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OPERATIONAL METHODS FOR INTEGRO-DIFFERENTIAL
EQUATIONS AND APPLICATIONS TO PROBLEMS

IN PARTICLE ACCELERATOR PHYSICS

G. Dattoli, L. Mezi and M. Migliorati

Abstract. We illustrate a general method, which is useful for the solution
of integro-differential equations, and apply the technique to solve the betatron
equations of motion with the inclusion of wake field effects.

1. INTRODUCTION

In a previous paper it has been shown that an extension of the evolution operator
method is quite useful to study problems, involving higher order derivatives in the
evolution variable [1].

We consider indeed the equation

(1)
∂2

∂t2
y(x, t) = Ω̂2

xy(x, t),

y(x, 0) = f(x),
∂

∂t
y(x, t)|t=0 = g(x),

where Ω̂x is a not yet specified operator, which will be assumed to be independent
of time. If we treat the operator on the r. h. s. of eq. (1) as a generic constant, we
can write the formal solution of our problem as

(2) y(x, t) = Û(x, t)y(x, 0),

where Û(x, t) is the evolution operator associated with the problem (1) written
as [1]

(3) Û(x, t) =

 cosh(Ω̂xt)
1

Ω̂x

sinh(Ω̂xt)

Ω̂x sinh(Ω̂xt) cosh(Ω̂xt)

 .
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Furthermore y(x, t) and y(x, 0) are two column vectors specified by

(4) y(x, t) =

 y(x, t)

∂

∂t
y(x, t)

 , y(x, 0) =

(
f(x)

g(x)

)
.

If for example Ω̂x = x ∂
∂x , we use the following operational rules

(5) exp(αx
∂

∂x
)f(x) = f(x exp(α)),

1

Ω̂x

=
∫ ∞

0
exp(−sΩ̂x)ds,

to get from eqs. (2-4) the solution of eq. (1) in the form

(6)
y(x, t) =

1
2

[f(x exp(t)) + f(x exp(−t))]

+
1
2

∫ ∞

0
[g(x exp(−(s − t))) − g(x exp(−(s + t)))] ds.

It has also been shown that it is not mandatory that the operator Ω̂x be of
differential nature.

By considering indeed the integro differential equation

(7)
∂2

∂t2
y(x, t) =

∫ x

a
K(x− x

′
)y(x

′
, t)dx

′
,

with the same initial conditions as in eq. (1), we can recast the above problem in a
form equivalent to (1), by introducing the operator V̂ , defined in such a way that

(8) V̂ nf(x) = fn(x) =
∫ x

a
K(x − x

′
)fn−1(x

′
, t)dx

′
.

Therefore, by just applying eq. (2), we obtain the solution of eq. (7) in the form
of an infinite series

(9) y(x, t) =
∞∑

n=0

t2n

(2n)!

[
f2n(x) +

t

(2n + 1)
g2n(x)

]
,

which can be viewed as a generalization of the ordinary Volterra series (see [2] for
further comments).

In the forthcoming section we will see how the method can be applied to a well
defined physical problem.
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2. BETATRON MOTION AND WAKE FIELD FORCES

The betatron motion distortions induced by wake field effects [3] can be treated
using the integro-differential equation

(10)

∂2

∂s2
y(z, s) + k2y(z, s) = −α

∫ ∞

z
y(z

′
, s)W

(
z
′ − z

)
ρ(z

′
)dz

′
,

y(z, 0) = p(z),
∂

∂s
y(z, s)|s=0 = d(z)

in which the transverse wake function per unit of displacement is denoted by W (z)
and the e-beam charge density by ρ(z), with z being the coordinate in the e-bunch.
Both W and ρ are assumed to be independent of the propagation coordinate s. The
constant α depends on the number of particles in the bunch and on other specific
parameters.

We introduce the operator Ŵ , defined in such a way that

(11) Ŵf(z) =
∫ ∞

z
f(z

′
)W

(
z
′ − z

)
ρ(z

′
)dz

′

and recast eq. (10) in the form

(12)
∂2

∂s2
y(z, s) + K̂2y(z, s) = 0

K̂2 = k2 + αŴ .

According to the introductory remarks we can write the formal solution of the
previous equation as

(13) y(z, s) = cos(K̂s)p(z) +
1

K̂
sin(K̂s)d(z).

The initial conditions p(z) and d(z) are not necessarily function of z, we have
made this assumption to discuss a more general problem; in the concluding section,
devoted to the evaluation of the wake induced beam dimension increase, we will
use constant values.

Let us now assume, for simplicity, that d(z) = 0. At the first order in αŴ we
find

(14)
y1(z, s) �

[
cos(ks) − s

2k
α sin(ks)Ŵ

]
p(z)

= cos(ks)p(z)− s

2k
α sin(ks)p1(z),
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where
p1(z) =

∫ ∞

z
p(z

′
)W

(
z
′ − z

)
ρ(z

′
)dz

′
.

The procedure for the inclusion of higher order corrections is only more cum-
bersome. By taking, indeed, into account that

(15)
K̂ = k

∞∑
r=0

(
1
2
r

)( α

k2
Ŵ
)r

,(
1
2
r

)
=

Γ( 3
2)

r!Γ( 3
2 − r)

,

we find at the second order in αŴ

(16)
y2(z, s) � cos(ks)

[
p(z)− s2

8k2
α2p2(z)

]
− s

2k
α sin(ks)

[
p1(z)− α

4k2
p2(z)

]
= y1(z, s)− α2s

8k2

[
s cos(ks) − 1

k
sin(ks)

]
p2(z).

