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ABSTRACT CAUCHY PROBLEMS FOR QUASI-LINEAR EVOLUTION
EQUATIONS WITH NON-DENSELY DEFINED OPERATORS

Toshitaka Matsumoto and Naoki Tanaka

Abstract. In this paper we study the abstract Cauchy problem for quasi-linear
evolution equation u′(t) = A(u(t))u(t), where {A(w);w ∈ W} is a family
of closed linear operators in a real Banach space X such that D(A(w)) = Y
for w ∈ W , and W is an open subset of another Banach space Y which
is continuously embedded in X. The purpose of this paper is not only to
establish a ‘global’ well-posedness theorem without assuming that Y is dense
in X but also to propose a new type of dissipativity condition which is closely
related with the continuous dependence of solutions on initial data.

1. INTRODUCTION

This paper is devoted to the abstract Cauchy problem for the quasi-linear evo-
lution equation

(QE; u0)

{
u′(t) = A(u(t))u(t) for t ∈ [0, τ),

u(0) = u0,

where {A(w);w ∈W} is a family of closed linear operators in a real Banach space
X such that D(A(w)) ⊃ Y for w ∈W , and W is an open subset of another Banach
space Y which is continuously embedded in X .

The study of ‘local’ well-posedness of the Cauchy problem (QE; u0) was ini-
tiated by Kato [9] in the case where X and Y are reflexive and Y is dense in X .
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After his pioneering work, Sanekata [15] successfully eliminated the reflexivity con-
dition and his results sheded some new light on the problems for partial differential
equations in spaces of continuous functions. (See also Kato [11].)

It is necessary to improve their results, in order to get solutions in the classical
sense of partial differential equations with Dirichlet or periodic boundary conditions.
In fact, the domains of such differential operators are not generally dense in the un-
derlying spaces, so that the lack of density of Y in X occurs in the abstract setting.
It is the paper due to Da Prato and Sinestrari [3] that first gave some interesting
results on the inhomogeneous abstract Cauchy problem for a closed linear operator
A in X satisfying the Hille-Yosida condition with the exception of the density of
the domain of A. Their results have been recently extended to various types of
equations by several authors. (See [1] for the integrated semigroup method, [4] for
the nonautonomous case, [18] for the semilinear case, and [13, 14] for integrodiffer-
ential equations and [2] for abstract second order equations with Wentzell boundary
conditions. Related topics can be found in the paper due to Sinestrari [16].)

The purpose of this paper is not only to establish a ‘global’ well-posedness
theorem without the assumption that Y is dense in X but also to propose a new type
of dissipativity condition which is closely related with the continuous dependence of
solutions on initial data (see the paragraph before Proposition 2.7). Our motivation
is based on the following consideration: Let u0, û0 ∈ D, where D is assumed to
be the set of all initial data satisfying that there exists a curve c lying in D such
that c(0) = u0 and c(1) = û0 and such that for each θ ∈ [0, 1], the difference
equation (cλ(θ) − c(θ))/λ = A(cλ(θ))cλ(θ) has a solution cλ(θ). Let uλ = cλ(0)
and ûλ = cλ(1). Then we have

(1.1) (ċλ(θ) − ċ(θ))/λ = A(cλ(θ))ċλ(θ) + (dA(cλ(θ))ċλ(θ))cλ(θ)

where dA(w)ξ = limh→0(A(w + hξ) − A(w))/h and the limit is taken in some
sense. If there exists a family {‖ · ‖w;w ∈ D} of equivalent norms in X such that
(‖ċλ(θ)‖cλ(θ) − ‖ċ(θ)‖c(θ))/λ ≤ ω‖ċλ(θ)‖cλ(θ), or

(1.2) ‖ċλ(θ)‖cλ(θ) ≤ exp(ωλ)‖ċ(θ)‖c(θ),

then we have ‖uλ − ûλ‖ ≤M exp(ωλ)‖u0 − û0‖, by using the metric V (x, y) :=
inf{∫ 1

0 ‖ċ(θ)‖c(θ) dθ; c(0) = x, c(1) = y} which is equivalent to the metric induced
by the original norm ‖·‖ in X . In discussing the continuous dependence of solutions
on initial data, it is therefore natural to assume the existence of a family {‖ ·
‖w;w ∈ D} of equivalent norms in X satisfying (1.2). This consideration leads
us to the dissipativity condition (D1)-(D2), by noticing that the first term on the
right-hand side of (1.1) is the principal part and ċλ(θ) is written as ċλ(θ) = (I −
λA(cλ(θ))−1(ċ(θ) + λ(dA(cλ(θ))ċλ(θ))cλ(θ)).

In Section 2 we introduce a range condition with growth condition, using a
vector-valued functional ϕ. In case of concrete problems, such a functional ϕ is
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constructed according to the nature of nonlinear systems and is used to ensure the
global existence of solutions as well as their asymptotic properties. In fact, we
give an application of our main theorem to the global existence and exponential
decay property of solutions of quasi-linear wave equations of Kirchhoff type with
acoustic boundary conditions in Section 6. The construction and convergence of
approximate solutions will be discussed in Sections 3 and 4 respectively. Section 5
contains the proof of the main theorem (Theorem 2.9). In the final section, we give
an approach to the local solvability of quasi-linear wave equations with Wentzell
boundary conditions in the space of continuous functions.

2. ASSUMPTIONS AND MAIN RESULTS

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real Banach spaces and Y is assumed to be
continuously embedded in X . The norm closure of Y in X is denoted by Y . The
symbol B(X, Y ) stands for the Banach space of bounded linear operators on X to
Y with usual operator norm ‖ · ‖X,Y . The norm of B(X,X) is denoted simply by
‖ · ‖X . For τ > 0 the norms of Banach spaces C([0, τ ];X) and C1([0, τ ];X) are
defined by ‖f‖∞ = sup{‖f(t)‖X ; t ∈ [0, τ ]} for f ∈ C([0, τ ];X) and ‖g‖C1 =
‖g‖∞+‖g′‖∞ for g ∈ C1([0, τ ];X), respectively. The notations a∧b := min(a, b),
a ∨ b := max(a, b), R+ := [0,∞) and BY (r) := {w ∈ Y ; ‖w‖Y ≤ r} are used.

Let W be an open, convex subset of Y and D a closed subset of Y such that
D ⊂ W . We make the following assumptions on {A(w);w ∈ W} appearing in
(QE; u0).

(A1) D(A(w)) = Y for each w ∈W and {A(w);w ∈W} ⊂ B(Y,X). Moreover,
for each r > 0 there exists cA(r) ≥ 1 such that

cA(r)−1‖u‖Y ≤ ‖u‖X + ‖A(w)u‖X ≤ cA(r)‖u‖Y

for u ∈ Y and w ∈ BY (r) ∩D.

(A2) For each w ∈W there exists dA(w) ∈ B(X,B(Y,X)) such that

lim
t→0

(A(w+ tz)y − A(w)y)/t= (dA(w)z)y in X , for y, z ∈ Y .

(A3) For each r > 0 there exists a nondecreasing function ρdA(r; σ) : R+ → R+

with limσ↓0 ρdA(r; σ) = 0 such that

‖dA(w)− dA(z)‖X,B(Y,X) ≤ ρdA(r; ‖w− z‖X) for w, z ∈ BY (r) ∩W .

(A4) For each r > 0 there exist hX(r) > 0 and MX(r) ≥ 1 such that for w ∈
BY (r)∩D and h ∈ (0, hX(r)], the resolvent operator (I − hA(w))−1 exists
as a bounded linear operator on X and satisfies

‖(I − hA(w))−1‖X ≤MX(r).
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The following five basic lemmas will be often used in the following sections.
Lemma 2.1 is proved by a density argument with the help of (A4).

Lemma 2.1. Let u ∈ D. Then limh↓0(I − hA(u))−1x = x in X , for x ∈ Y .
Lemma 2.2 follows easily from condition (A3).

Lemma 2.2. For each r > 0 there exists MdA(r) > 0 such that

‖dA(w)‖X,B(Y,X) ≤MdA(r) for w ∈ BY (r) ∩W .

Lemma 2.3. For each r > 0 and w, z ∈ BY (r) ∩W it holds that

‖A(w)− A(z)‖Y,X ≤MdA(r)‖w− z‖X .

Proof. Let r > 0 and w, z ∈ BY (r) ∩W . Since W is convex, we notice that
θw + (1 − θ)z ∈ BY (r) ∩W for θ ∈ [0, 1]. By (A2) we have

A(w)y −A(z)y =
∫ 1

0
(dA(θw+ (1− θ)z)(w− z))y dθ

for y ∈ Y . By Lemma 2.2, the desired inequality is obtained by estimating the
above identity.

Lemma 2.4. Let r > 0 and h ∈ (0, hX(r)). Then it holds that

‖(I − hA(w))−1‖X,Y ≤MX,Y (r, h) for w ∈ BY (r) ∩D,

where MX,Y (r, h) = cA(r)(MX(r) + h−1(MX(r) + 1)) and MX(r) is a constant
specified in (A4).

Proof. Let r > 0, h ∈ (0, hX(r)) and w ∈ BY (r)∩D. Then, by (A1) we have

‖(I − hA(w))−1x‖Y ≤ cA(r)(‖(I − hA(w))−1x‖X + ‖A(w)(I − hA(w))−1x‖X)

for x ∈ X . Since A(w)(I−hA(w))−1 = h−1((I −hA(w))−1 − I), an application
of condition (A4) to the above inequality gives the desired inequality.

Lemma 2.5. Let r > 0, h ∈ (0, hX(r)) and w, ŵ ∈ BY (r) ∩ D. Then we
have

‖(I − hA(w))−1 − (I − hA(ŵ))−1‖X,Y ≤ hMX,Y (r, h)2MdA(r)‖w− ŵ‖X .
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Proof. By Lemmas 2.3 and 2.4, the desired inequality is obtained by estimating
the identity

(I − hA(w))−1 − (I − hA(ŵ))−1

= h(I − hA(w))−1(A(w)−A(ŵ))(I − hA(ŵ))−1

for r > 0, h ∈ (0, hX(r)) and w ∈ BY (r) ∩D.

The next proposition shows that the so-called range condition holds under an
additional assumption.

Proposition 2.6. Suppose that (A1) through (A4) hold. Suppose further that

(2.1) (I − hA(w))−1(D) ⊂ D for r > 0, h ∈ (0, hX(r)] and w ∈ BY (r) ∩D.

Then for any u ∈ D with A(u)u ∈ Y and ε > 0 there exists h0 > 0 such that to
each h ∈ (0, h0] there corresponds uh ∈ D satisfying ‖uh − u‖Y ≤ ε and

(uh − u)/h = A(uh)uh.

Proof. Let ε > 0 and let u ∈ D be such that A(u)u ∈ Y . Then, we set
r0 = ‖u‖Y + ε and ρ0 = MX(r0)cA(r0)r0. Since A(u)u ∈ Y , there exists y ∈ Y
such that 4cA(r0)MX(r0)‖A(u)u− y‖X ≤ ε. Choose h0 > 0 so small that

h0 < hX(r0), 2h0MX(r0)MdA(r0)r0 < 1,

2h0cA(r0)MX(r0)(cA(r0)(r0 + ‖y‖Y )+2MdA(r0)ρ0r0) ≤ ε,

and let h ∈ (0, h0]. Then, we want to find uh ∈ D satisfying the desired conditions.
To do this, we define a subset E of Y by

E = {v ∈ D; ‖v − u‖Y ≤ ε, ‖v − u‖X ≤ hρ0}
and a mapping Φ : E → Y by

Φv = (I − hA(v))−1u for v ∈ E .

To show that Φ(E) ⊂ E , let v ∈ E . Since E ⊂ BY (r0) ∩D, it follows from (2.1)
that Φv ∈ D. By conditions (A4) and (A1) we see that

(2.2) ‖Φv − u‖X = h‖(I − hA(v))−1A(v)u‖X ≤ hMX(r0)cA(r0)‖u‖Y ;

hence ‖Φv − u‖X ≤ hρ0 by the definition of ρ0. Since

‖A(v)(Φv− u)‖X

≤ ‖(I − hA(v))−1y − y‖X + ‖((I − hA(v))−1 − I)(A(v)− A(u))u‖X

+‖((I − hA(v))−1 − I)(A(u)u− y)‖X
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and (I − hA(v))−1y − y = h(I − hA(v))−1A(v)y, we have

(2.3)

‖A(v)(Φv− u)‖X ≤ hMX(r0)cA(r0)‖y‖Y

+2MX(r0)MdA(r0)‖v − u‖X‖u‖Y

+2MX(r0)‖A(u)u− y‖X

by (A1), (A4) and Lemma 2.3. Adding (2.2) and (2.3) and using the fact that
‖u‖Y ≤ r0 and ‖v − u‖X ≤ hρ0, we find that ‖Φv − u‖Y ≤ ε by (A1). It is thus
proved that Φ(E) ⊂ E , by the definition of E .

Consider the sequence {vi}∞i=0 in E defined inductively by v0 = u and vi =
Φvi−1 for i = 1, 2, . . . Since E ⊂ BY (r0) ∩D, we have by Lemma 2.3

‖Φv − Φv̂‖X = h‖(I − hA(v))−1(A(v)− A(v̂))Φv̂‖X

≤ hMX(r0)MdA(r0)r0‖v − v̂‖X .

Since hMX(r0)MdA(r0)r0 < 1, the above inequality implies that {vi}∞i=0 is a
Cauchy sequence in X , and hence there exists v ∈ X such that vi → v in X as
i→ ∞. It should be noticed by the definition of {vi} thatA(vi−1)vi = (vi−u)/h→
(v − u)/h in X as i→ ∞. Since

‖A(vi−1)(vi − vj)‖X ≤ ‖A(vi−1)vi −A(vj−1)vj‖X +MdA(r0)r0‖vi−1 − vj−1‖X

and ‖vi − vj‖Y ≤ cA(r0)(‖vi − vj‖X + ‖A(vi−1)(vi − vj)‖X), we see that vi → v
in Y as i → ∞. Since E is a closed subset of Y , it follows that v ∈ E and
(v − u)/h = A(v)v. The proof is thus complete.

In addition to conditions (A1) through (A4), we introduce a notion of ‘local
quasi-dissipativity’ of {A(w);w ∈W} in the following sense.

(D1) There exists a family {‖ · ‖w;w ∈ D} of norms in X such that for each r > 0
there exists cX(r) ≥ 1 satisfying

cX(r)−1‖x‖X ≤ ‖x‖w ≤ cX(r)‖x‖X for x ∈ X and w ∈ BY (r) ∩D.

(D2) For each r > 0 there exists ω(r) ≥ 0 such that

‖(I − hA(uh))−1x‖uh
≤ exp(ω(r)(1 + η)h)‖x‖u

for x ∈ X , h ∈ (0, hX(r)], η > 0 and uh, u ∈ BY (r) ∩D with ‖uh − u −
hA(uh)uh‖ ≤ hη.

A condition similar to (D1)-(D2) was proposed by Hughes et al. [8], but certain
smoothness assumption of norms in w was imposed there.
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Proposition 2.7. Suppose that conditions (D1), (D2) and the assumptions of
Proposition 2.6 are satisfied. Suppose further that

(2.4) for each α ≥ 0 there exists r > 0 such that
u ∈ D and ‖u‖u + ‖A(u)u‖u ≤ α imply that ‖u‖Y ≤ r.

