semiring if

(1) (S, +) is a commutative semigroup.
(2) (S, ·) is a semigroup.
(3) The distributive laws a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c

hold for all a, b, c ∈ S.

If in addition (S, ·) is commutative, (S, +, ·) is said to be a commutative semir-
ing.

Theorem 1.2. The set of doubling measures on the real line, with operations
defined via sums and quasisymmetric products of the associated quasisymmetric
functions, is a commutative semiring.
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A comment on terminology: Quite often a more restrictive notion of semiring is
used (cf., for instance [1], p.1): Besides the above conditions, it is usually required
that there exist an absorbing additive identity 0 (i.e. for every a, 0 = 0 · a = a · 0)
and a multiplicative identity 1. The existence of an absorbing additive identity poses
no difficulties: Just consider the constant zero measure. But it is easy to check that
no doubling measure can play the role of multiplicative identity, so if we used the
terminology from [1], in our main theorem we would have to say that the set of
doubling measures on the real line is a commutative hemiring, rather than semiring
(the only difference between semirings and hemirings as defined in [1] is precisely
whether or not of a multiplicative identity exists).

This paper was written during a stay at the University of Michigan in Ann Arbor.
I am indebted to the Department of Mathematics for its hospitality, and specially to
Prof. Juha Heinonen, for several useful conversations.

2. RESULTS AND PROOFS

Lemma 2.1. Suppose that either 0 ≤ x1 < x2 < x3 and 0 ≤ y1 < y2 < y3,
or x1 < x2 < x3 ≤ 0 and y1 < y2 < y3 ≤ 0. Let K1, K2 ≥ 1 be such that

1
K1

≤ x3 − x2

x2 − x1
≤ K1 and 1

K2
≤ y3 − y2

y2 − y1
≤ K2.

Then
1

K1K2 + K1 + K2
≤ x3y3 − x2y2

x2y2 − x1y1
≤ K1K2 + K1 + K2.

Proof. Assume first that 0 ≤ x1 < x2 < x3 and 0 ≤ y1 < y2 < y3. Note that
for i = 1, 2,

(2.1.1) xi+1yi+1−xiyi =(xi+1−xi)yi+1+(yi+1−yi)xi≥(xi+1−xi)yi+1,

(2.1.2) xi+1yi+1−xiyi =(yi+1−yi)xi+1+(xi+1−xi)yi≥(yi+1−yi)xi+1, and

(2.1.3)
xi+1yi+1−xiyi =(xi+1−xi)(yi+1−yi)+(xi+1−xi)yi+(yi+1−yi)xi

≥ (xi+1 − xi)(yi+1 − yi).

To get the upper bound we use (2.1.3), (2.1.1) and (2.1.2) as follows:

x3y3 − x2y2

x2y2 − x1y1
=

(x3 − x2)(y3 − y2) + (x3 − x2)y2 + (y3 − y2)x2

x2y2 − x1y1

=
(x3 − x2)(y3 − y2)

(x2 − x1)(y2 − y1) + (x2 − x1)y1 + (y2 − y1)x1
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+
(x3 − x2)y2

(x2 − x1)y2 + (y2 − y1)x1
+

(y3 − y2)x2

(y2 − y1)x2 + (x2 − x1)y1

≤ (x3 − x2)(y3 − y2)
(x2 − x1)(y2 − y1)

+
(x3 − x2)y2

(x2 − x1)y2
+

(y3 − y2)x2

(y2 − y1)x2

≤ K1K2 + K1 + K2.

Regarding the lower bound, we have:

x3y3 − x2y2

x2y2 − x1y1
=

(y3 − y2)x3 + (x3 − x2)y2

(y2 − y1)x2 + (x2 − x1)y1

≥ (y3 − y2)x2 + (x3 − x2)y1

(y2 − y1)x2 + (x2 − x1)y1
=

1
(y2 − y1)x2 + (x2 − x1)y1

(y3 − y2)x2 + (x3 − x2)y1

≥ 1
(y2 − y1)x2

(y3 − y2)x2
+

(x2 − x1)y1

(x3 − x2)y1

≥ 1
K1 + K2

≥ 1
K1K2 + K1 + K2

.

The case where x1 < x2 < x3 ≤ 0 and y1 < y2 < y3 ≤ 0 follows immediately by
applying the previous argument to −x1 > −x2 > −x3 ≥ 0, −y1 > −y2 > −y3 ≥
0, and simplifying.