The inclusion of the contribution with d(z) �= 0 can be obtained quite straight-
forwardly too, by noting that the last term in eq. (13) can be written as

(17)
1

K̂
sin(K̂s)d(z) =

∫ ∞

0
dξ exp(−K̂ξ) sin(K̂s)d(z)

and that, once expanded, yields, at the lowest order in αŴ

(18)
1

K̂
sin(K̂s)d(z) � sin(ks)

k

[
d(z)− 1

2
α

k2
d1(z)

]
+

1
2

αs

k2
cos(ks)d1(z)

The physical applications of the previous results will be discussed in the forth-
coming section.

3. CONCLUDING REMARKS

A fairly immediate consequence of the previously discussed results is the deriva-
tion of the increase of the e-beam transverse dimensions, induced by wake field
effects.

To this aim we suppose p(z) and d(z) indipendent of z and referring to the ith
particle in the bunch, so that we can write

(19)
p(z) ⇒ yi0

d(z) ⇒ y′i0.
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At first order in αŴ we rewrite the solution of eq. (10) in the form

(20)
yi(z, s) = yi0(s) + αyiα(s)Wp(z) = cos(ks)yi0 +

sin(ks)
k

y′i0

+α

[
− s

2k
sin(ks)yi0 +

1
2k2

(
s cos(ks)− sin(ks)

k

)
y′i0

]
Wp(z),

with

(21) Wp(z) =
∫ ∞

z
W
(
z
′ − z

)
ρ(z

′
)dz

′

the transverse wake potential at the position z inside the bunch, and y i0(s) the trans-
verse unperturbed displacement at the location s in the machine. For the following
we define the beam section, divergence and covariance as

(22) σ2
y =

〈
y2
i

〉−〈yi〉2 , σ2
y′ =

〈
y′2i
〉−〈y′i〉2 , cov(y, y′)=

〈
yiy

′
i

〉−〈yi〉
〈
y′i
〉
,

where the average is taken over all the particles.
If we are interested to first order perturbations, and we assume that the wake

potential Wp(z) has zero average, we get, at the lowest order in αŴ ,

(23) σ2
y(s) = σ2

y0(s) + σ2
α(s) = σ2

y0(s) + α2
〈
W 2

p (z)
〉 〈

y2
iα(s)

〉
,

where σ2
y0(s) is the unperturbed beam section and σ2

α(s) the increase due to the
wake forces. An analogous expression can be obtained for the divergence σ2

y′(s)
and the covariance cov[y(s), y′(s)].

If we make the simplifying assumption that the bunch has initially zero average
in the transverse space phase, that is 〈yi(z, 0)〉 = 〈y′i(z, 0)〉 = 0, the use of eqs. (20-
23) allows the derivation of the explicit form of σα(s), σ′

α(s) and the covariance
covα(s) as reported below

(24)

σ2
α(s) � ε0(0)α2

〈
W 2

p (z)
〉 [

π2
1(s)βy + δ2

1(s)γy − 2δ1(s)π1(s)αy

]
σ′2

α (s) � ε0(0)α2
〈
W 2

p (z)
〉 [

π′2
1 (s)βy + δ′21 (s)γy − 2π′

1(s)δ
′
1(s)αy

]
covα(s) � ε0(0)α2

〈
W 2

p (z)
〉

[π1(s)π′
1(s)βy+δ1(s)δ′1(s)γy−(π1(s)δ′1(s)+δ1(s)π′

1(s))αy] ,

where ε0(0) is the e-beam emittance in the vertical direction at s = 0, the quantities
(αy, βy, γy) are the initial Twiss parameters defined as

(25) σ2
y0(0) = βyε0(0) , σ2

y′0(0) = γyε0(0) , cov[y0(0), y′0(0)] = −αyε0(0),
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and furthermore

(26)
π1(s) = − s

2k
sin(ks),

δ1(s) =
1

2k2

[
s cos(ks) − sin(ks)

k

]
.

It is to be underlined that in the thin lens approximation the above functions
write

(27)
π1(s) � −1

2
s2,

δ1(s) � −1
6
s3.

which show that, at first order, the wake corrections are independent of the quadrupole
focusing conditions.

One of the most significant consequences of the wake field contribution is an
increase of the beam emittance, which can be evaluated quite straightforwardly along
the lines we have just illustrated.

The standard definition of emittance

(28) ε =
√

σ2
yσ2

y′ − cov2(y, y′),

can be exploited to derive the corrections at the lowest order in αŴ , giving

(29) ε � ε0(s) +
1
2
[
βy(s)σ′2

α (s) + γy(s)σ2
α(s) + 2αy(s)covα(s)

]
.

It is then easy to verify that

(30) ∆ε ∝ α2
〈
W 2

p (z)
〉
.

The method we have developed in the paper can be extended to equations of
the type (10), containing an extra non homogeneous term. In the case of accelerator
physics this corresponds to the inclusion of contributions to the betatron motion due
to off-energy effects.
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