Then there exists G ∈ C(R+; R+) such that

(2.5) lim sup
h↓0

(φ(uh) − φ(u))/h ≤ G(φ(u)) for u ∈ D with A(u)u ∈ Y ,

where φ(u) = ‖u‖u + ‖A(u)u‖u for u ∈ D, and {uh} is the sequence in D

specified in Proposition 2.6.

Proof. Let u ∈ D be such that A(u)u ∈ Y . Let ε > 0 and set rε = ‖u‖Y + ε.
Then, by Proposition 2.6 there exists h0 > 0 such that to each h ∈ (0, h0] there
corresponds uh ∈ D satisfying ‖uh − u‖Y ≤ ε and (uh − u)/h = A(uh)uh. Let
h ∈ (0, h0]∩ (0, hX(rε)]. Then we have uh = (I−hA(uh))−1u by condition (A4).
Since u, uh ∈ BY (rε) ∩D, we see by (D2) that

(2.6) ‖uh‖uh
+ ‖A(uh)uh‖uh

≤ exp(ω(rε)h)(‖u‖u + ‖A(uh)u‖u).

Since ‖A(uh)u − A(u)u‖X ≤ hMdA(rε)‖A(uh)uh‖X‖u‖Y by Lemma 2.3, we
have by (D1) and (A1)

(2.7) ‖A(uh)u− A(u)u‖u ≤ hcX(rε)cA(rε)MdA(rε)r2ε.

Combining (2.6) and (2.7), and taking the limsup as h ↓ 0, we find

(2.8) lim sup
h↓0

(φ(uh) − φ(u))/h ≤ ω(r)φ(u) + cX(r)cA(r)MdA(r)r2,

where r = ‖u‖Y . Here ω, cX , cA and MdA are nondecreasing, continuous functions
dominating ω, cX , cA and MdA respectively. These functions can be constructed in
a way similar to the construction of F below.

To obtain the desired function G, we employ the two functions F and F

from R+ to R+ defined by F (ξ) = sup{‖u‖Y ; u ∈ D, φ(u) ≤ ξ} and F (ξ) =∫ ξ+1
ξ F (σ) dσ, respectively. Since F and F are nondecreasing, F ∈ C(R+; R+),
‖u‖Y ≤ F (φ(u)) for u ∈ D and F (ξ) ≤ F (ξ) for ξ ≥ 0, we see by (2.8) that the
function G, defined by G(ξ) = ω(F (ξ))ξ + cX(F (ξ))cA(F (ξ))MdA(F (ξ))F(ξ)2,
is the desired one satisfying (2.5).

As a special case of our main result (Theorem 2.9) stated later, we can show
the local existence of C1-solution to (QE; u0).
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Theorem 2.8. Suppose that conditions (A1) through (A4), (D1), (D2), (2.1)
and (2.4) are satisfied. Then for each u0 ∈ D with A(u0)u0 ∈ Y , there exists a
unique function u in C([0, τ0); Y ) ∩ C1([0, τ0);X) satisfying u(0) = u0,

u′(t) = A(u(t))u(t) for t ∈ [0, τ0),

φ(u(t)) ≤ m(t; φ(u0)) for t ∈ [0, τ0),

where φ is specified by Proposition 2.7 and τ 0 is the maximal existence time of the
maximal solution m(t; φ(u0)) to

p′(t) = G(p(t)), p(0) = φ(u0).

Because of localized conditions, the Cauchy problem (QE; u0) may have only
local C1-solutions by Theorem 2.8. The purpose of this paper is to discuss the
unique global existence of C1-solution to (QE; u0). To do this, it is necessary to
consider the growth of C1-solutions. Here the growth of a C1-solution is specified
by using a vector-valued functional ϕ = (ϕi)n

i=1 : D → R
n
+ such that each ϕi is

lower semicontinuous on D, and a comparison function g = (g i)n
i=1 ∈ C(Rn

+; R
n)

satisfying the following conditions:

(g1) gi(0) ≥ 0 for i = 1, 2, . . . , n.

(g2) For each i = 1, 2, . . . , n, gi(r) is nondecreasing in rj with j 
= i.

In order to consider global C1-solutions to the Cauchy problem (QE; u0) satisfying
the growth condition

ϕ(u(t)) ≤ m(t;ϕ(u0))),

where the order ‘≤’ in R
n is defined in the way that α = (αi)n

i=1 ≤ β = (βi)n
i=1 if

and only if αi ≤ βi for all i = 1, 2, . . . , n, we employ the following range condition
with growth condition (ϕ)-(R):

(ϕ) For each α ∈ R
n
+ there exists r > 0 such that ϕ(u) ≤ α implies ‖u‖Y ≤ r.

(R) For each ε > 0 and u ∈ D with A(u)u ∈ Y there exist h ∈ (0, ε] and uh ∈ D

such that

(uh − u)/h = A(uh)uh,

‖uh − u‖Y ≤ ε,

(ϕ(uh) − ϕ(u))/h ≤ gε(ϕ(u)),

where the i-th component gε
i of gε is defined by gε

i (p) = gi(p)+ε for p ∈ R
n
+.
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In the following, the number r, defined by r = sup{‖u‖Y ; u ∈ D, ϕ(u) ≤ α}, is
called the number specified in condition (ϕ) by α.

For α ∈ R
n
+, we denote by τ(α) the maximal existence time of the maximal

solution m(t;α) = (mi(t;α))n
i=1 to the Cauchy problem for g

p′(t) = g(p(t)), p(0) = α.

The main theorem in this paper is stated as follows:

Theorem 2.9. Suppose that conditions (A1) through (A4), (D1), (D2), (ϕ) and
(R) are satisfied. Then for each u0 ∈ D with A(u0)u0 ∈ Y , there exists a unique
function u ∈ C([0, τ0); Y ) ∩C1([0, τ0);X) satisfying u(0) = u0,

u′(t) = A(u(t))u(t) for t ∈ [0, τ0),

ϕ(u(t)) ≤ m(t;ϕ(u0)) for t ∈ [0, τ0),

where τ0 = τ(ϕ(u0)).

3. BASIC LEMMAS FOR THE CONSTRUCTION OF APPROXIMATE SOLUTIONS

For ε > 0 and α ∈ R
n
+, we denote by τε(α) the maximal existence time of the

maximal solution mε(t;α) = (mε
i (t;α))n

i=1 to the Cauchy problem for gε

p′(t) = gε(p(t)), p(0) = α.

We start with the following lemma.

Lemma 3.1. Let η > 0, τ > 0, F ∈ C1([0, τ ];X) and t ∈ [0, τ). Let u ∈ D,
w ∈ Y and assume that A(u)u ∈ Y and A(u)w + F (t) ∈ Y . Then there exist
δ ∈ (0, η], uδ ∈ D and wδ ∈ Y satisfying the following ten conditions:

(i) t+ δ < τ .

(ii) ‖uδ − u − δA(uδ)uδ‖X ≤ δη.

(iii) ‖uδ − u‖Y ≤ η.

(iv) ϕ(uδ) ≤ mη(δ;ϕ(u)).

(v) ‖A(uδ)uδ − (I − δA(uδ))−1(A(u)u+ δ(dA(u)A(u)u)u)‖X ≤ δη.

(vi) ‖wδ − w − δ(A(uδ)wδ + F (t+ δ))‖X ≤ δη.

(vii) ‖wδ − w‖Y ≤ η.

(viii) ‖A(uδ)wδ + F (t+ δ)− (I − δA(uδ))−1(A(u)w+ F (t)
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+δ((dA(u)A(u)u)w+ F ′(t)))‖X ≤ δη.
(ix) A(uδ)uδ ∈ Y .
(x) A(uδ)wδ + F (t+ δ) ∈ Y .

Proof. Let τ > 0, F ∈ C1([0, τ ];X) and t ∈ [0, τ). Let u ∈ D, w ∈ Y
and assume that A(u)u ∈ Y and A(u)w + F (t) ∈ Y . Let η > 0. Then, by range
condition (R) there exists a null sequence {hk} of positive numbers and a sequence
{uk} in D such that

(3.1) (uk − u)/hk = A(uk)uk,

(3.2) ‖uk − u‖Y ≤ 1/k,

(3.3) (ϕ(uk) − ϕ(u))/hk ≤ g1/k(ϕ(u)),

for k = 1, 2, . . . It follows from (3.1) that

(3.4) A(uk)uk ∈ Y for k = 1, 2, . . .

We prove that for sufficiently large k,

(3.5) ϕ(uk) ≤ mη(hk;ϕ(u)).

To do this, choose a positive integer k0 such that k0η > 1 and set p(t) = ϕ(u) +
tg1/k0(ϕ(u)) for t ≥ 0. Then we have (d/dt)(mη

i (t;ϕ(u))−pi(t))|t=0 = gη
i (ϕ(u))−

g
1/k0

i (ϕ(u)) > 0 for 1 ≤ i ≤ n. By the continuity of mη and p, one finds δ0 > 0
such that δ0 < τη(ϕ(u)) and (d/dt)(mη(t;ϕ(u))− p(t)) ≥ 0 for t ∈ [0, δ0]. Since
mη(0;ϕ(u))− p(0) = 0, we have mη(t;ϕ(u)) ≥ p(t) for t ∈ [0, δ0]. Substituting
t = hk into this inequality, we have, by (3.3), (3.5) for k large enough to satisfy
k ≥ k0 and hk ≤ δ0. Since the sequence {uk} is convergent in Y as k → ∞
(by (3.2)), there exists r0 > 0 such that uk ∈ BY (r0) ∩ D for k ≥ 1. By con-
dition (A4) we notice that (I − hkA(uk))−1 ∈ B(X) for sufficiently large k and
‖(I − hkA(uk))−1‖X is bounded as k → ∞. Since uk = (I − hkA(uk))−1u for
sufficiently large k, it follows from (A2) that

A(uk)uk = (I − hkA(uk))−1
(
A(u)u

+hk

∫ 1
0 (dA(θuk + (1 − θ)u)A(uk)uk)u dθ

)
.

Since ‖uk − u‖Y → 0 and ‖(I − hkA(uk))−1‖X is bounded as k → ∞, we have

(3.6)
limk→∞ ‖h−1

k (A(uk)uk

−(I − hkA(uk))−1(A(u)u+ hk(dA(u)A(u)u)u))‖X = 0.
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Next, consider the sequence {wk} in Y defined by

(3.7) wk = (I − hkA(uk))−1(w + hkF (t+ hk)) for k = 1, 2, . . .

Then, we find the relation

(3.8) A(uk)wk + F (t+ hk) = (I − hkA(uk))−1(A(uk)w+ F (t+ hk));

hence

(3.9) A(uk)wk + F (t+ hk) ∈ Y for k = 1, 2, . . .

By (3.7) we have

wk − w = hk(I − hkA(uk))−1(A(uk)w + F (t+ hk)),

which vanishes in X as k → ∞, since the sequence {uk} converges to u in Y and
‖(I − hkA(uk))−1‖X is bounded as k → ∞. By (3.8) we have

A(uk)(wk−w)=(I−hkA(uk))−1(A(uk)w+F (t+ hk))−(A(uk)w+ F (t+ hk)).

An application of Lemma 2.1 to the right-hand side implies that A(uk)(wk − w)
tends to zero in X as k → ∞. It follows from (A1) that

(3.10) ‖wk −w‖Y → 0 as k → ∞.

Using (3.8) combined with the identity

A(uk)w− A(u)w = hk

∫ 1

0

(dA(θuk + (1− θ)u)A(uk)uk)w dθ,

we see by Lemma 2.3, (A3) and (3.2) that

(3.11)
‖h−1

k (A(uk)wk + F (t+ hk)− (I − hkA(uk))−1(A(u)w+ F (t)

+ hk((dA(u)A(u)u)w+ F ′(t))))‖X vanishes as k → ∞.

The desired element (δ, uδ, wδ) ∈ (0, η]×D×Y can be found by (3.1), (3.2), (3.4)
through (3.7), and (3.9) through (3.11).

The following lemma will be used for the construction of approximate solutions
with nice properties.

Lemma 3.2. Let v0 ∈ D, z0 ∈ Y , τ ∈ (0, τ(ϕ(v0))), F ∈ C1([0, τ ];X) and
assume that A(v0)v0 ∈ Y and A(v0)z0 + F (0) ∈ Y . Let η be a positive number
satisfying η ≤ 1 and τ < τ η(ϕ(v0)). Then there exists a sequence {(sj, vj, zj)}∞j=0

in [0, τ)×D × Y such that the following conditions are satisfied:
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(i) 0 = s0 < s1 < · · · < sj < · · · < τ for j = 1, 2, . . .

(ii) sj − sj−1 ≤ η for j = 1, 2, . . .

(iii) ‖vj − vj−1 − (sj − sj−1)A(vj)vj‖X ≤ (sj − sj−1)η for j = 1, 2, . . .

(iv) ‖vj − vj−1‖Y ≤ η for j = 1, 2, . . ..
(v) ‖A(vj)vj − (I − (sj − sj−1)A(vj))−1(A(vj−1)vj−1

+(sj−sj−1)(dA(vj−1)A(vj−1)vj−1)vj−1)‖X ≤ (sj−sj−1)η for j = 1, 2, . . .

(vi) ϕ(vj) ≤ mη(sj − sj−1;ϕ(vj−1)) for j = 1, 2, . . .

(vii) A(vj)vj ∈ Y for j = 1, 2, . . ..
(viii) ‖zj−zj−1−(sj−sj−1)(A(vj)zj +F (sj))‖X ≤ (sj−sj−1)η for j = 1, 2, . . ..
(ix) ‖zj − zj−1‖Y ≤ η for j = 1, 2, . . ..
(x) ‖A(vj)zj + F (sj) − (I − (sj − sj−1)A(vj))−1(A(vj−1)zj−1 + F (sj−1) +

(sj −sj−1)((dA(vj−1)A(vj−1)vj−1)zj−1 +F ′(sj−1)))‖X ≤ (sj −sj−1)η for
j = 1, 2, . . ..

(xi) A(vj)zj + F (sj) ∈ Y for j = 1, 2, . . .

(xii) limj→∞ sj = τ .

To prove Lemma 3.2 we need the following basic estimates.

Lemma 3.3. Let r > 0, τ > 0, η ∈ (0, 1] and F ∈ C1([0, τ ];X). Let {δj}K
j=1

be a sequence in (0, hX(r)], {vj}K
j=0 a sequence in BY (r)∩D, {zj}K

j=0 a sequence
in Y such that they satisfy that

∑K
j=1 δj ≤ τ and that

(3.12) ‖vj − vj−1 − δjA(vj)vj‖X ≤ δjη,

(3.13) ‖zj − zj−1 − δj(A(vj)zj + F (sj))‖X ≤ δjη,

(3.14)
‖A(vj)zj + F (sj) − (I − δjA(vj))−1(A(vj−1)zj−1 + F (sj−1))‖X

≤ δjM0(r, ‖F‖C1)(‖zj−1‖Y + 1)

for 1 ≤ j ≤ K, where s0 = 0, sj =
∑j

k=1 δk for 1 ≤ j ≤ K , and M0 is a
nonnegative function defined on R

2
+ and nondecreasing in each variable. Then there

exist nonnegative functionsM i, i = 1, 2, 3, defined on R
4
+ which are nondecreasing

with respect to each variable and satisfy the following conditions:

(a) ‖zj‖Y ≤M1(τ, r, ‖z0‖Y , ‖F‖C1) for 0 ≤ j ≤ K .