The next theorem is essentially the same as Theorem 3.1 of [3], the difference
being that we work on the whole real line, rather than the interval [−1, M ]. The
proof can be adapted without difficulty (in fact it is simpler in our case), and
we include it here for the reader’s convenience. I am indebted to Professor Juha
Heinonen for pointing out this result to me.

Theorem 2.1. (Heinonen and Hinkkanen) Let f : R → R be an increasing
homeomorphism with f(0) = 0. If the restrictions of f to (−∞, 0] and [0,∞) are
K-quasisymmetric maps, and for every t > 0

1
K

≤ f(t)
−f(−t)

≤ K,

then f is (K + 1)3-quasisymmetric on R.

Proof. By hypothesis, it is enough to consider the case where x−t < 0 < x+t
(so x < t), and we may also assume that x > 0 (the argument for x < 0 is similar).
Since f(0) = 0, given y > 0, from

(2.2.1)
1
K

≤ f(2y)− f(y)
f(y)− f(0)

≤ K and
1
K

≤ −f(−y)
f(y)

≤ K,
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we obtain

(2.2.2)
(

1
K

+ 1
)

f(y)≤f(2y)≤(K + 1)f(y), so
K + 1

K
≤ f(2y)

f(y)
≤K+1,

and

(2.2.3)
(

1
K

+ 1
)

f(y) ≤ f(y) − f(−y) ≤ (K + 1)f(y).

We consider separately the cases 2x ≤ t and 2x > t. If 2x ≤ t, then replacing y
with t/2 in (2.2.1), with t/2 and t in (2.2.2), and with t in (2.2.3), we get

1
K(K + 1)2

≤ f(t/2)
K(K + 1)f(t)

≤ f(t) − f(t/2)
f(t) − f(−t)

≤ f(x + t) − f(x)
f(x)− f(x − t)

≤ f(2t)
−f(−t/2)

=
f(2t)
f(t)

f(t)
f(t/2)

f(t/2)
(−f(−t/2))

≤ (K + 1)2K.

And if 2x > t, again by (2.2.1), (2.2.2), and (2.2.3), we have

1
K(K + 1)2

≤ f(t/2)
K(K + 1)f(t)

≤ f(x)
K(K + 1)f(t)

≤ f(2x)− f(x)
f(t) − f(−t)

≤ f(x + t) − f(x)
f(x) − f(x − t)

≤ f(2t)
f(t/2)

=
f(2t)
f(t)

f(t)
f(t/2)

≤ (K+1)2.

We recall from the introduction the notion of quasisymmetric product.

Definition 2.3. Let f, g : R → R be increasing homeomorphisms with f(0) =
g(0) = 0. The quasisymmetric product f • g of f and g is defined via f • g(x) :=
f(x)g(x) if x ≥ 0 and f • g(x) := −f(x)g(x) if x < 0.

Corollary 2.4. If f, g : R → R are increasing homeomorphisms with f(0) =
g(0) = 0, then so is f • g. If in addition f and g are K 1 and K2-quasisymmetric
maps respectively, then f • g is (K1K2 + K1 + K2 + 1)3-quasisymmetric.

Proof. The first assertion is obvious, so we only need to verify that the hy-
potheses of Theorem 2.2 are satisfied. Let t > 0. Since

f • g(t)
−f • g(−t)

=
f(t)

(−f(−t))
g(t)

(−g(−t))
,

it follows that
1

K1K2
≤ f • g(t)

−f • g(−t)
≤ K1K2.
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To see that the restrictions of f •g to [0,∞) and to (−∞, 0] are (K1K2+K1+K2)-
quasisymmetric maps, set x1 = f(x − t), x2 = f(x), x3 = f(x + t), y1 = g(x −
t), y2 = g(x), y3 = g(x + t) and apply Lemma 2.1.

Proof of Theorem 1.2. Denote by D the set of doubling measures on R.
Clearly addition and multiplication are both associative and commutative on D, so
(D, +) and (D, •) are commutative semigroups. And distributivity follows from
the corresponding fact for functions: µf • (µg + µh) = µf • µg+h = µf•(g+h) =
µf•g+f•h = µf•g + µf•h = µf • µg + µf • µh.
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