A PRODUCT OF DOUbLING MEASURES ON THE REAL LINE

J. M. Aldaz

Abstract

A product of doubling measures on the real line can be defined in such a way that another doubling measure on the line is obtained. It follows that doubling measures on the line form a semiring.

1. Introduction and Main Result

The main result of this note shows that suitably normalized quasisymmetric maps on the real line can be "multiplied" so that a new quasisymmetric map is obtained (by suitably normalized we mean that they are increasing and fix zero). In terms of doubling measures this means that they form a semiring. Before stating our main theorem precisely we need some definitions.

A measure on a metric space X is doubling if there exists a constant $K \geq 1$ such that for every $x \in X$ and every $t>0, \mu(B(x, 2 t)) \leq K \mu(B(x, t))$, where $B(x, t)$ denotes the open ball of radius t centered at x. Specializing this definition to the real line, one can easily check that for nontrivial measures this is equivalent to the following: μ is doubling if there exists a constant $K \geq 1$ such that for every $x \in \mathbb{R}$ and every $t>0$,

$$
\frac{1}{K} \leq \frac{\mu([x, x+t])}{\mu([x-t, x])} \leq K
$$

A homeomorphism $f: \mathbb{R} \rightarrow \mathbb{R}$ is K-quasisymmetric if

$$
\frac{1}{K} \leq \frac{f(x+t)-f(x)}{f(x)-f(x-t)} \leq K
$$

with K, x and t as before. Additional background information on doubling measures and quasisymmetric maps can be obtained, for instance, from [2], as well as from several other sources.

Received April 26, 2005, accepted September 6, 2005.

It is clear from the definitions that there is a close relationship between doubling measures and quasisymmetric maps on \mathbb{R}. Given f quasisymmetric, the measure μ_{f} defined on intervals by $\mu_{f}([a, b]):=|f(b)-f(a)|$ is doubling. If we assume that f is increasing, we can avoid the use of absolute value signs. Also, from the viewpoint of the defined measure it makes no difference if we add or substract a constant to f, so we may assume that $f(0)=0$. Thus, with respect to measures it is enough to consider increasing quasisymmetric maps that fix the origin. Given μ, we shall say that f is the map associated to μ if f is increasing, $f(0)=0$, and $\mu=\mu_{f}$. In the other direction, every nontrivial doubling measure μ on \mathbb{R} defines an increasing quasisymmetric map f_{μ} that fixes 0 , by setting $f_{\mu}(x):=\mu([0, x])$ if $x \geq 0$, and $f_{\mu}(x):=-\mu([x, 0])$ if $x<0$.

If $f, g:[0, \infty) \rightarrow[0, \infty)$ are homeomorfisms, their product $f g$ is again a homeomorphism. Here the order structure of the line is crucial: Both f and g are nonnegative strictly increasing functions, and hence so is $f g$. But in general the product of two bijections need not be a bijection, so the possibility of defining a product via pointwise multiplication on collections of homeomorphisms defined on topological rings seems to be rather limited. To define such a product \bullet on \mathbb{R}, we set, for increasing homeomorfisms $f, g: \mathbb{R} \rightarrow \mathbb{R}$ that fix the origin, $f \bullet g(x):=f(x) g(x)$ if $x \geq 0$, and $f \bullet g(x):=-f(x) g(x)$ if $x<0$. If in addition f and g are quasisymmetric, then we call $f \bullet g$ their quasisymmetric product, the reason being that $f \bullet g$ is indeed quasisymmetric, as will be shown later. Therefore, this product induces a product of doubling measures via $\mu_{f} \bullet \mu_{g}:=\mu_{f \bullet g}$. Note that the sum of two doubling measures μ and ν with doubling constants K_{1} and K_{2} respectively is again a doubling measure: $(\mu+\nu)(B(x, 2 t))=\mu(B(x, 2 t))+\nu(B(x, 2 t)) \leq$ $K_{1} \mu(B(x, t))+K_{2} \nu(B(x, t)) \leq\left(K_{1}+K_{2}\right)(\mu+\nu)(B(x, t))$. So we have two operations, addition and multiplication, defined on the set of doubling measures. Also, given $a<b$, it is immediate from the definitions that $\left(\mu_{f}+\mu_{g}\right)([a, b])=$ $\mu_{f+g}([a, b])$, so addition of measures corresponds to addition of the associated maps.