(b) ‖zj − zk‖X ≤M2(τ, r, ‖z0‖Y , ‖F‖C1)(sj − sk) for 0 ≤ k ≤ j ≤ K .



Quasi-Linear Evolution Equations 307

(c)
∥∥∥A(vj)zj + F (sj) −

j∏
l=p+1

(I − δlA(vl))−1(A(vp)zp + F (sp))
∥∥∥

X

≤M3(τ, r, ‖z0‖Y , ‖F‖C1)(sj − sp) for 0 ≤ p ≤ j ≤ K.

Proof. To prove (a) we use the sequence {aj}K
j=0 in R+ defined by

aj = ‖zj‖vj + ‖A(vj)zj + F (sj)‖vj for 0 ≤ j ≤ K.

If we set εj = (zj − zj−1)/δj − (A(vj)zj + F (sj)) for 1 ≤ j ≤ K, then we
have ‖εj‖X ≤ η (by (3.13)) and zj = (I − δjA(vj))−1(zj−1 + δj(F (sj) + εj)) for
1 ≤ j ≤ K. By (3.12) we use conditions (D1) and (D2) to find

(3.15) ‖zj‖vj ≤ exp(ω(r)(1 + η)δj)(‖zj−1‖vj−1 + cX(r)δj(‖F‖∞ + η))

for 1 ≤ j ≤ K. By (3.14) we have

‖A(vj)zj + F (sj)‖vj ≤ exp(ω(r)(1 + η)δj)(‖A(vj−1)zj−1 + F (sj−1)‖vj−1

+ δjcX(r)M0(r, ‖F‖C1)(‖zj−1‖Y + 1))

for 1 ≤ j ≤ K. Since

‖zj−1‖Y ≤ cA(r)(‖zj−1‖X + ‖A(vj−1)zj−1‖X) ≤ cA(r)(cX(r)aj−1 + ‖F‖∞)

for 1 ≤ j ≤ K (by (A1) and (D1)), it follows that

(3.16)

‖A(vj)zj + F (sj)‖vj ≤ exp(ω(r)(1 + η)δj)

(‖A(vj−1)zj−1 + F (sj−1)‖vj−1

+δjcX(r)M0(r, ‖F‖C1)(cA(r)(cX(r)aj−1+‖F‖∞)+1))

for 1 ≤ j ≤ K. Adding (3.15) and (3.16), we have

aj ≤ exp((ω(r)(1 + η) +M(r, ‖F‖C1))δj)(aj−1 + δjM(r, ‖F‖C1))

for 1 ≤ j ≤ K, where M is a function on R
2
+ satisfying the same properties as

M0. This implies that

(3.17) aj ≤ exp((ω(r)(1 + η) +M(r, ‖F‖C1))sj)(a0 + sjM(r, ‖F‖C1))

for 0 ≤ j ≤ K. Since ‖zj‖Y ≤ cA(r)(cX(r)aj + ‖F‖∞) for 0 ≤ j ≤ K and
a0 ≤ cX(r)(cA(r)‖z0‖Y + ‖F‖∞) by (A1) and (D1), the desired inequality (a)
follows from (3.17).
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Let 0 ≤ k < j ≤ K. By (3.13) and (a), we have

‖zl − zl−1‖X ≤ δl(η + cA(r)M1(τ, r, ‖z0‖Y , ‖F‖C1) + ‖F‖∞)

for k + 1 ≤ l ≤ j. Adding the above inequality from l = k + 1 to j, we obtain the
desired inequality (b) with M2(t, r, λ, µ) = 1 + µ+ cA(r)M1(t, r, λ, µ).

To prove (c), let 0 ≤ p < j ≤ K, and set Pj,k =
∏j

l=k+1(I − δlA(vl))−1

for k with p ≤ k ≤ j. By (3.12) we use condition (D2) to find that ‖Pj,k‖X ≤
cX(r)2 exp(ω(r)(1 + η)τ) for p ≤ k ≤ j. This inequality together with (a) and
(3.14) implies that

‖Pj,k(A(vk)zk + F (sk)) − Pj,k−1(A(vk−1)zk−1 + F (sk−1))‖X

≤cX(r)2 exp(ω(r)(1+η)τ)δkM0(r, ‖F‖C1)(M1(τ, r, ‖z0‖Y , ‖F‖C1)+1)

for p + 1 ≤ k ≤ j. The desired inequality (c) is obtained by adding the above
inequality from k = p+ 1 to j.

Corollary 3.4. Let r > 0, τ > 0 and η ∈ (0, 1]. Let {δj}K
j=1 be a sequence

in (0, hX(r)] and {vj}K
j=0 a sequence in BY (r) ∩ D such that they satisfy that∑K

j=1 δj ≤ τ and

(3.18) ‖vj − vj−1 − δjA(vj)vj‖X ≤ δjη for 1 ≤ j ≤ K.

Then there exists a nonnegative function M 4 defined on R
3
+ that is nondecreasing

with respect to each variable and that satisfies∥∥∥∏j
l=p+1(I−δlA(vl))−1y−∏k

l=p+1(I−δlA(vl))−1y
∥∥∥

X
≤M4(τ, r,‖y‖Y )(sj − sk)

for 0 ≤ p ≤ k ≤ j ≤ K and y ∈ Y .

Proof. Let y ∈ Y and 0 ≤ p < K . Then, the sequence {yj}K
j=p in Y , defined

by yp = y and yj = (I−δjA(vj))−1yj−1 for p+1 ≤ j ≤ K , satisfies the identities
that yj − yj−1 − δjA(vj)yj = 0 and

A(vj)yj = (I − δjA(vj))−1(A(vj−1)yj−1 + (A(vj) − A(vj−1))yj−1)

for p+ 1 ≤ j ≤ K. By condition (A4), Lemma 2.3 and (3.18) we find that

‖(I − δjA(vj))−1(A(vj) −A(vj−1))yj−1‖X

≤MX(r)MdA(r)δj(η + cA(r)r)‖yj−1‖Y

for p + 1 ≤ j ≤ K. We thus see that the sequence {yj}K
j=p satisfies (3.13) and

(3.14) with zj = yj+p, F = 0 and M0(r, µ) = MX(r)MdA(r)(1 + cA(r)r). The
desired result is a direct consequence of Lemma 3.3 (b).
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Proof of Lemma 3.2. For each (u, w, t) ∈ D × Y × [0, τ) satisfying A(u)u,
A(u)w + F (t) ∈ Y , we define δ(u, w, t) by the supremum of δ ∈ (0, η] such that
there exists uδ ∈ D and wδ ∈ Y satisfying (i) through (x) in Lemma 3.1. It should
be noticed that δ(u, w, t) > 0 by Lemma 3.1. Let k ≥ 1 and assume that a sequence
{(sj, vj, zj)}k−1

j=0 in [0, τ)×D×Y has been chosen such that conditions (i) through
(xi) in Lemma 3.2 are satisfied. Since vk−1 ∈ D and zk−1 ∈ Y satisfy (vii) and
(xi) with j = k − 1, we have δ(vk−1, zk−1, sk−1) > 0 by the notice mentioned
above. By the definition of δ(vk−1, zk−1, sk−1), there exist δk ∈ (0, η], vk ∈ D and
zk ∈ Y such that δk > δ(vk−1, zk−1, sk−1)/2 and such that (sk, vk, zk) satisfies (i)
through (xi) with j = k, where sk = sk−1 + δk.

It remains to show that (xii) holds. To do this, suppose to the contrary that
s̄ := limj→∞ sj < τ . Then we first show that {vj} and {zj} are convergent
sequences in Y . To check the assumptions of Lemma 3.3, set α0 = (α0,i)n

i=0

where α0,i = sup{mη
i (t;ϕ(v0)); t ∈ [0, τ ]} < ∞ for i = 1, 2, . . . , n, and let r0 be

the number specified in condition (ϕ) by α0. Then, we have vj ∈ BY (r0) ∩ D
for j = 1, 2, . . . (by (vi)). Since the sequence {sj} is convergent as j → ∞, we
choose a positive integer p0 such that sj − sj−1 ≤ hX(r0) for j ≥ p0. We see
by Lemma 3.2 (iii), (viii) and (x) that (3.12), (3.13) and (3.14) are satisfied with
M0(r, µ) = MX(r)(MdA(r)cA(r)r+ µ) + 1. We therefore apply Lemma 3.3 and
Corollary 3.4 to find that the sequence {zj} is bounded in Y as j → ∞ and that
limj,k→∞ ‖zj − zk‖X = 0 and

lim supj,k→∞ ‖A(vj)zj − A(vk)zk‖X

≤ 2cX(r0)2 exp(ω(r0)(1 + η)τ)‖A(vp)zp + F (sp) − y‖X

+ 2M3(τ, r0, ‖z0‖Y , ‖F‖C1)(s̄− sp)

for p ≥ p0 and y ∈ Y . Since A(vp)zp + F (sp) ∈ Y , we see that {A(vj)zj} is a
Cauchy sequence in X . By condition (iii) we have

‖vj − vk‖X ≤ (cA(r0)r0 + η)(sj − sk),

which tends to zero as j, k → ∞. Since

‖zj − zk‖Y ≤ cA(r0)(‖zj − zk‖X +‖A(vj)zj −A(vk)zk‖X

+‖A(vk)− A(vj)‖Y,X‖zk‖Y )

and since the facts shown above imply the right-hand side vanishes as k, j → ∞,
the completeness of Y ensures that the sequence {zj} converges in Y as j → ∞.
By z̄ we denote the limit {zj} in Y . By the above argument with F = 0, we see
that the sequence {vj} converges in Y to some v̄ as j → ∞.
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Now, the closedness of D in Y implies that v̄ ∈ D. Since A(vk)vk, A(vk)zk +
F (sk) ∈ Y and since A(vk)vk → A(v̄)v̄ and A(vk)zk + F (sk) → A(v̄)z̄ + F (s̄)
as k → ∞, we have A(v̄)v̄, A(v̄)z̄ +F (s̄) ∈ Y . We therefore apply Lemma 3.1 to
find δ ∈ (0, η/2]∩ (0, hX(r0)/2], vδ ∈ D and zδ ∈ Y satisfying the following ten
conditions:

s̄+ δ < τ.

‖vδ − v̄ − δA(vδ)vδ‖X ≤ δ(η/2).

‖vδ − v̄‖Y ≤ η/2.

(3.19) ϕ(vδ) ≤ mη/2(δ;ϕ(v̄)).

(3.20) ‖A(vδ)vδ − (I − δA(vδ))−1(A(v̄)v̄ + δ(dA(v̄)A(v̄)v̄)v̄)‖X ≤ δ(η/2).

‖zδ − z̄ − δ(A(vδ)zδ + F (s̄ + δ))‖X ≤ δ(η/2).

‖zδ − z̄‖Y ≤ η/2.

‖A(vδ)zδ + F (s̄+ δ) − (I − δA(vδ))−1(A(v̄)z̄ + F (s̄)

+δ((dA(v̄)A(v̄)v̄)z̄ + F ′(s̄)))‖X ≤ δ(η/2).

A(vδ)vδ ∈ Y .

A(vδ)zδ + F (s̄+ δ) ∈ Y .

Set γk = s̄ + δ − sk−1 for k ≥ 1. Then we want to show that (i) through (x)
in Lemma 3.1 with (t, δ, uδ, wδ, u, w) replaced by (sk−1, γk, vδ, zδ, vk−1, zk−1) are
satisfied. It is obvious that γk → δ as k → ∞, sk−1 + γk = s̄ + δ < τ and
that γk ∈ (0, η)∩ (0, hX(r0)) for k sufficiently large. By Lemma 3.2 (vi) we have
ϕ(vj) ≤ mη(sj −sk−1;ϕ(vk−1)) for j ≥ k, so that ϕ(v̄) ≤ mη(s̄−sk−1;ϕ(vk−1)).
This together with (3.19) implies ϕ(vδ) ≤ mη(γk;ϕ(vk−1)). Since vδ ∈ BY (r0) ∩
D we see by (A4) that (I − hA(vδ))−1 is analytic in h ∈ (0, hX(r0)); hence
limk→∞(I − γkA(vδ))−1 = (I − δA(vδ))−1 in B(X). By (3.20) we then have

‖A(vδ)vδ − (I − γkA(vδ))−1(A(vk−1)vk−1

+γk(dA(vk−1)A(vk−1)vk−1)vk−1)‖X ≤ γkη

for sufficiently large k. This means that condition (v) in Lemma 3.1 with (δ, uδ, u)
replaced by (γk, vδ, vk−1) is satisfied. All the other conditions are checked similarly.
By the definition of δ(vk−1, zk−1, sk−1), it is thus shown that γk ≤ δ(vk−1, zk−1, sk−1)
for sufficiently large k. Since δ(vk−1, zk−1, sk−1) < 2δk → 0 as k → ∞, we have
δ ≤ 0, which contradicts to the fact that δ is positive.
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4. APPROXIMATE SOLUTIONS AND MILD SOLUTIONS

Our purpose is to find a unique global classical solution to (QE; u0). By a
classical solution to (QE; u 0) on [0, T ] we mean a function u ∈ C1([0, T ];X) ∩
C([0, T ]; Y ) satisfying (QE; u0) for t ∈ [0, T ]. A classical solution on [0,∞) is said
to be global. For our purpose we need the construction of approximate solutions
with ‘nice’ properties, although we employ the so-called method of discretization in
time in the following sense:

Definition 4.1. Let ε > 0, u0 ∈ D and T > 0. Assume that {(ti, ui)}N
i=0 is

a sequence in [0,∞)×D satisfying the following three conditions:

(εi) 0 = t0 < t1 < · · ·< tN−1 < T ≤ tN .

(εii) ti − ti−1 ≤ ε for i = 1, 2, . . . , N .

(εiii) ‖ui − ui−1 − (ti − ti−1)A(ui)ui‖X ≤ ε(ti − ti−1) for i = 1, 2, . . . , N .

Then, the function u : [0, T ] → X defined by

u(t) =

{
u0 for t = 0,

ui for t ∈ (ti−1, ti] ∩ [0, T ] and i = 1, 2 . . . , N

is called an ε-approximate solution to (QE; u 0) on [0, T ]. If there exists α ∈ R
n
+

such that an ε-approximate solution uε satisfies uε(t) ∈ D(α) for t ∈ [0, T ], then
uε is called an ε-approximate solution constrained in D(α). Here D(α) = {u ∈
D;ϕ(u) ≤ α}.

Definition 4.2. Let ε > 0, u0 ∈ D and T > 0. A function u ∈ C([0, T ];X)
is called a mild solution to (QE; u 0) on [0, T ] if for each sufficiently small ε > 0
there exists an ε-approximate solution uε to (QE; u0) on [0, T ] such that

‖uε(t) − u(t)‖X ≤ ε for t ∈ [0, T ].

