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A NOTE ON GENERALIZED DERIVATIONS OF SEMIPRIME RINGS

Joso Vukman

Abstract. In this paper we prove that generalized Jordan derivations and
generalized Jordan triple derivation of 2−torsion free semiprime rings are
generalized derivations.

1. INTRODUCTION

This paper is motivated by the work of Jing and Lu [7].Throughout, R will
represent an associative ring with center Z(R). Given an integer n > 1, a ring R
is said to be n−torsion free, if for x ∈ R, nx = 0 implies x = 0. Recall that a ring
R is prime if for a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0, and is
semiprime in case aRa = (0) implies a = 0. Let A be an algebra over the real or
complex field and let B be a subalgebra of A. An additive mapping D : R → R
is called a derivation if D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R and
is called a Jordan derivation in case D(x2) = D(x)x + xD(x) is fulfilled for all
x ∈ R. Every derivation is a Jordan derivation. The converse is in general not true.
A classical result of Herstein [6] asserts that any Jordan derivation on a 2−torsion
free prime ring is a derivation. A brief proof of Herstein’s result can be found in
[1] . Cusack [5] generalized Herstein’s result to 2−torsion free semiprime rings (see
also [2] for an alternative proof). An additive mapping D : R → R is called Jordan
triple derivation in case D(xyx) = D(x)yx+xD(y)x+xyD(x) holds for all pairs
x, y ∈ R. Bresar [3] has proved that any Jordan triple derivation on 2−torsion free
semiprime ring is a dedrivation. One can easily prove that any Jordan derivation of
arbitrary ring is Jordan triple derivation (see for example [1] for the details) which
means that the result we have just mentioned generalized Cusack’s generalization of
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Herfstein’s theorem. An additive mapping T : R → R is called a left centralizer in
case T (xy) = T (x)y holds for all pairs x, y ∈ R. An additive mapping T : R → R
is called left Jordan centralizer in case T (x2) = T (x)x holds for all x ∈ R. The
definition of a right centralizer and a right Jordan centralizer

should be self-explanatory. Obviously, any left centralizer is a left Jordan cen-
rtralizer. Zalar [13] has proved that any left Jordan centralizer on a 2−torsion free
semiprime ring is a left centralizer. Molnar [8] has proved the following result. Let
R be a 2−torsion free prime ring and let T : R → R be an additive mapping. If
T (xyx) = T (x)yx holds for every x, y ∈ R, then T is a left centralizer. This re-
sult has been recently generalized to 2−torsion free semiprime rings by Vukman and
Kosi-Ulbl [12]. An additive mapping F : R → R is called generalized derivation
in case F (xy) = F (x)y +xD(y) holds for all pairs x, y ∈ R, where D : R → R is
a derivation. The concept of generalized derivation has been introduced by Bresar
[4]. It is easy to see that F : R → R is a generalized derivation iff F is of the
form F = D + T, where D is a derivation and T a left centralizer. Recently, Jing
and Lu [7] introduced a concept of generalized Jordan derivation and generalized
Jordan triple derivation. An additive mapping F : R → R is generalized Jordan
derivation if F (x2) = F (x)x + xD(x) holds for all x ∈ R where D : R → R is
a Jordan derivation. An additive mapping F : R → R is generalized Jordan triple
derivation if F (xyx) = F (x)yx + xD(y)x + xyD(x) holds for all pairs x, y ∈ R

where D : R → R is a Jordan triple derivation. Jing and Lu [7] conjectured that in
case F : R → R, where R is 2−torsion free semiprime ring, is either a generalized
Jordan derivation or generalized Jordan triple derivation, is a generalized derivation.
In is our aim in this note to prove both conjectures.

Theorem 1. Let R be a 2−torsion free semiprime ring and let F : R → R be
a generalized Jordan derivation. In this case F is a generalized derivation.

Proof. We have therefore the relation

F (x2) = F (x)x + xD(x), (1)

for all x ∈ R, where D is a Jordan derivation of R. Since R is a semiprime ring
one can conclude that D is a derivation. Let us denote F −D by T. Then we have
T (x2) = F (x2)−D(x2) = F (x)x+xD(x)−D(x)x−xD(x) = (F (x)−D(x))x =
T (x)x. We have therefore T (x2) = T (x)x, for all x ∈ R. In other words, T is
a left Jordan centralizer of R. Since R is a 2−torsion free semiprime ring one can
conclude that T is a left centralizer by Proposition 1.4 in [13] . Hence F is of the
form F = D + T, where D is a derivation and T is a left centralizer of R, which
means that F is a generalized derivation. The proof is complete.

Theorem 2. Let R be a 2−torsion free semiprime ring and let F : R → R be
a generalized Jordan triple derivation. In this case F is a generalized derivation.
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Proof. We have therefore the relation

F (xyx) = F (x)yx + xD(y)x + xyD(x), (1)

for all pairs x, y ∈ R, where D is a Jordan triple derivation of R. Since R is a
semiprime ring one can conclude that D is a derivation by Theorem A in [3] . Let us
denote F −D by T. We have T (xyx) = F (xyx)−D(xyx) = F (x)yx+xD(y)x+
xyD(x)−D(x)yx−xD(y)x−xyD(x) = (F (x)−D(x))yx = T (x)yx. We have
therefore T (xyx) = T (x)yx, for all pairs x, y ∈ R. By Theorem in [12] one can
conclude that T is a left centralizer. We have therefore proved that F can be written
as F = D + T, where D is a derivation and T is a left centralizer, which means
that F is a generalized derivation. The proof is complete.
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