Definition 1.1. ([4], Def. $2.1 \mathrm{pp} .8-9$) A nonempty set S with two binary operations,$+ \cdot$ defined on it is called a semiring if
(1) $(S,+)$ is a commutative semigroup.
(2) (S, \cdot) is a semigroup.
(3) The distributive laws $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$ hold for all $a, b, c \in S$.
If in addition (S, \cdot) is commutative, $(S,+, \cdot)$ is said to be commutative semiring.

Theorem 1.2. The set of doubling measures on the real line, with operations defined via sums and quasisymmetric products of the associated quasisymmetric functions, is a commutative semiring.

A comment on terminology: Quite often a more restrictive notion of semiring is used (cf., for instance [1], p.1): Besides the above conditions, it is usually required that there exist an absorbing additive identity 0 (i.e. for every $a, 0=0 \cdot a=a \cdot 0$) and a multiplicative identity 1 . The existence of an absorbing additive identity poses no difficulties: Just consider the constant zero measure. But it is easy to check that no doubling measure can play the role of multiplicative identity, so if we used the terminology from [1], in our main theorem we would have to say that the set of doubling measures on the real line is a commutative hemiring, rather than semiring (the only difference between semirings and hemirings as defined in [1] is precisely whether or not of a multiplicative identity exists).

This paper was written during a stay at the University of Michigan in Ann Arbor. I am indebted to the Department of Mathematics for its hospitality, and specially to Prof. Juha Heinonen, for several useful conversations.

2. Results and Proofs

Lemma 2.1. Suppose that either $0 \leq x_{1}<x_{2}<x_{3}$ and $0 \leq y_{1}<y_{2}<y_{3}$, or $x_{1}<x_{2}<x_{3} \leq 0$ and $y_{1}<y_{2}<y_{3} \leq 0$. Let $K_{1}, K_{2} \geq 1$ be such that

$$
\frac{1}{K_{1}} \leq \frac{x_{3}-x_{2}}{x_{2}-x_{1}} \leq K_{1} \quad \text { and } \quad \frac{1}{K_{2}} \leq \frac{y_{3}-y_{2}}{y_{2}-y_{1}} \leq K_{2}
$$

Then

$$
\frac{1}{K_{1} K_{2}+K_{1}+K_{2}} \leq \frac{x_{3} y_{3}-x_{2} y_{2}}{x_{2} y_{2}-x_{1} y_{1}} \leq K_{1} K_{2}+K_{1}+K_{2}
$$

Proof. Assume first that $0 \leq x_{1}<x_{2}<x_{3}$ and $0 \leq y_{1}<y_{2}<y_{3}$. Note that for $i=1,2$,

$$
\begin{equation*}
x_{i+1} y_{i+1}-x_{i} y_{i}=\left(x_{i+1}-x_{i}\right) y_{i+1}+\left(y_{i+1}-y_{i}\right) x_{i} \geq\left(x_{i+1}-x_{i}\right) y_{i+1} \tag{2.1.1}
\end{equation*}
$$

$$
\begin{equation*}
x_{i+1} y_{i+1}-x_{i} y_{i}=\left(y_{i+1}-y_{i}\right) x_{i+1}+\left(x_{i+1}-x_{i}\right) y_{i} \geq\left(y_{i+1}-y_{i}\right) x_{i+1}, \quad \text { and } \tag{2.1.2}
\end{equation*}
$$

$$
\begin{gather*}
x_{i+1} y_{i+1}-x_{i} y_{i}=\left(x_{i+1}-x_{i}\right)\left(y_{i+1}-y_{i}\right)+\left(x_{i+1}-x_{i}\right) y_{i}+\left(y_{i+1}-y_{i}\right) x_{i} \\
\geq\left(x_{i+1}-x_{i}\right)\left(y_{i+1}-y_{i}\right) \tag{2.1.3}
\end{gather*}
$$

To get the upper bound we use (2.1.3), (2.1.1) and (2.1.2) as follows:

$$
\begin{aligned}
\frac{x_{3} y_{3}-x_{2} y_{2}}{x_{2} y_{2}-x_{1} y_{1}} & =\frac{\left(x_{3}-x_{2}\right)\left(y_{3}-y_{2}\right)+\left(x_{3}-x_{2}\right) y_{2}+\left(y_{3}-y_{2}\right) x_{2}}{x_{2} y_{2}-x_{1} y_{1}} \\
& =\frac{\left(x_{3}-x_{2}\right)\left(y_{3}-y_{2}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)+\left(x_{2}-x_{1}\right) y_{1}+\left(y_{2}-y_{1}\right) x_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\left(x_{3}-x_{2}\right) y_{2}}{\left(x_{2}-x_{1}\right) y_{2}+\left(y_{2}-y_{1}\right) x_{1}}+\frac{\left(y_{3}-y_{2}\right) x_{2}}{\left(y_{2}-y_{1}\right) x_{2}+\left(x_{2}-x_{1}\right) y_{1}} \\
\leq & \frac{\left(x_{3}-x_{2}\right)\left(y_{3}-y_{2}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}+\frac{\left(x_{3}-x_{2}\right) y_{2}}{\left(x_{2}-x_{1}\right) y_{2}}+\frac{\left(y_{3}-y_{2}\right) x_{2}}{\left(y_{2}-y_{1}\right) x_{2}} \\
\leq & K_{1} K_{2}+K_{1}+K_{2} .
\end{aligned}
$$

Regarding the lower bound, we have:

$$
\begin{aligned}
& \frac{x_{3} y_{3}-x_{2} y_{2}}{x_{2} y_{2}-x_{1} y_{1}}=\frac{\left(y_{3}-y_{2}\right) x_{3}+\left(x_{3}-x_{2}\right) y_{2}}{\left(y_{2}-y_{1}\right) x_{2}+\left(x_{2}-x_{1}\right) y_{1}} \\
& \geq \frac{\left(y_{3}-y_{2}\right) x_{2}+\left(x_{3}-x_{2}\right) y_{1}}{\left(y_{2}-y_{1}\right) x_{2}+\left(x_{2}-x_{1}\right) y_{1}}=\frac{1}{\frac{\left(y_{2}-y_{1}\right) x_{2}+\left(x_{2}-x_{1}\right) y_{1}}{\left(y_{3}-y_{2}\right) x_{2}+\left(x_{3}-x_{2}\right) y_{1}}} \\
& \geq \frac{1}{\frac{1}{\left(y_{2}-y_{1}\right) x_{2}}\left(y_{3}-y_{2}\right) x_{2}}+\frac{\left(x_{2}-x_{1}\right) y_{1}}{\left(x_{3}-x_{2}\right) y_{1}} \frac{1}{K_{1}+K_{2}} \geq \frac{K_{1} K_{2}+K_{1}+K_{2}}{}
\end{aligned}
$$

The case where $x_{1}<x_{2}<x_{3} \leq 0$ and $y_{1}<y_{2}<y_{3} \leq 0$ follows immediately by applying the previous argument to $-x_{1}>-x_{2}>-x_{3} \geq 0,-y_{1}>-y_{2}>-y_{3} \geq$ 0 , and simplifying.

The next theorem is essentially the same as Theorem 3.1 of [3], the difference being that we work on the whole real line, rather than the interval $[-1, M]$. The proof can be adapted without difficulty (in fact it is simpler in our case), and we include it here for the reader's convenience. I am indebted to Professor Juha Heinonen for pointing out this result to me.

Theorem 2.1. (Heinonen and Hinkkanen) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing homeomorphism with $f(0)=0$. If the restrictions of f to $(-\infty, 0]$ and $[0, \infty)$ are K-quasisymmetric maps, and for every $t>0$

$$
\frac{1}{K} \leq \frac{f(t)}{-f(-t)} \leq K
$$

then f is $(K+1)^{3}$-quasisymmetric on \mathbb{R}.
Proof. By hypothesis, it is enough to consider the case where $x-t<0<x+t$ (so $x<t$), and we may also assume that $x>0$ (the argument for $x<0$ is similar). Since $f(0)=0$, given $y>0$, from

$$
\begin{equation*}
\frac{1}{K} \leq \frac{f(2 y)-f(y)}{f(y)-f(0)} \leq K \quad \text { and } \quad \frac{1}{K} \leq \frac{-f(-y)}{f(y)} \leq K \tag{2.2.1}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left(\frac{1}{K}+1\right) f(y) \leq f(2 y) \leq(K+1) f(y), \text { so } \frac{K+1}{K} \leq \frac{f(2 y)}{f(y)} \leq K+1, \tag{2.2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{K}+1\right) f(y) \leq f(y)-f(-y) \leq(K+1) f(y) . \tag{2.2.3}
\end{equation*}
$$