It is easy to show the following fundamental result.

Proposition 4.3. Let u0 ∈ D and T > 0. Then a classical solution to (QE;
u0) on [0, T ] is a mild solution.

Conversely, if there exists a mild solution u to (QE; u0) on [0, T ] such that
it is the limit function of a sequence {uε} of ε-approximate solutions to (QE; u0)
on [0, T ] in Y , then u is a classical solution to (QE; u0) on [0, T ]. In this case,
the limit function w(t) of the sequence {A(uε(t))uε(t)} coincides with A(u(t))u(t)
and formally satisfies the equation w′(t) = A(u(t))w(t)+(dA(u(t))w(t))u(t). For
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this reason, it is necessary to consider the problem of whether the inhomogeneous
Cauchy problem involved with a mild solution u

(CP; x,f)u
{
w′(t) = A(u(t))w(t) + f(t) for t ∈ [0, T ]

w(0) = x

is solvable, in discussing the convergence in Y of a sequence of approximate solu-
tions to (QE; u0) on [0, T ].

Definition 4.4. Let u0 ∈ D, T > 0 and α ∈ R
n
+. Let u ∈ C([0, T ];X) be a

mild solution to (QE; u0) such that u is a uniform limit of ε-approximate solutions
constrained in D(α). Let ε > 0 be sufficiently small. Then, by Definitions 4.1 and
4.2, there exists a sequence {(ti, ui)}N

i=0 in [0,∞)×D satisfying (εi) through (εiii)
and the following conditions:

(εiv) ui ∈ D(α) for i = 0, 1, . . . , N .

(εv) ‖u(ti) − ui‖X ≤ ε for i = 0, 1, . . . , N .

Let x ∈ X and f ∈ C([0, T ];X). Assume that {(wi, fi)}N
i=0 is a sequence in

Y ×X satisfying the three conditions below:

(εvi) (wi −wi−1)/(ti − ti−1) = A(ui)wi + fi for i = 1, 2, . . . , N .

(εvii) ‖w0 − x‖X ≤ ε.

(εviii) ‖f(t) − fi‖X ≤ ε for t ∈ [ti−1, ti] ∩ [0, T ] for i = 1, 2, . . . , N .

Then the function w : [0, T ] → X , defined by

w(t) =

{
w0 for t = 0,

wi for t ∈ (ti−1, ti] ∩ [0, T ] and i = 1, 2, . . . , N ,

is called an ε-approximate solution to (CP; x, f) u on [0, T ].

Definition 4.5. Let w ∈ C([0, T ];X). The function w is called a mild
solution to (CP; x, f)u on [0, T ] if for each sufficiently small ε > 0 there exists an
ε-approximate solution wε to (CP; x, f)u on [0, T ] such that

‖wε(t) − w(t)‖X ≤ ε for t ∈ [0, T ].

The following is a key lemma to prove the convergence of ε-approximate solu-
tions.

Lemma 4.6. Let 0 < τ̄ < τ , r > 0, F ∈ C([0, τ ];X) and f ∈ C([0, τ̄ ];X).
Let {(ti, ui, wi, εi, fi)}N

i=0 be a sequence in [0, τ) × (BY (r) ∩ D) × Y × X ×X
satisfying the following three conditions:
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(i) 0 = t0 < t1 < · · ·< tN−1 < τ̄ ≤ tN < τ .
(ii) (ui − ui−1)/(ti − ti−1) = A(ui)ui + εi for i = 1, 2, . . . , N .

(iii) (wi − wi−1)/(ti − ti−1) = A(ui)wi + fi for i = 1, 2, . . . , N .

Using this sequence, we define two functions u, w : [0, τ̄] → Y by

u(t) =

{
u0 for t = 0,

ui for t ∈ (ti−1, ti] ∩ [0, τ̄] and i = 1, 2, . . . , N ,

w(t) =

{
w0 for t = 0,

wi for t ∈ (ti−1, ti] ∩ [0, τ̄] and i = 1, 2, . . . , N .

Let {(sj, vj, zj, ηj, Fj)}∞j=0 be a sequence in [0, τ)×(BY (r)∩D)×Y ×X×X
satisfying the following three conditions:

(iv) 0 = s0 < s1 < · · · < sj < · · · < τ and limj→∞ sj = τ .
(v) (vj − vj−1)/(sj − sj−1) = A(vj)vj + ηj for j = 1, 2, . . .

(vi) (zj − zj−1)/(sj − sj−1) = A(vj)zj + Fj for j = 1, 2, . . .

Using this sequence, we define two functions v, z : [0, τ) → Y by

v(t) =

{
v0 for t = 0,

vj for t ∈ (sj−1, sj] and j = 1, 2, . . .,

z(t) =

{
z0 for t = 0,

zj for t ∈ (sj−1, sj] and j = 1, 2, . . .

Let K be a positive integer satisfying sK−1 < τ̄ ≤ sK and assume that

(4.1) |∆| := max
1≤i≤N

(ti − ti−1) ≤ min
1≤j≤K+1

(sj − sj−1),

(4.2) |∆| ≤ hX(r).

Then we have

(4.3)
‖u(t) − v(t)‖X ≤M(τ̄ , r, ε)(‖u0− v0‖X + |∆|

+δ + η + ε) for t ∈ [0, τ̄],

(4.4)

‖w(t) − z(t)‖X ≤M(τ̄ , r, ε)
(
‖w0 − z0‖X + M̃(‖u0 − v0‖X

+|∆| + δ + η + ε) + δ̃ + η̃ + ε̃+ ρF (|P |)

+|∆|(‖F‖∞+‖f‖∞)+‖F − f‖L′(0,t;x)

)
for t∈ [0, τ̃ ],
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where |P | = max1≤j≤K+1(sj − sj−1), M̃ = max1≤j≤K ‖zj‖Y ,

ε = max
1≤i≤N

‖εi‖X , ε̃ = max
1≤i≤N

sup{‖f(t) − fi‖X ; t ∈ [ti−1, ti] ∩ [0, τ̄ ]},
δ = max

1≤j≤K+1
‖vj − vj−1‖Y , δ̃ = max

1≤j≤K+1
‖zj − zj−1‖Y ,

η = max
1≤j≤K+1

‖ηj‖X , η̃ = max
1≤j≤K+1

sup{‖F (t) − Fj‖X ; t ∈ [sj−1, sj]},
ρF (r) = max{‖F (s) − F (t)‖X ; s, t ∈ [0, τ ], |s− t| ≤ r}

and M(τ̄ , r, ε) is a nonnegative function on R
3
+ and nondecreasing with respect to

each variables.

Proof. Consider the function z̃ : [0, τ) → Y defined by

z̃(t) = zj−1+(t−sj−1)(zj−zj−1)/(sj−sj−1) for t ∈ [sj−1, sj] and j = 1, 2, . . .

Then, by (4.2) we use condition (A4) to find that

z̃(ti) = (I − (ti − ti−1)A(ui))−1(z̃(ti−1) + (ti − ti−1)f̃i)

for 1 ≤ i ≤ N , where f̃i := (z̃(ti)−z̃(ti−1))/(ti−ti−1)−A(ui)z̃(ti) for 1 ≤ i ≤ N .
By (iii) we have wi = (I−(ti−ti−1)A(ui))−1(wi−1+(ti−ti−1)fi) for 1 ≤ i ≤ N .
Since ‖εi‖X ≤ ε for 1 ≤ i ≤ N , it follows from (D1) and (D2) that

‖z̃(ti)− wi‖ui ≤ exp(ω(r)(1 + ε)(ti − ti−1))
(
‖z̃(ti−1) − wi−1‖ui−1

+ (ti − ti−1)cX(r)‖f̃i − fi‖X

)
for 1 ≤ i ≤ N ; hence

(4.5)
‖z̃(ti)− wi‖X ≤ cX(r)2 exp(ω(r)(1 + ε)(τ̄ + ε))

×
(
‖z0 −w0‖X +

∑i
k=1(tk − tk−1)‖f̃k − fk‖X

)
for 1 ≤ i ≤ N . By the definition of z̃ we see that 1 ≤ l ≤ N , 1 ≤ p ≤ K and
sp−1 ≤ tl ≤ sp+1 imply that

(4.6) ‖zp − z̃(tl)‖Y ≤ max(‖zp − zp−1‖Y , ‖zp+1 − zp‖Y ) ≤ δ̃.

By the preceding arguments, the estimate of the last term on the right-hand side
of (4.5) necessary to obtain the desired inequality (4.4). To do this, let 1 ≤ k ≤ N
and σ ∈ (tk−1, tk). Since tk−1 ≤ tN−1 < τ̄ ≤ sK , there exists an integer q with
1 ≤ q ≤ K such that tk−1 ∈ [sq−1, sq). By condition (4.1), one of the following
cases happens:
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(I) tk ∈ [sq−1, sq), (II) tk ∈ [sq, sq+1).

In both cases, we have sq−1 ≤ tk−1 < σ < tk < sq+1 and v(σ) = vq or vq+1.
Since u(σ) = uk we have

(4.7)

‖A(vq)zq + Fq − A(uk)z̃(tk) − fk‖X

≤ ‖(A(v(σ))− A(u(σ)))zq‖X + ‖(A(vq) −A(vq+1))zq‖X

+ ‖A(uk)(z̃(tk) − zq)‖X + ‖F (σ) − f̄(σ)‖X + ‖f̄(σ)− fk‖X

+‖Fq − F (sq)‖X + ‖F (sq) − F (σ)‖X

≤MdA(r)M̃‖v(σ)− u(σ)‖X +MdA(r)cA(r)M̃δ + cA(r)δ̃

+ ‖F (σ)− f̄ (σ)‖X + ε̃ + η̃ + ρF (|P |),
where f̄(t) = f(t∧ τ̄) for t ∈ [0, τ ]. Here we have used Lemma 2.3 and (4.6) with
(l, p) = (k, q) to obtain the last inequality.

Now, we begin by considering the case (II). By the definition of f̃k, we find

(4.8)

f̃k − fk = ((tk − sq)/(tk − tk−1))((zq+1 − zq)/(sq+1 − sq)

− A(uk)z̃(tk) − fk) + ((sq − tk−1)/(tk − tk−1))

((zq − zq−1)/(sq − sq−1) − A(uk)z̃(tk) − fk).

Since A(vq+1)zq+1 + Fq+1 − (A(vq)zq + Fq) is written as

A(vq+1)(zq+1 − zq) + (A(vq+1) −A(vq))zq + (Fq+1 − F (sq)) + (F (sq) − Fq),

we have

‖A(vq+1)zq+1 + Fq+1 − (A(vq)zq + Fq)‖X ≤ cA(r)δ̃ +MdA(r)cA(r)δM̃ + 2η̃.

This inequality together with (4.7) implies that

(4.9)

‖(zq+1 − zq)/(sq+1 − sq)− A(uk)z̃(tk) − fk‖X

≤MdA(r)M̃‖u(σ)− v(σ)‖X + 2MdA(r)cA(r)M̃δ + 2cA(r)δ̃ + 3η̃

+ ρF (|P |) + ‖F (σ)− f̄(σ)‖X + ε̃.

Applying (4.7) and (4.9) to (4.8), we have

(4.10)

‖fk − f̃k‖X ≤MdA(r)M̃‖u(σ)− v(σ)‖X

+ 2MdA(r)cA(r)M̃δ + 2cA(r)δ̃ + 3η̃

+ ρF (|P |) + ‖F (σ) − f̄(σ)‖X + ε̃.
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In the case (I), (4.10) is also valid by (4.7) because f̃k − fk = A(vq)zq + Fq −
A(uk)z̃(tk)− fk by the definition of f̃k. The term

∑i
k=1(tk − tk−1)‖f̃k − fk‖X in

(4.5) is thus estimated by integrating (4.10) over (tk−1, tk) and adding the resulting
inequality from k = 1 to i.

Now, let t ∈ [0, τ̄]. Then there exist 1 ≤ i ≤ N and 1 ≤ j ≤ K such that
t ∈ (ti−1, ti] ∩ (sj−1, sj]. Since (4.1) implies sj−1 < ti ≤ sj+1, it follows from
(4.6) that ‖zj − z̃(ti)‖X ≤ cA(r)δ̃. We substitute (4.10) into (4.5) to estimate
‖z̃(ti) −wi‖X . This yields that

(4.11)

‖w(t)−z(t)‖X ≤M(τ̄ , r, ε)
(
‖w0−z0‖X +M̃

∫ t
0 ‖u(σ)−v(σ)‖X dσ

+
∫ t

0
‖F (σ)− f(σ)‖X dσ + ε̃+ M̃(|∆|+ δ)

+ |∆|(‖F‖∞ + ‖f‖∞) + δ̃ + η̃ + ρF (|P |)
)
.

If fi = εi, Fj = ηj and F = f = 0, then wi = ui, zj = vj , ε̃ = ε, δ̃ = δ, η̃ = η,
M̃ ≤ r and ρF = 0. In this special case we have by (4.11),

‖u(t)−v(t)‖X≤M(τ̄ , r, ε)
(
‖u0−v0‖X +

∫ t
0 ‖u(σ)−v(σ)‖X dσ+|∆|+δ+η+ε

)
for t ∈ [0, τ̄ ]. An application of Gronwall’s inequality gives the desired inequality
(4.3). Substituting (4.3) into (4.11), we obtain the desired inequality (4.4).

The continuous dependence of mild solutions on initial data is given by

Proposition 4.7. Let β ≥ α ≥ 0 and let u0, û0 ∈ D(α) be such that A(u0)u0,
A(û0)û0 ∈ Y . Let τ̄ ∈ (0, τ(α)). Let u and û be mild solutions to (QE; u 0) and
(QE; û0) on [0, τ̄ ] respectively such that they are uniform limit of ε-approximate
solutions constrained in D(β). Then we have

‖u(t) − û(t)‖X ≤ C(τ̄ , α, β)‖u0 − û0‖X for t ∈ [0, τ̄],

where C(τ̄ , α, β) denotes a constant depending on τ̄ , α and β.

Proof. By assumption and the definition of mild solutions to (QE; u0) on [0, τ̄ ],
for each sufficiently small ε > 0 there exists an ε-approximate solution uε to (QE;
u0) on [0, τ̄] constrained in D(β) such that ‖u(t) − uε(t)‖X ≤ ε for t ∈ [0, τ̄ ].
We use Lemma 4.6 to estimate the difference between uε and an ε-approximate
solution ûε to (QE; û0) on [0, τ̄]. To do this, let τ ∈ (τ̄ , τ(α)) and let γ = (γi)n

i=1

where γi = sup{mi(t;α) + 1; t ∈ [0, τ ]} ∨ βi for i = 1, 2, . . . , n. Denote by r the
number specified in condition (ϕ) by the vector γ . The number r depends only on
α, β. Then there exists η0 ∈ (0, 1] ∩ (0, hX(r)] such that η ∈ (0, η0] implies that
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τ < τη(α) and mη(t;α) ≤ m(t;α) + 1 for t ∈ [0, τ ]. Let η ∈ (0, η0]. Then we
apply Lemma 3.2 with z0 = v0 = û0 and F = 0 to find a sequence {(sj, vj)}∞j=0 in
[0, τ)×D satisfying (i) through (vii) and (xii) in Lemma 3.2. Condition (vi) implies
that vj ∈ D(γ) for j ≥ 1; hence vj ∈ BY (r)∩D for j ≥ 1 and uε(t) ∈ BY (r)∩D
for t ∈ [0, τ̄ ]. Let K be the positive integer satisfying sK−1 < τ̄ ≤ sK , and choose
ε0 > 0 such that ε0 ≤ min1≤j≤K+1(sj − sj−1) and ε0 ≤ hX(r). Let ε ∈ (0, ε0].
Then we have by Lemma 4.6.

(4.12) ‖uε(t) − v(t)‖X ≤M(τ̄ , r, ε)(‖u0− û0‖X + 2ε+ 2η) for t ∈ [0, τ̄],

where v : [0, τ) → X is the function defined by v(t) = û0 for t = 0, and vj for
t ∈ (sj−1, sj] and j = 1, 2, . . . Since ûε satisfies an estimate similar to (4.12), it
follows that

‖uε(t) − ûε(t)‖X ≤ 2M(τ̄ , r, ε)(‖u0 − û0‖X + 2(ε+ η))

for t ∈ [0, τ̄ ]. The desired result is obtained by letting ε → 0 in the above in-
equality.

Proposition 4.8. Let β ≥ α ≥ 0, and let u0 ∈ D(α) be such thatA(u0)u0 ∈ Y .
Let τ̄ ∈ (0, τ(α)). Let u be a mild solution to (QE;u0) on [0, τ̄ ] which is a
uniform limit of ε-approximate solutions constrained in D(β). Let x, x̂ ∈ Y and
f , f̂ ∈ C([0, τ̄ ];X). Let w and ŵ be mild solutions to (CP;x,f)u and (CP;x̂,f̂ )u

on [0, τ̄ ] respectively. Then we have

‖w(t)− ŵ(t)‖X ≤ C(τ̄ , α, β)(‖x− x̂‖X + ‖f − f̂‖L1(0,t;X)) for t ∈ [0, τ̄ ].

Proof. By the definition of mild solutions of (CP;x, f )u on [0, τ̄], for each
sufficiently small ε > 0 there exists an ε-approximate solution wε to (CP;x,f)u

on [0, τ̄ ] such that ‖wε(t) − w(t)‖X ≤ ε for t ∈ [0, τ̄]. We use Lemma 4.6
to estimate the difference between wε and an ε-approximate solution ŵε to (CP;
x̂, f̂ )u on [0, τ̄ ]. To do this, let τ ∈ (τ̄ , τ(α)) and let γ = (γi)n

i=1 where γi =
sup{mi(t;α) + 1; t ∈ [0, τ ]} ∨ βi for i = 1, 2, . . . , n. Denote by r the number
specified in condition (ϕ) by the vector γ . The number r depends only on α, β. Then
there exists η0 ∈ (0, 1] ∩ (0, hX(r)] such that η ∈ (0, η0] implies that τ < τ η(α)
and mη(t;α) ≤ m(t;α) + 1 for t ∈ [0, τ ]. Let η ∈ (0, η0] and let (z0, F ) in
Y × C1([0, τ ];X) be fixed arbitrarily such that A(u0)z0 + F (0) ∈ Y . Then there
exists a sequence {(sj, vj, zj)}∞j=0 in [0, τ)×D×Y satisfying conditions (i) through
(xii) with v0 replaced by u0 in Lemma 3.2. It should be noticed by Lemma 3.3 that

‖zj‖Y ≤M1(τ, r, ‖z0‖Y , ‖F‖C1)
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for j ≥ 1. Similarly to the argument in the proof of Proposition 4.7, we find by
Lemma 4.6

(4.13)

‖wε(t) − z(t)‖X ≤M(τ̄ , r, ε)(2M1(τ, r, ‖z0‖Y , ‖F‖C1)(ε+ η)

+‖wε(0)− z0‖X + 2η + 2ρF (η) + ε

+ ε(‖F‖∞ + ‖f‖∞) + ‖F − f‖L1(0,t;X))

for t ∈ [0, τ̄], where z : [0, τ) → Y is the function defined by z(0) = z0 and
z(t) = zj for t ∈ (sj−1, sj] and j = 1, 2, . . . Since an estimate similar to (4.13)
holds for ŵε, we find

‖w(t)− ŵ(t)‖X ≤ C(τ̄ , α, β)(‖x− z0‖X + ‖x̂− z0‖X

+ ‖F − f‖L1(0,t;X) + ‖F − f̂‖L1(0,t;X))

for t ∈ [0, τ̄ ]. By Lemma 4.9 below, the desired result is obtained by letting z0 → x
in X and F → f in C([0, τ̄ ];X) in the above inequality.

Lemma 4.9. Let T > 0, u0 ∈ D and A(u0)u0 ∈ Y . Then the set

E = {(z0, F ); z0 ∈ Y, F ∈ C1([0, T ];X), A(u0)z0 + F (0) ∈ Y }
is dense in Y × C([0, T ];X).

Proof. Let x ∈ Y and f ∈ C([0, T ];X). Then there exists a sequence
{(xk, fk)} in Y × C1([0, T ];X) such that ‖xk − x‖X → 0 and ‖fk − f‖∞ → 0
as k → ∞. Choose a null sequence {hk} of positive numbers such that hk ∈
(0, hX(‖u0‖Y )] for k ≥ 1, and put zk = (I − hkA(u0))−1(xk + hkfk(0)) for
k = 1, 2, . . . Then it is easily seen that zk ∈ Y and A(u0)zk + fk(0) = (I −
hkA(u0))−1(A(u0)xk + fk(0)) ∈ Y ; hence (zk, fk) ∈ E for k = 1, 2, . . . Since

‖zk − x‖X ≤ ‖(I − hkA(u0))−1‖X(‖xk − x‖X + hk‖fk(0)‖X)

+ ‖(I − hkA(u0))−1x− x‖X ,

we have limk→∞ zk = x in X , by Lemma 2.1 and condition (A4).

Lemma 4.10. Let β ≥ α ≥ 0 and let u0 ∈ D(α) be such that A(u0)u0 ∈ Y .
Let τ̄ ∈ (0, τ(α)) and let u be a mild solution to (QE;u 0) on [0, τ̄ ] such that u
is a uniform limit of ε-approximate solutions constrained in D(β). Let x ∈ Y ,
f ∈ C([0, τ̄ ];X) and let w be a mild solution to (CP; x, f )u on [0, τ̄ ]. Then we
have

‖w(t)− y‖X ≤ C(τ̄ , α, β)(‖x− y‖X + ‖f‖L1(0,t;X) + tcA(r)‖y‖Y )



Quasi-Linear Evolution Equations 319

for t ∈ [0, τ̄] and y ∈ Y , where r is the number specified in condition (ϕ) by β.

Proof. By assumption, for each sufficiently small ε > 0 there exists an ε-
approximate solution uε to (QE; u0) on [0, τ̄ ] constrained inD(β) such that ‖uε(t)−
u(t)‖X ≤ ε for t ∈ [0, τ̄]. It follows from Lemma 2.3 that A(uε(t)) converges in
B(Y,X) uniformly on [0, τ̄] as ε ↓ 0. Let y ∈ Y , and set f̂ (t) = − limε↓0A(uε(t))y
and ŵε(t) = y for t ∈ [0, τ̄ ]. Then we have

(ŵε(tεi ) − ŵε(tεi−1))/(t
ε
i − tεi−1) = A(uε

i )ŵ
ε(tεi ) −A(uε

i )y

for i = 1, 2, . . . , Nε, where {(tεi , uε
i)}Nε

i=0 is the sequence in [0,∞)×D by which
the ε-approximate solution uε is defined as in Definition 4.1. The continuity of f̂ in
X on [0, τ̄ ] follows from that of u, by Lemma 2.3. Since max1≤i≤Nε sup{‖f̂(t) +
A(uε

i )y‖X ; t ∈ [tεi−1, t
ε
i ]∩ [0, τ̄]} → 0 as ε ↓ 0, we see that ŵε is an ε-approximate

solution to (CP; y, f̂ )u on [0, τ̄ ]. This implies that the function w(t) = y for
t ∈ [0, τ̄] is a mild solution to (CP; y,f̂ )u on [0, τ̄ ]. Since ‖f̂(t)‖X = limε↓0 ‖
A(uε(t))y‖X ≤ cA(r)‖y‖Y for t ∈ [0, τ̄ ], the desired result is obtained by Proposi-
tion 4.8.

5. EXISTENCE OF CLASSICAL SOLUTIONS

In this section we discuss the convergence of ε-approximate solutions of (QE;
u0) and give the proof of our main theorem (Theorem 2.9).

Lemma 5.1. Let u0 ∈ D and A(u0)u0 ∈ Y . Let τ̄ ∈ (0, τ(ϕ(u0))) and α ∈
R

n
+. Assume that for each sufficiently small ε > 0, there exists an ε-approximate

solution uε to (QE; u0) on [0, τ̄] constrained in D(α). Then there exists a mild
solution u to (QE; u0) on [0, τ̄] such that

sup{‖uε(t) − u(t)‖X ; t ∈ [0, τ̄ ]} → 0 as ε→ 0.

Proof. Arguments similar to those in the proof of Proposition 4.7 imply that
there exists a function u : [0, τ̄] → X such that sup{‖uε(t)−u(t)‖X ; t ∈ [0, τ̄ ]} → 0
as ε → 0. We have only to show the continuity of u in X on [0, τ̄ ]. Since uε is
constrained in D(α), there exists r > 0 such that uε(t) ∈ BY (r) for t ∈ [0, τ̄]
and ε > 0 (by condition (ϕ)). It follows from (εiii) that ‖uε(t) − uε(s)‖X ≤
(cA(r)r+ ε)(|t− s| + ε) for t, s ∈ [0, τ̄]. This implies that u ∈ C([0, τ̄ ];X).

Lemma 5.2. Let u0 ∈ D be such that A(u0)u0 ∈ Y , and let 0 < τ̄ < τ <
τ(ϕ(u0)). Let αi = sup{mi(t;ϕ(u0)) + 1; t ∈ [0, τ ]} for i = 1, 2, . . . , n and put
α = (αi)n

i=1. Then there exists a mild solution to (QE; u 0) on [0, τ̄ ] which is a
uniform limit of ε-approximate solutions constrained in D(α).
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Proof. We choose ε0 ∈ (0, 1] such that ε ∈ (0, ε0] implies that τ < τ ε(ϕ(u0))
and mε(t;ϕ(u0)) ≤ m(t;ϕ(u0)) + 1 for t ∈ [0, τ ]. By Lemma 3.2 with v0 = z0 =
u0 and F = 0, there exists an ε-approximate solution constrained in D(α) for each
ε ∈ (0, ε0]. The desired result follows from Lemma 5.1.

Lemma 5.3. Let u0 ∈ D be such that A(u0)u0 ∈ Y , and let α ∈ R
n
+ and

T ∈ (0, τ(ϕ(u0))). Let u be a mild solution to (QE; u0) on [0, T ] such that u
is a uniform limit of ε-approximate solutions constrained in D(α). Then, for any
x ∈ Y and f ∈ C([0, T ];X), there exists a mild solution to (CP; x, f )u on [0, T ].

Proof. We begin by showing the lemma under the assumption that there exists
an ε-approximate solutionwε to (CP; x, f )u on [0, T ] for sufficiently small ε > 0. In
a way similar to the proof of Proposition 4.8, we see that sup{‖wλ(t)−wµ(t)‖X ; t ∈
[0, T ]} → 0 as λ, µ → 0. This implies the existence of a function w : [0, T ] → X
such that sup{‖wε(t)−w(t)‖X ; t ∈ [0, T ]} → 0 as ε→ 0. To prove the continuity
of w in X on [0, T ], let τ ∈ (T, τ(ϕ(u0))) and (z0, F ) ∈ Y × C1([0, τ ];X) be
fixed arbitrarily such that A(u0)z0 +F (0) ∈ Y . Let z : [0, τ) → Y be the function
constructed in the proof of Proposition 4.8, by using a sequence {(sj, vj, zj)}∞j=0

in [0, τ)×D × Y satisfying conditions (i) through (xii) with v0 replaced by u0 in
Lemma 3.2. Then we have, by Lemma 3.2 (viii),

‖z(t) − z(s)‖X ≤ (|t− s| + η)(cA(r)M1(τ, r, ‖z0‖Y , ‖F‖C1) + ‖F‖∞ + η)

for t, s ∈ [0, T ], where r is a constant depending only on α and ϕ(u0). After
combining this inequality with (4.13) and letting ε→ 0, we take the limit as η ↓ 0
to find

‖w(t)−w(s)‖X ≤ C(‖x− z0‖X + ‖F − f‖L1(0,T ;X))

+ |t− s|(cA(r)M1(τ, r, ‖z0‖Y , ‖F‖C1) + ‖F‖∞)

for t, s ∈ [0, T ], where C is a positive constant independent of t, s, z0, F . By
Lemma 4.9, this inequality implies that w is continuous in X on [0, T ].

By the above argument we have only to show the existence of ε-approximate
solution to (CP; x, f)u on [0, T ] for sufficiently small ε > 0. Let ε ∈ (0, hX(r)). By
assumption, there exists a sequence {(ti, ui)}N

i=0 in [0,∞)×D satisfying conditions
(εi) through (εv). Since x ∈ Y , we choose w0 ∈ Y such that ‖w0 − x‖X ≤ ε, and
define a sequence {wi}N

i=1 in Y inductively by

wi = (I − (ti − ti−1)A(ui))−1(wi−1 + (ti − ti−1)f(ti−1))

for i = 1, 2, . . . , N . Then, the function w : [0, T ] → X , defined by w(t) =
w0 for t = 0 and wi for t ∈ (ti−1, ti] ∩ [0, T ] and i = 1, 2, . . . , N , is an ε-
approximate solution to (CP; x, f)u on [0, T ], since ‖f(t) − f(ti−1)‖X ≤ ρf(ε)
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for t ∈ [ti−1, ti] ∩ [0, T ] and i = 1, 2, . . . , N , where ρf stands for the modulus of
continuity of f in X on [0, T ].

To prove our main theorem (Theorem 2.9), assume that u0 ∈ D, A(u0)u0 ∈ Y
and set τ0 = τ(ϕ(u0)) in the rest of this section. Take arbitrarily τ̄ ∈ (0, τ0) and
τ ∈ (τ̄ , τ0). Let αi = sup{mi(t;ϕ(u0)) + 1; t ∈ [0, τ ]} for i = 1, 2, . . . , n and put
α = (αi)n

i=1. Denote by r the number specified in condition (ϕ) by the vector α,
and let λ0 ∈ (0, hX(r)). Then, we define an operator B by

B(w, z) = (dA(w)z)(I − λ0A(w))−1(w − λ0z)

for (w, z) ∈ (BY (r) ∩D) ×X , and investigate some properties of B, which will
be used to show the convergence in Y of approximate solutions of (QE; u0).