We consider separately the cases $2 x \leq t$ and $2 x>t$. If $2 x \leq t$, then replacing y with $t / 2$ in (2.2.1), with $t / 2$ and t in (2.2.2), and with t in (2.2.3), we get

$$
\begin{aligned}
\frac{1}{K(K+1)^{2}} & \leq \frac{f(t / 2)}{K(K+1) f(t)} \leq \frac{f(t)-f(t / 2)}{f(t)-f(-t)} \leq \frac{f(x+t)-f(x)}{f(x)-f(x-t)} \\
& \leq \frac{f(2 t)}{-f(-t / 2)}=\frac{f(2 t)}{f(t)} \frac{f(t)}{f(t / 2)} \frac{f(t / 2)}{(-f(-t / 2))} \leq(K+1)^{2} K .
\end{aligned}
$$

And if $2 x>t$, again by (2.2.1), (2.2.2), and (2.2.3), we have

$$
\begin{gathered}
\frac{1}{K(K+1)^{2}} \leq \frac{f(t / 2)}{K(K+1) f(t)} \leq \frac{f(x)}{K(K+1) f(t)} \leq \frac{f(2 x)-f(x)}{f(t)-f(-t)} \\
\quad \leq \frac{f(x+t)-f(x)}{f(x)-f(x-t)} \leq \frac{f(2 t)}{f(t / 2)}=\frac{f(2 t)}{f(t)} \frac{f(t)}{f(t / 2)} \leq(K+1)^{2} .
\end{gathered}
$$

We recall from the introduction the notion of quasisymmetric product.
Definition 2.3. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be increasing homeomorphisms with $f(0)=$ $g(0)=0$. The quasisymmetric product $f \bullet g$ of f and g is defined via $f \bullet g(x):=$ $f(x) g(x)$ if $x \geq 0$ and $f \bullet g(x):=-f(x) g(x)$ if $x<0$.

Corollary 2.4. If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are increasing homeomorphisms with $f(0)=$ $g(0)=0$, then so is $f \bullet g$. If in addition f and g are K_{1} and K_{2}-quasisymmetric maps respectively, then $f \bullet g$ is $\left(K_{1} K_{2}+K_{1}+K_{2}+1\right)^{3}$-quasisymmetric.

Proof. The first assertion is obvious, so we only need to verify that the hypotheses of Theorem 2.2 are satisfied. Let $t>0$. Since

$$
\frac{f \bullet g(t)}{-f \bullet g(-t)}=\frac{f(t)}{(-f(-t))} \frac{g(t)}{(-g(-t))},
$$

it follows that

$$
\frac{1}{K_{1} K_{2}} \leq \frac{f \bullet g(t)}{-f \bullet g(-t)} \leq K_{1} K_{2} .
$$

To see that the restrictions of $f \bullet g$ to $[0, \infty)$ and to $(-\infty, 0]$ are $\left(K_{1} K_{2}+K_{1}+K_{2}\right)$ quasisymmetric maps, set $x_{1}=f(x-t), x_{2}=f(x), x_{3}=f(x+t), y_{1}=g(x-$ t), $y_{2}=g(x), y_{3}=g(x+t)$ and apply Lemma 2.1.

Proof of Theorem 1.2. Denote by \mathcal{D} the set of doubling measures on \mathbb{R}. Clearly addition and multiplication are both associative and commutative on \mathcal{D}, so $(\mathcal{D},+)$ and (\mathcal{D}, \bullet) are commutative semigroups. And distributivity follows from the corresponding fact for functions: $\mu_{f} \bullet\left(\mu_{g}+\mu_{h}\right)=\mu_{f} \bullet \mu_{g+h}=\mu_{f \bullet(g+h)}=$ $\mu_{f \bullet g+f \bullet h}=\mu_{f \bullet g}+\mu_{f \bullet h}=\mu_{f} \bullet \mu_{g}+\mu_{f} \bullet \mu_{h}$.

References

1. Jonathan S. Golan, Semirings and their applications, Kluwer Academic Publishers, Dordrecht, (1999).
2. J. Heinonen, Lectures on Analysis on Metric Spaces. Universitext, Springer-Verlag, (2001).
3. J. Heinonen and A. Hinkkanen, Quasiconformal maps between compact polyhedra are quasisymmetric. Indiana Univ. Math. J., 45(4) (1996), 997-1019.
4. Hebisch, U.; Weinert, H. J. Semirings: algebraic theory and applications in computer science. Series in Algebra, 5. World Scientific Publishing Co., (1998).

J. M. Aldaz
Departamento de Matemáticas y Computación, Universidad de La Rioja,
26004 Logroño,
La Rioja, Spain
E-mail: aldaz@dmc.unirioja.es