Lemma 5.4. (i) For each R > 0 there exist LB(R) > 0 and a nondecreasing
function ρB(R; ·) : R+ → R+ such that ρB(R; σ) ↓ 0 as σ ↓ 0 and that

‖B(w, z)−B(ŵ, ẑ)‖X ≤ ρB(R; ‖w− ŵ‖X) + LB(R)‖z − ẑ‖X

for (w, z), (ŵ, ẑ) ∈ (BY (r) ∩D)× BX(R).
(ii) For each R > 0 there exists MB(R) > 0 such that

‖B(w, z)‖X ≤MB(R) for (w, z) ∈ (BY (r) ∩D)× BX(R).

Proof. Since assertion (ii) is a direct consequence of assertion (i), we have only
to show assertion (i). To do this, let (w, z), (ŵ, ẑ) ∈ (BY (r)∩D)×BX(R). Since
B(w, z) −B(ŵ, ẑ) is written as

((dA(w)− dA(ŵ))z)(I − λ0A(w))−1(w − λ0z)

+ (dA(ŵ)(z − ẑ))(I − λ0A(w))−1(w− λ0z)

+ (dA(ŵ)ẑ)((I − λ0A(w))−1 − (I − λ0A(ŵ))−1)(w− λ0z)

+ (dA(ŵ)ẑ)(I − λ0A(ŵ))−1(w− ŵ− λ0(z − ẑ)),

assertion (i) follows from condition (A3), Lemmas 2.2, 2.4 and 2.5.

The above lemma implies that the operator B : (BY (r) ∩ D) × X → X is
uniquely extensible to the operator B̃ : BY (r) ∩D ×X → X .

Lemma 5.5. Let u be a mild solution to (QE; u0) on [0, τ̄ ] obtained by Lemma
5.2. Let T ∈ (0, τ̄] and assume that there exists w ∈ C([0, T ];X) such that w is
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a mild solution to (CP; A(u0)u0, fw)u on [0, T ], where fw(t) = B̃(u(t), w(t)) for
t ∈ [0, T ]. Then u is a classical solution to (QE; u 0) on [0, T ] and satisfies

w(t) = A(u(t))u(t) for t ∈ [0, T ],

ϕ(u(t)) ≤ m(t;ϕ(u0)) for t ∈ [0, T ].

Proof. Let η ∈ (0, 1] be such that τ < τ η(ϕ(u0)) and mη(t;ϕ(u0)) ≤
m(t;ϕ(u0)) + 1 for t ∈ [0, τ ]. By Lemma 3.2 with v0 = z0 = u0 and F = 0, we
then find a sequence {(sj, vj)}K

j=0 in [0, τ)×D satisfying the following conditions:

(i) 0 = s0 < s1 < · · · < sK−1 < T ≤ sK .

(ii) sj − sj−1 ≤ η for j = 1, 2, . . . , K.

(iii) ‖vj − vj−1 − (sj − sj−1)A(vj)vj‖X ≤ (sj − sj−1)η for j = 1, 2, . . . , K,
where v0 = u0.

(iv) ‖vj − vj−1‖Y ≤ η for j = 1, 2, . . . , K.

(v) ϕ(vj) ≤ mη(sj;ϕ(u0)) for j = 0, 1, . . . , K.

(vi) ‖A(vj)vj − (I − (sj − sj−1)A(vj))−1(A(vj−1)vj−1

+(sj−sj−1)B̃(vj−1, A(vj−1)vj−1))‖X ≤ (sj−sj−1)η for j = 1, 2, . . . , K.

Here it should be noticed that condition (v) implies that vj ∈ D(α) for 0 ≤ j ≤ K;
hence there exists r > 0 such that vj ∈ BY (r) ∩D for 0 ≤ j ≤ K .

Since the function vη : [0, T ] → X , defined by vη(t) = u0 for t = 0 and vj for
t ∈ (sj−1, sj] ∩ [0, T ] and j = 1, 2, . . . , K, is an η-approximate solution to (QE;
u0) on [0, T ] constrained in D(α), it follows from Lemma 5.1 and Proposition 4.7
that

sup{‖vη(t) − u(t)‖X ; t ∈ [0, T ]} → 0 as η → 0.

Let z0 ∈ Y be such that ‖z0 − A(u0)u0‖X ≤ η and define a sequence {zj}K
j=0 in

Y inductively by

(5.1) zj = (I − (sj − sj−1)A(vj))−1(zj−1 + (sj − sj−1)fw(sj−1))

for j = 1, 2, . . . , K. Since fw ∈ C([0, T ];X) by Lemma 5.4, we see that the
function zη : [0, T ] → X , defined by zη(t) = z0 for t = 0 and zj for t ∈ (sj−1, sj]∩
[0, T ] and j = 1, 2, . . . , K, is an η-approximate solution to (CP; A(u0)u0, fw)u.
By the first part in the proof of Lemma 5.3 and by Proposition 4.8, we have

sup{‖zη(t)− w(t)‖X ; t ∈ [0, T ]} → 0 for η → 0.
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By (vi) and (5.1) we have

(5.2)

‖zj−A(vj)vj‖vj ≤exp(ω(r)(1+η)(sj−sj−1))(‖zj−1−A(vj−1)vj−1‖vj−1

+ cX(r)(sj − sj−1)‖B̃(vj−1, A(vj−1)vj−1)

− B̃(u(sj−1), w(sj−1))‖X + cX(r)(sj − sj−1)η)

for j = 1, 2, . . . , K. Lemma 5.4 implies that

(5.3)

‖B̃(vj−1, A(vj−1)vj−1) − B̃(u(sj−1), w(sj−1))‖X

≤ ρB(R; sup{‖vη(t) − u(t)‖X ; t ∈ [0, T ]})
+ LB(R)cX(r)‖A(vj−1)vj−1 − zj−1‖vj−1

+ LB(R) sup{‖zη(t) −w(t)‖X ; t ∈ [0, T ]}

for j = 1, 2, . . . , K, where R = max(cA(r)r, sup{‖w(t)‖X ; t ∈ [0, T ]}). Com-
bining (5.2) and (5.3), we have

(5.4)
‖zj− A(vj)vj‖vj ≤ exp((ω(r)(1+ η) + cX(r)2LB(R))(sj − sj−1))

×(‖zj−1 − A(vj−1)vj−1‖vj−1 + cX(r)C(R, η)(sj − sj−1))

for j = 1, 2, . . . , K, where

C(R, η) = ρB(R; sup{‖vη(t) − u(t)‖X ; t ∈ [0, T ]})
+ LB(R) sup{‖zη(t) − w(t)‖X ; t ∈ [0, T ]}+ η.

Solving (5.4), we obtain the inequality

‖zj − A(vj)vj‖vj ≤ exp((ω(r)(1 + η) + cX(r)2LB(R))sj)cX(r)(C(R, η)sj + η)

for j = 0, 1, . . . , K. This implies that

sup{‖zη(t) −A(vη(t))vη(t)‖X ; t ∈ [0, T ]} → 0 as η → 0.

Since vη(t) → u(t) and A(vη(t))vη(t) → w(t) in X uniformly on [0, T ], we see
that vη(t) converges in Y to u(t) uniformly on [0, T ] and that A(u(t))u(t) = w(t)
for t ∈ [0, T ]. It follows from (iii) and (v) that u is a classical solution to (QE; u0)
on [0, T ] satisfying ϕ(u(t)) ≤ m(t;ϕ(u0)) for t ∈ [0, T ].

Proof of Theorem 2.9. Let u be the unique mild solution to (QE; u0) on [0, τ̄]
such that u is a uniform limit of ε-approximate solutions constrained in D(α). The
existence of u is ensured by Lemma 5.2.
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We first show that there exist T ∈ (0, τ̄ ] and v ∈ C([0, T ];X) such that v is
a mild solution to (CP; A(u0)u0, f

v)u on [0, T ], where fv(t) = B̃(u(t), v(t)) for
t ∈ [0, T ]. To do this, we introduce a subset X of C([0, T ];X) defined by

X = {v ∈ C([0, T ];X); v(0) = A(u0)u0, ‖v(t)−A(u0)u0‖X ≤ 1 for t ∈ [0, T ]},
where T ∈ (0, τ̄ ] is yet to be determined. It is obvious that X is a nonempty, closed
subset of C([0, T ];X). Let v ∈ X. Since A(u0)u0 ∈ Y and fv ∈ C([0, T ];X),
it follows from Lemma 5.3 and Proposition 4.8 that there exists a unique mild
solution zv ∈ C([0, T ];X) to (CP; A(u0)u0, fv)u on [0, T ]. We define a mapping
Φ : X → C([0, T ];X) by Φv = zv for v ∈ X. By Proposition 4.8, Lemmas 4.10
and 5.4, we have

‖(Φv)(t)− y‖X ≤M(τ̄ , α)(‖A(u0)u0 − y‖X + T (MB(R) + cA(r)‖y‖Y )),

‖(Φv)(t)− (Φv̂)(t)‖X ≤M(τ̄ , α)LB(R)T‖v − v̂‖∞,
for t ∈ [0, T ] and y ∈ Y , whereR = ‖A(u0)u0‖X +1 and y ∈ Y . Since A(u0)u0 ∈
Y , an element y ∈ Y can be chosen such that (M(τ̄ , α)+1)‖A(u0)u0−y‖X ≤ 1/2.
It follows that for sufficiently small T ∈ (0, τ̄ ], Φ maps X into itself and Φ is strictly
contractive on X. By Banach’s fixed point theorem, the mapping Φ has a unique
fixed point v in X. This implies that v is a mild solution to (CP; A(u0)u0, fv)u on
[0, T ].

Now, we define tmax by the supremum of T ∈ [0, τ̄ ] such that there exists
v ∈ C([0, T ];X) being a mild solution to (CP; A(u0)u0, fv)u on [0, T ]. Then, we
have 0 < tmax ≤ τ̄ by the above argument. By Proposition 4.8 and the definition of
tmax there exists v̄ ∈ C([0, tmax);X) such that for each T ∈ (0, tmax) the restriction
of v̄ on [0, T ] is a mild solution to (CP; A(u0)u0, f v̄)u on [0, T ]. By Lemma 5.5
we see that u is a unique classical solution to (QE; u0) on [0, tmax) satisfying the
following conditions:

(5.5) ϕ(u(t)) ≤ m(t;ϕ(u0)) for t ∈ [0, tmax).

(5.6) v̄(t) = A(u(t))u(t) for t ∈ [0, tmax).

Once the fact that tmax = τ̄ is shown, the proof of Theorem 2.9 is complete because
τ̄ is an arbitrary number in (0, τ0).

Now, assume to the contrary that τ̄ > tmax. Then, we see that the limit
limt↑tmax u(t) exists in Y . Indeed, take F ∈ C([0, tmax];X) arbitrarily. Then,
by Lemma 5.3 with T = tmax, we see that there exists a mild solution z ∈
C([0, tmax];X) to (CP; A(u0)u0, F )u. By Proposition 4.8, we have

(5.7) ‖A(u(t))u(t)− z(t)‖X ≤M(τ̄ , α)
∫ t

0
‖f v̄(σ)− F (σ)‖X dσ
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for t ∈ [0, tmax); hence

lim sup
t, t̂ ↑ tmax

‖A(u(t))u(t)−A(û(t))û(t)‖X ≤ 2M(τ̄ , α)
∫ tmax

0

‖f v̄(σ)− F (σ)‖X dσ.

By (5.5) and (5.6) we have ‖v̄(t)‖X ≤ cA(r)r for t ∈ [0, tmax); hence f v̄ ∈
L∞(0, tmax;X) ⊂ L1(0, tmax;X) by Lemma 5.4. It follows by density argument
that the limit limt↑tmax A(u(t))u(t) exists in X . Since u is a classical solution to
(QE; u0) on [0, tmax) satisfying u(t) ∈ D(α) for t ∈ [0, tmax), we have

‖u(t) − u(t̂)‖X ≤
∫ t̂

t

‖A(u(σ))u(σ)‖X dσ ≤ cA(r)r|t̂− t| → 0 as t, t̂ ↑ tmax.

These facts imply that the limit ū := limt ↑ tmax u(t) exists in Y .
Now, we introduce the space X̃ of all elements z ∈ C([0, T ];X) such that

z(t) = A(u(t))u(t) (= v̄(t)) for t ∈ [0, tmax) and ‖z(t) − A(ū)ū‖X ≤ 1 for
t ∈ [tmax, T ], and the mapping Ψ : X̃ → C([0, T ];X) defined by Ψz = wz where
wz is a unique mild solution to (CP; A(u0)u0, fz)u on [0, T ], where T ∈ (tmax, τ̄ ]
will be determined in the later arguments. It is easily seen that X̃ is a nonempty,
closed subset of C([0, T ];X) and that the mapping Ψ is unambiguous by Proposition
4.8 and Lemma 5.3. We want to show that Ψ has a unique fixed point in X̃ for some
T ∈ (tmax, τ̄ ]. To do this, let z ∈ X̃. To demonstrate that Ψ maps X̃ into itself,
we notice that (Ψz)(t) = v̄(t) for t ∈ [0, tmax), because fz(t) = B̃(u(t), v̄(t)) for
t ∈ [0, tmax). Consider the function g ∈ C([0, τ̄ ];X) defined by

g(t) =

{
B̃(u(t), v̄(t)) for t ∈ [0, tmax),

B̃(ū, A(ū)ū) for t ∈ [tmax, τ̄ ],

and let w̃ be a mild solution to (CP; A(u0)u0, g)u on [0, τ̄ ]. The existence of w̃
is guaranteed by Lemma 5.3. Since fz(t) = g(t) for t ∈ [0, tmax) we find by
Proposition 4.8

(5.8) ‖(Ψz)(t)− w̃(t)‖X ≤M(τ̄ , α)
∫ t

tmax

‖fz(σ)− B̃(ū, A(ū)ū)‖X dσ

for t ∈ [tmax, T ]. Since w̃(t) = v̄(t) for t ∈ [0, tmax) (by uniqueness of mild
solutions), we see by (5.6) that w̃(tmax) = A(ū)ū. Since ‖u(t)‖Y ≤ r for t ∈
[0, tmax) (by (5.5)), we have ‖fz(t)‖X = ‖B̃(u(t), z(t))‖X ≤MB(cA(r)r+1) for
t ∈ [0, T ] (by Lemma 5.4). It follows from (5.8) that

‖(Ψz)(t)−A(ū)ū‖X ≤ ‖w̃(t)− w̃(tmax)‖X +2M(τ̄ , α)(t− tmax)MB(cA(r)r+1)
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for t ∈ [tmax, T ]. This inequality implies that Ψ maps X̃ into itself for T sufficiently
close to tmax. Let z, ẑ ∈ X̃. By Proposition 4.8 we have

‖(Ψz)(t)− (Ψẑ)(t)‖X ≤M(τ̄ , α)(T − tmax)LB(cA(r)r+ 1)‖z − ẑ‖∞
for t ∈ [tmax, T ]. This means that the mapping Ψ is strictly contractive on X̃ if T
is chosen sufficiently close to tmax. We thus see that for some T ∈ (tmax, τ̄ ], the
mapping Ψ has a unique fixed point w in X̃, and so w is a mild solution to
(CP; A(u0)u0, fw)u on [0, T ]. This contradicts the maximality of tmax; hence
tmax = τ̄ .

6. QUASI-LINEAR WAVE EQUATIONS OF KIRCHHOFF TYPE WITH

ACOUSTIC BOUNDARY CONDITIONS

We consider the mixed problem for the quasi-linear wave equation of Kirchhoff
type with acoustic boundary condition

utt(x, t) − β(‖∇u(·, t)‖2)∆u(x, t) + νut(x, t) = 0 in Ω × (0,∞),

u(x, t) = 0 on Γ0 × (0,∞),

m(x)δtt(x, t) + d(x)δt(x, t) + k(x)δ(x, t) + ρut(x, t) = 0 on Γ1 × (0,∞),

∂u(x,t)
∂n = δt(x, t) on Γ1 × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = v0(x), δ(x, 0) = δ0(x), δt(x, 0) = σ0(x),

where Ω is a bounded domain of R
N with smooth boundary Γ = Γ0 ∪ Γ1. Here

Γ0 
= ∅, Γ0 and Γ1 are closed and disjoint, and n represents the unit outward normal
to Γ. The symbol ‖w‖ is defined by ‖w‖ = (

∫
Ω |w(x)|2 dx)1/2 for w ∈ L2(Ω).

The function β ∈ C1(R+; R) is assumed to satisfy that β(s) ≥ β0 > 0 for s ∈ R+,
and ν, ρ > 0. It is also assumed that d is a nonnegative, continuous function on Γ1

and that m, k are positive, continuous functions on Γ1.
Matsuyama and Ikehara [12] studied the global existence and decay property of

solutions in the case where Γ1 = ∅. Frota and Goldstein [6] discussed the global
well-posedness for the Carrier equations with acoustic boundary conditions by using
Galerkin’s and energy method.

Theorem 6.1. (I) There exists r > 0 such that for each initial data u 0 ∈ H1(Ω)
with γ(u0) = 0 on Γ0 and ∆u0 ∈ L2(Ω), v0 ∈ H1(Ω) with γ(v0) = 0 on
Γ0, δ0, σ0 ∈ L2(Γ1) satisfying ‖∇u0‖ + ‖∆u0‖ + ‖∇v0‖ + |δ0| + |σ0| ≤ r and∫
Ω(∆u0)φ+∇u0·∇φ dx =

∫
Γ1
σ0γ(φ) dS for any φ ∈ H 1(Ω) with γ(φ) = 0 on Γ0,

the mixed problem mentioned above has a unique solution u ∈ C 1([0,∞);H1(Ω))∩
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C2([0,∞);L2(Ω)) and δ ∈ C2([0,∞);L2(Γ1)) such that γ(u) = 0 on Γ0, ∆u ∈
C([0,∞);L2(Ω)) and

∫
Ω(∆u)φ+∇u ·∇φ dx =

∫
Γ1
δtγ(φ) dS for any φ ∈ H 1(Ω)

with γ(φ) = 0 on Γ0, where γ : H1(Ω) → L2(Γ) is the trace map.
(II) Assume in addition that d is positive on Γ 1. Then, the following exponential

decay of the energy holds:

‖∇u(t)‖ + ‖ut(t)‖+ |δ(t)|+ |δt(t)| ≤M exp(−ωt) for t ≥ 0.

Proof. Let V = {v ∈ H 1(Ω); γ(v) = 0 on Γ0} andH(∆,Ω) = {v ∈ V ; ∆v ∈
L2(Ω)}. Notice that

(6.1) ‖v‖ ≤ C‖∇v‖ for v ∈ V ,

(6.2) |γ(v)| ≤ C‖∇v‖ for v ∈ V ,

where |w| := (
∫
Γ1

|w(x)|2 dS)1/2 for w ∈ L2(Γ1). For simplicity in notation, we
write u for γ(u) in the following arguments.

Let X = V ×L2(Ω)×L2(Γ1)×L2(Γ1) and let Y be the space of all elements
(u, v, δ, σ) ∈ H(∆,Ω)× V × L2(Γ1)× L2(Γ1) such that∫

Ω
(∆u)φ+ ∇u · ∇φ dx =

∫
Γ1

σφ dS

for any φ ∈ V . For simplicity in notation, the above identity is written as

〈∆u, φ〉+ 〈∇u,∇φ〉 = 〈σ, φ〉Γ1.

The spaces X and Y are real Banach spaces under the norms defined by

‖(u, v, δ, σ)‖X = (‖∇u‖2 + ‖v‖2 + |δ|2 + |σ|2)1/2 for (u, v, δ, σ) ∈ X
and

‖(u, v, δ, σ)‖Y = (‖∇u‖2 +‖∆u‖2 +‖∇v‖2 + |δ|2 + |σ|2)1/2 for (u, v, δ, σ) ∈ Y

respectively.
We use Theorem 2.9 with D = W = Y to solve the above-mentioned mixed

problem. For each (w, z, ξ, η) ∈ Y , define a linear operator A((w, z, ξ, η)) in X by

A((w, z, ξ, η))(u, v, δ, σ) = (v, β(‖∇w‖2)∆u− νv, σ,−(1/m)(dσ+ kδ + ρv))

for (u, v, δ, σ) ∈ D(A((w, z, ξ, η))) = Y . Then, we haveA((w, z, ξ, η)) ∈ B(Y,X)
by (6.2). By using the identity that

∆u = β(‖∇w‖2)−1(β(‖∇w‖2)∆u− νv) + νβ(‖∇w‖2)−1v
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and the property that β(s) ≥ β0 > 0 for s ∈ R+, condition (A1) is easily checked.
Condition (A2) is satisfied with the operator dA((w, z, ξ, η)) ∈ B(X,B(Y,X))
defined by

(dA((w, z, ξ, η))(w̃, z̃, ξ̃, η̃))(u, v, δ, σ) = (0, 2β′(‖∇w‖2)〈∇w,∇w̃〉∆u, 0, 0)

for (w, z, ξ, η), (u, v, δ, σ) ∈ Y and (w̃, z̃, ξ̃, η̃) ∈ X . We easily see that the operator
dA((w, z, ξ, η)) defined above satisfies condition (A3), using the continuity of β ′

on R+.
To check condition (A4), let r > 0 and (w, z, ξ, η) ∈ BY (r). By a routine

argument with the help of the Riesz representation theorem, we see that for each
λ > 0 and (u, v, δ, σ) ∈ X , there exists a unique (uλ, vλ, δλ, σλ) ∈ Y such that
(uλ, vλ, δλ, σλ) − λA((w, z, ξ, η))(uλ, vλ, δλ, σλ) = (u, v, δ, σ); namely

(6.3) (uλ − u)/λ = vλ

(6.4) (vλ − v)/λ = β(‖∇w‖2)∆uλ − νvλ

(6.5) (δλ − δ)/λ = σλ

(6.6) (σλ − σ)/λ = −(1/m)(dσλ + kδλ + ρvλ)

(6.7) 〈∆uλ, φ〉+ 〈∇uλ,∇φ〉 = 〈σλ, φ〉Γ1 for φ ∈ V .

To check the remained part of condition (A4), we employ the family of norms in
X defined by

‖(u, v, δ, σ)‖(w,z,ξ,η) = (ρ‖∇u‖2 + ρβ(‖∇w‖2)−1‖v‖2 + |k1/2δ|2 + |m1/2σ|2)1/2

for (w, z, ξ, η) ∈ Y . Clearly, condition (D1) is satisfied, since ρ > 0 and k,m are
positive continuous functions on Γ1. Substituting φ = vλ (= (uλ−u)/λ) ∈ V into
(6.7) we find, by (6.4) and (6.6),

β(‖∇w‖2)−1〈(vλ − v)/λ+ νvλ, vλ〉+ 〈∇uλ,∇(uλ − u)/λ〉
+〈σλ, (1/ρ)(m(σλ − σ)/λ+ dσλ + kδλ)〉Γ1 = 0.

By convexity of norms, we have

(6.8)
(‖(I−λA((w, z, ξ, η)))−1(u, v, δ, σ)‖2

(w,z,ξ,η)

−‖(u, v, δ, σ)‖2
(w,z,ξ,η))/λ+2νρβ(‖∇w‖2)−1‖vλ‖2+2|d1/2σλ|2 ≤ 0,

where vλ, σλ are defined by (uλ, vλ, δλ, σλ) = (I − λA((w, z, ξ, η)))−1(u, v, δ, σ).
This inequality, together with condition (D1), implies that the remained part of (A4)
is satisfied.
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To check (D2), let (u, v, δ, σ) ∈ X , (w, z, ξ, η), (wλ, zλ, ξλ, ηλ) ∈ BY (r)
and ‖(wλ, zλ, ξλ, ηλ)− λA((wλ, zλ, ξλ, ηλ))(wλ, zλ, ξλ, ηλ) − (w, z, ξ, η)‖X ≤ λη.
Then, we notice that ‖∇w‖, ‖∇wλ‖, ‖∇zλ‖ ≤ r and

(6.9) ‖∇(wλ − w− λzλ)‖ ≤ λη.

By the inequality (6.8) we find that

‖(I − λA((wλ, zλ, ξλ, ηλ)))−1(u, v, δ, σ)‖2
(wλ,zλ,ξλ,ηλ) ≤ ‖(u, v, δ, σ)‖2

(wλ,zλ,ξλ,ηλ).

Condition (D2) follows from this inequality combined with (6.9) and the inequalities
that

‖(u, v, δ, σ)‖2
(wλ,zλ,ξλ,ηλ) − ‖(u, v, δ, σ)‖2

(w,z,ξ,η)

‖(u, v, δ, σ)‖2
(w,z,ξ,η)

≤ |β(‖∇w‖2) − β(‖∇wλ‖2)|
β(‖∇wλ‖2)

and β(‖∇wλ‖2)−1|β(‖∇w‖2)−β(‖∇wλ‖2)| ≤ 2β−1
0 Mβ′(r2)r‖∇(w−wλ)‖, where

Mβ′(R) = sup{|β′(s)|; s ∈ [0, R]} for R ∈ R+.
To check (ϕ)-(R) we employ the three functionals on X defined by

φ1(u, v, δ, σ) = ‖(u, v, δ, σ)‖2
(u,v,δ,σ),

φ2(u, v, δ, σ) = β(‖∇u‖2)−1ρ‖νu+ v‖2 + ρ‖∇u‖2 + |m1/2σ|2 + |k1/2δ|2,
φ3(u, v, δ, σ) = |ρu+mσ + dδ|2 + |(km)1/2δ|2

and the functional on Y defined by

φ4(u, v, δ, σ) = ‖A((u, v, δ, σ))(u, v, δ, σ)‖2
(u,v,δ,σ).

Let (u, v, δ, σ) ∈ Y . Then, we see by Proposition 2.6 that there exists a sequence
{(uλ, vλ, δλ, σλ)} in Y such that

(6.10) (uλ − u)/λ = vλ,

(6.11) (vλ − v)/λ = β(‖∇uλ‖2)∆uλ − νvλ,

(6.12) (δλ − δ)/λ = σλ,

(6.13) (σλ − σ)/λ = −(1/m)(dσλ + kδλ + ρvλ),

(6.14) 〈∆uλ, φ〉+ 〈∇uλ,∇φ〉 = 〈σλ, φ〉Γ1 for any φ ∈ V

and such that uλ → u in V , ∆uλ → ∆u in L2(Ω), vλ → v in V , σλ → σ in L2(Γ1)
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and δλ → δ in L2(Γ1) as λ ↓ 0. By (6.8) with (w, z, ξ, η) = (uλ, vλ, δλ, σλ), we
find that

(φ1(uλ, vλ, δλ, σλ) − φ1(u, v, δ, σ))/λ+ 2νρβ(‖∇uλ‖2)−1‖vλ‖2 + 2|d1/2σλ|2

≤ ρ(β(‖∇uλ‖2)−1 − β(‖∇u‖2)−1)‖v‖2/λ.

Since λ−1(β(‖∇uλ‖2) − β(‖∇u‖2)) =
∫ 1
0 2β′(‖∇(θuλ + (1 − θ)u)‖2)〈∇(θuλ +

(1 − θ)u),∇vλ〉 dθ we have

(6.15)

lim supλ↓0(φ1(uλ, vλ, δλ, σλ) − φ1(u, v, δ, σ))/λ

+2νρβ(‖∇u‖2)−1‖v‖2 + 2|d1/2σ|2

≤ −2ρβ′(‖∇u‖2)β(‖∇u‖2)−2〈∇u,∇v〉‖v‖2.

Substituting φ = vλ + νuλ ∈ V into (6.14) and noting that (vλ − v)/λ + νvλ =
((vλ + νuλ) − (v + νu))/λ we find, by a way similar to the derivation of (6.15),

lim supλ↓0(φ2(uλ, vλ, δλ, σλ) − φ2(u, v, δ, σ))/λ+ 2νρ‖∇u‖2 + 2|d1/2σ|2

≤ −2ρβ′(‖∇u‖2)β(‖∇u‖2)−2〈∇u,∇v〉‖νu+ v‖2 + 2νρ〈σ, u〉Γ1.

Substituting (6.10) and (6.12) into (6.13) we have

(6.16) ((ρuλ +mσλ + dδλ) − (ρu+mσ + dδ))/λ+ kδλ = 0.

Since 〈kδλ, ρuλ+mσλ+dδλ〉Γ1 = 〈kδλ, ρuλ〉Γ1+〈kδλ, m(δλ−δ)/λ〉Γ1+|(kd)1/2δλ|2,
we take the inner product of (6.16) and ρuλ +mσλ + dδλ to find that

lim sup
λ↓0

(φ3(uλ, vλ, δλ, σλ)− φ3(u, v, δ, σ))/λ+ 2〈kδ, ρu〉Γ1 + 2|(kd)1/2δ|2 ≤ 0.

By (6.8) we have

(6.17)

(‖(I−λA((uλ,vλ,δλ,σλ)))−1A((uλ,vλ,δλ,σλ))(u, v,δ,σ)‖2
(uλ,vλ,δλ,σλ)

−‖A((uλ, vλ, δλ, σλ))(u, v, δ, σ)‖2
(uλ,vλ,δλ,σλ))/λ

≤ −2νρβ(‖∇uλ‖2)−1‖β(‖∇uλ‖2)∆uλ − νvλ‖2

−2|d1/2(1/m)(dσλ + kδλ + ρvλ)|2.
By the definition of the norm ‖(u, v, δ, σ)‖(w,z,ξ,η) we have

(6.18)

(‖A((uλ, vλ, δλ, σλ))(u, v, δ, σ)‖2
(uλ,vλ,δλ,σλ)

−‖A((u, v, δ, σ))(u, v, δ, σ)‖2
(u,v,δ,σ))/λ

= ρ(β(‖∇uλ‖2)−1‖β(‖∇uλ‖2)∆u− νv‖2

−β(‖∇u‖2)−1‖β(‖∇u‖2)∆u− νv‖2)/λ.
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Adding (6.17) and (6.18), and passing to the limsup as λ ↓ 0, we have

(6.19)

lim sup
λ↓0

(φ4(uλ, vλ, δλ, σλ) − φ4(u, v, δ, σ))/λ

+2ρνβ(‖∇u‖2)−1‖β(‖∇u‖2)∆u− νv‖2

+2|d1/2(1/m)(ρv+ dσ + kδ)|2

≤ 2ρβ(‖∇u‖2)−2β′(‖∇u‖2)〈∇u,∇v〉‖β(‖∇u‖2)∆u− νv‖2

+4ρνβ(‖∇u‖2)−2β′(‖∇u‖2)〈∇u,∇v〉〈β(‖∇u‖2)∆u−νv, v〉.
Consider the functional ϕ0 on Y defined by ϕ0 = φ1 +φ4. Then we have, by (6.15)
and (6.19),

lim sup
λ↓0

(ϕ0(uλ, vλ, δλ, σλ) − ϕ0(u, v, δ, σ))/λ

+2νρβ(‖∇u‖2)−1(‖v‖2 + ‖β(‖∇u‖2)∆u− νv‖2)

≤ 2(ν+1)ρβ(‖∇u‖2)−2|β′(‖∇u‖2)|‖∇u‖‖∇v‖(‖v‖2+‖β(‖∇u‖2)∆u−νv‖2).

Since

(6.20) 2ρ‖∇u‖‖∇v‖ ≤ ρ(‖∇u‖2 + ‖∇v‖2) ≤ ϕ0(u, v, δ, σ),

we have

(6.21)
lim sup

λ↓0
(ϕ0(uλ, vλ, δλ, σλ)− ϕ0(u, v, δ, σ))/λ

≤ (f0(ϕ0(u, v, δ, σ))− 2ν)+ϕ0(u, v, δ, σ),

where s+ = max(s, 0) for s ∈ R and f0 is a nondecreasing, continuous function
on R+ such that f0(0) = 0. The function G, defined by

G(s) = (f0(s) − 2ν)+s

for s ∈ R+, is a comparison function such that for each α0 > 0 with f0(α0) < 2ν,
the Cauchy problem for G with the initial condition r(0) = α0 has the global
maximal solution m(t;α0) = α0. Since

lim sup
λ↓0

(ϕ0(uλ, vλ, δλ, σλ) − ϕ0(u, v, δ, σ))/λ≤ G(ϕ0(u, v, δ, σ)),

condition (ϕ)-(R) is shown to be satisfied. Theorem 2.9 therefore asserts that for
each α0 > 0 with f0(α0) < 2ν, the mixed problem has a unique solution (u, δ) in
the class

C([0,∞);H(∆,Ω))∩ C1([0,∞); V ) ∩ C2([0,∞);L2(Ω))× C2([0,∞);L2(Γ1))
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if the initial data (u0, v0, δ0, σ0) satisfies ϕ0(u0, v0, δ0, σ0) ≤ α0.
If d is positive on Γ1 then the exponential decay of the energy is obtained. To

do this, we use the functional ϕ1 on X defined by ϕ1 = aφ1 + bφ2 + φ3, where
a, b > 0 are yet to be determined. We have

lim sup
λ↓0

(ϕ1(uλ, vλ, δλ, σλ) − ϕ1(u, v, δ, σ))/λ

+2νρ(aβ(‖∇u‖2)−1‖v‖2 + b‖∇u‖2) + 2(a+ b)d0|σ|2 + 2k0d0|δ|2

≤ (2/β0)|β′(‖∇u‖2)|‖∇u‖‖∇v‖ϕ1(u, v, δ, σ)+ 2bνρ〈σ, u〉Γ1 − 2ρ〈kδ, u〉Γ1

where d0, k0 are positive constants such that d(x) ≥ d0 and k(x) ≥ k0 for x ∈ Γ1.
Since |〈kδ, u〉Γ1| ≤ ε0|δ|2+Cε0‖∇u‖2 for any ε0 > 0 and |〈σ, u〉Γ1| ≤ ε1‖∇u‖2 +
Cε1 |σ|2 for any ε1 > 0, we find

lim sup
λ↓0

(ϕ1(uλ, vλ, δλ, σλ) − ϕ1(u, v, δ, σ))/λ

+(c0 − f1(ϕ0(u, v, δ, σ)))ϕ1(u, v, δ, σ)≤ 0,

by choosing ε0, b, ε1 and a in order so that 2ρε0 ≤ k0d0, 2ρ(Cε0 + bνε1) ≤ νρb
and 2bνρCε1 ≤ (a + b)d0 and noting that ϕ1(u, v, δ, σ) ≤ c(β(‖∇u‖2)−1‖v‖2 +
‖∇u‖2+|σ|2+|δ|2) for some constant c > 0. Here f1 is a nondecreasing, continuous
function on R+ such that f1(0) = 0 and we have used (6.20). This combined
with (6.21) implies that condition (ϕ)-(R) is satisfied with ϕ = (ϕ 0, ϕ1) and the
comparison function g = (g0, g1) defined by g0(r0, r1) = (f0(r0) − 2ν)+r0 and
g1(r0, r1) = (f1(r0) − c0)r1 for r = (r0, r1) ∈ R

2
+. If α0 > 0 is chosen such that

f0(α0) < 2ν and f1(α0) < c0, then the maximal solution m(t;α) of the Cauchy
problem for g with initial condition r(0) = α = (α0, α1) is given by{

m0(t;α) = α0,

m1(t;α) = exp((f1(α0) − c0)t)α1.

We therefore have ϕ0(u(t), v(t), δ(t), σ(t)) ≤ α0 and ϕ1(u(t), v(t), δ(t), σ(t)) ≤
exp((f1(α0) − c0)t)α1 for t ≥ 0 if the initial data (u0, v0, δ0, σ0) satisfies the
two conditions that ϕ0(u0, v0, δ0, σ0) ≤ α0 and ϕ1(u0, v0, δ0, σ0) ≤ α1. Since
‖(u, v, δ, σ)‖2

X ≤ f2(ϕ0(u, v, δ, σ))ϕ1(u, v, δ, σ) for (u, v, δ, σ) ∈ X , where f2 is a
nondecreasing function on R+, we have ‖∇u‖2+‖ut‖2+|δ|2+|δt|2 ≤M exp(−ωt)
for t ≥ 0.

7. QUASI-LINEAR WAVE EQUATIONS WITH WENTZELL BOUNDARY CONDITIONS

The systematic study of the second order Cauchy problems for operators with
Wentzell boundary conditions was initiated by Favini, Goldstein, Goldstein and
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Romanelli [5]. In [7] a general framework was developed which allows to study the
initial-boundary value problems for quasi-linear equations with Wentzell boundary
conditions. This section is devoted to another approach to such problems. We
apply Theorem 2.8 to the initial-boundary value problem for the quasi-linear wave
equation with Wentzell boundary condition

(7.1)



utt(x, t) = φ(x, ux(x, t))uxx(x, t) + ψ(x, u(x, t), ux(x, t), ut(x, t))

for x ∈ [0, 1],

φ(j, ux(j, t))uxx(j, t) + ψ(j, u(j, t), ux(j, t), ut(j, t))

= βj(ux(j, t)) + γj(u(j, t)) for j = 0, 1.

Theorem 7.1. Assume that the following conditions are satisfied:
(φ) φ ∈ C1([0, 1] × R; R) and there exists φ0 > 0 such that φ(x, p) ≥ φ0 for

(x, p) ∈ [0, 1]× R.
(ψ) ψ ∈ C1([0, 1]× R × R × R; R).
(β) For j = 0, 1, βj ∈ C2(R; R) and βj(0) = 0.
(γ) For j = 0, 1, γj ∈ C2(R; R) and γj(0) = 0.

Then for each (u0, v0) ∈ C2([0, 1]; R)×C1([0, 1]; R) with

φ(j, u′0(j))u
′′
0(j) + ψ(j, u0(j), u′0(j), v0(j)) = βj(u′0(j)) + γj(u0(j))

for j = 0, 1, there exist T > 0 and a unique u ∈ C([0, T ];C 2([0, 1]; R)) ∩
C1([0, T ];C1([0, 1]; R)) ∩ C2([0, T ];C([0, 1]; R)) such that u satisfies equation
(7.1) for t ∈ [0, T ] and the initial condition u(x, 0) = u0(x) and ut(x, 0) = v0(x)
for x ∈ [0, 1].

Proof. We use the homogeneous reduction technique due to Kato [10]. Let
X be the space of all (u, v, k, ξ, η) ∈ C1[0, 1]× C[0, 1] × R × R

2 × R
2 such that

u(j) = ξj for j = 0, 1, and let Y be the space of all (u, v, k, ξ, η) ∈ C2[0, 1] ×
C1[0, 1]×R×R

2×R
2 such that u(j) = ξj and v(j) = ηj for j = 0, 1. The spacesX

and Y are real Banach spaces under the norms ‖(u, v, k, ξ, η)‖X = ‖u‖C1 +‖v‖C +
|k|+‖ξ‖R2 +‖η‖R2 and ‖(u, v, k, ξ, η)‖Y = ‖u‖C2 +‖v‖C1 + |k|+‖ξ‖R2 +‖η‖R2,
respectively.

Let D = {(u, v, k, ξ, η) ∈ Y ; k = 1}. To solve the problem (7.1), we ap-
ply Theorem 2.8 to the family {A((w, z, ζ, f, g)); (w, z, ζ, f, g) ∈ Y } in B(Y,X)
defined by

A((w, z, ζ, f, g))(u, v, k, ξ, η)

= (v, φ(·, w′)u′′ + kψ(·, w,w′, z), 0, η, B(w)u+C(w)ξ),
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where

B(w)u =
((∫ 1

0
β′j(θw

′(j)) dθ
)
u′(j)

)
j=0,1

for w ∈ C2[0, 1] and u ∈ C1[0, 1]

and

C(w)ξ =
((∫ 1

0
γ ′j(θw(j)) dθ

)
ξj

)
j=0,1

for w ∈ C2[0, 1] and ξ = (ξ0, ξ1) ∈ R
2.

Conditions (A1) through (A3) are easily checked. To check condition (A4) we need
the following lemma.

Lemma 7.2. ([17, Proposition 2.1] and [7]). (I) Let E = {(p, q) ∈ C1[0, 1]×
C[0, 1]; p(0) = p(1) = 0} and w ∈ C2[0, 1]. Define an operator A0(w) in E by{

(A0(w)(p, q))(x) = (q(x), φ(x, w′(x))p′′(x))

D(A0(w)) = {(p, q) ∈ C2[0, 1]×C1[0, 1]; p(0) = p(1) = 0, q(0) = q(1) = 0}.

Then the following assertions hold:

(i) The space E is a real Banach space under the norm

‖(p, q)‖w = max( sup{|q(x) +
√
φ(x, w′(x))p′(x)|; x ∈ [0, 1]},

sup{|q(x)− √
φ(x, w′(x))p′(x)|; x ∈ [0, 1]})

for (p, q) ∈ E . By Ew we denote the space E equipped with the norm
‖(p, q)‖w.

(ii) For r > 0 with ‖w‖C2 ≤ r, there exists ω(r) ≥ 0 such that for any λ > 0
with λω(r) < 1, R(I − λA0(w)) = Ew and

‖(I − λA0(w))−1(p, q)‖w ≤ (1 − λω(r))−1‖(p, q)‖w for (p, q) ∈ Ew.

(II) The family {‖(p, q)‖w;w ∈ C2[0, 1]} of the norms defined above satisfies the
following conditions:

(i) For each r > 0 there exists ME(r) > 0 such that

(7.2) ME(r)−1(‖p‖C1 + ‖q‖C) ≤ ‖(p, q)‖w ≤ME(r)(‖p‖C1 + ‖q‖C)

for (p, q) ∈ E and ‖w‖C2 ≤ r.

(ii) For each r > 0 there exists LE(r) > 0 such that
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(7.3) ‖(p, q)‖w ≤ exp(LE(r)‖w− ŵ‖C1)‖(p, q)‖ŵ

for (p, q) ∈ E and ‖w‖C2, ‖ŵ‖C2 ≤ r.

The operator L0 from R
2 into C∞[0, 1], defined by (L0ξ)(x) = (1−x)ξ0+xξ1

for x ∈ [0, 1], plays an important role in verifying condition (A4). Such an operator
is called a Dirichlet operator. Let (u, v, k, ξ, η) ∈ X and (w, z, ζ, f, g) ∈ BY (r) ∩
D. Set p = u−L0ξ and q = v−L0η. Then we apply Banach’s fixed point theorem
to the mapping Φ from Ew × R

2 × R
2 into itself, defined by

Φ((p̃, q̃), ξ̃, η̃) = ((I − λA0(w))−1((p, q) + λ(0, kψ(·, w, w′, z)− L0d̃(w))),

ξ + λη̃, η+ λd̃(w))

for (p̃, q̃) ∈ Ew and ξ̃, η̃ ∈ R
2, where d̃(w) := B(w)(p̃ + L0ξ̃) + C(w)ξ̃ for

w ∈ C2[0, 1]. By Lemma 7.2, this yields that for sufficiently small λ > 0 depending
on r, the problem

((pλ, qλ) − (p, q))/λ= A0(w)(pλ, qλ) + (0, kλψ(·, w,w′, z)− L0d̃(w)),

(kλ − k)/λ = 0,

(ξλ − ξ)/λ = ηλ,

(ηλ − η)/λ = d̃(w)

has a solution (pλ, qλ, kλ, ξλ, ηλ) ∈ C2[0, 1]× C1[0, 1]× R × R
2 × R

2 satisfying
that |kλ| = |k| and

‖(pλ, qλ)‖w + ‖ξλ‖R2 + ‖ηλ‖R2

≤ (1− λω(r))−1(‖(p, q)‖w + λC(r)(|kλ| + ‖pλ‖C1 + ‖ξλ‖R2))

+‖ξ‖R2 + λ‖ηλ‖R2 + ‖η‖R2 + λC(r)(‖pλ‖C1 + ‖ξλ‖R2).

A combination of the above two estimates shows that

(7.4)
(1 − λβ(r))(‖(pλ, qλ)‖w + |kλ| + ‖ξλ‖R2 + ‖ηλ‖R2)

≤ ‖(p, q)‖w + |k|+ ‖ξ‖R2 + ‖η‖R2.

We employ the family {‖(u, v, k, ξ, η)‖(w,z,ζ,f,g); (w, z, ζ, f, g) ∈ Y } of norms in
X defined by

‖(u, v, k, ξ, η)‖(w,z,ζ,f,g) = ‖(u− L0ξ, v − L0η)‖w + |k|+ ‖ξ‖R2 + ‖η‖R2.



336 Toshitaka Matsumoto and Naoki Tanaka

Condition (D1) follows from (7.2). The inequality (7.4) together with (7.3) im-
plies condition (D2). If we set uλ := pλ + L0ξλ and vλ := qλ + L0ηλ, then
we see that (uλ, vλ, kλ, ξλ, ηλ) is a solution of the equation (uλ, vλ, kλ, ξλ, ηλ) −
λA((w, z, ζ, f, g))(uλ, vλ, kλ, ξλ, ηλ) = (u, v, k, ξ, η) and

(1− λβ(r))‖(uλ, vλ, kλ, ξλ, ηλ)‖(w,z,ζ,f,g) ≤ ‖(u, v, k, ξ, η)‖(w,z,ζ,f,g).

This means that condition (A4) is satisfied. If k = 1 then kλ(= k) = 1; hence
condition (2.1) is satisfied. By condition (φ), for each α > 0 there exists r > 0
such that w ∈ C2[0, 1] and ‖(p, q)‖w ≤ α imply that ‖p′‖C , ‖q‖C ≤ r; from which
condition (2.4) holds.
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