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ABSTRACT CAUCHY PROBLEMS FOR QUASI-LINEAR EVOLUTION
EQUATIONS WITH NON-DENSELY DEFINED OPERATORS

Toshitaka Matsumoto and Naoki Tanaka

Abstract. In this paper we study the abstract Cauchy problem for quasi-linear
evolution equation «'(¢t) = A(u(t))u(t), where {A(w);w € W} is a family
of closed linear operators in a real Banach space X such that D(A(w)) =Y
for w € W, and W is an open subset of another Banach space Y which
is continuously embedded in X. The purpose of this paper is not only to
establish a ‘global’ well-posedness theorem without assuming that Y is dense
in X but also to propose a new type of dissipativity condition which is closely
related with the continuous dependence of solutions on initial data.

1. INTRODUCTION

This paper is devoted to the abstract Cauchy problem for the quasi-linear evo-
lution equation

(QE; uo) { v = Aty fort < 0.7),

u(0) = o,

where {A(w); w € W} is a family of closed linear operators in a real Banach space
X such that D(A(w)) DY forw € W, and W is an open subset of another Banach
space Y which is continuously embedded in X.

The study of “local’ well-posedness of the Cauchy problem (QE; ug) was ini-
tiated by Kato [9] in the case where X and Y are reflexive and Y is dense in X.

Received February 18, 2005, revised May 26, 2005.

Communicated by Sen-Yen Shaw.

2000 Mathematics Subject Classification: Primary 34G20; Secondary 47H17, 47J35.

Key words and phrases: Abstract Cauchy problem, Quasi-linear evolution equation, Hille-Yosida
operator, Mild solution, Comparison function.

The authors are greatly indebted to Professor Sen-Yen Shaw for kind help and to the referee for
careful reading. This work is partially supported by the Grant-in-Aid for Scientific Research (C)(2)
No0.16540153, Japan Society for the Promotion of Science.

295



296 Toshitaka Matsumoto and Naoki Tanaka

After his pioneering work, Sanekata [15] successfully eliminated the reflexivity con-
dition and his results sheded some new light on the problems for partial differential
equations in spaces of continuous functions. (See also Kato [11].)

It is necessary to improve their results, in order to get solutions in the classical
sense of partial differential equations with Dirichlet or periodic boundary conditions.
In fact, the domains of such differential operators are not generally dense in the un-
derlying spaces, so that the lack of density of Y in X occurs in the abstract setting.
It is the paper due to Da Prato and Sinestrari [3] that first gave some interesting
results on the inhomogeneous abstract Cauchy problem for a closed linear operator
A in X satisfying the Hille-Yosida condition with the exception of the density of
the domain of A. Their results have been recently extended to various types of
equations by several authors. (See [1] for the integrated semigroup method, [4] for
the nonautonomous case, [18] for the semilinear case, and [13, 14] for integrodiffer-
ential equations and [2] for abstract second order equations with Wentzell boundary
conditions. Related topics can be found in the paper due to Sinestrari [16].)

The purpose of this paper is not only to establish a ‘global’ well-posedness
theorem without the assumption that Y is dense in X but also to propose a new type
of dissipativity condition which is closely related with the continuous dependence of
solutions on initial data (see the paragraph before Proposition 2.7). Our motivation
is based on the following consideration: Let ug, 4o € D, where D is assumed to
be the set of all initial data satisfying that there exists a curve ¢ lying in D such
that ¢(0) = ug and ¢(1) = 4o and such that for each 6 € [0, 1], the difference
equation (cx(0) — c(0)) /X = A(ca(0))ea(9) has a solution ¢y (6). Let uy = ¢x(0)
and u) = cx(1). Then we have

(1.1) (ex(0) = ¢(0))/ A = A(ex(0))éx(0) + (dA(ea(0))éx(0))ea(9)

where dA(w)¢ = limp_o(A(w + h§) — A(w))/h and the limit is taken in some
sense. If there exists a family {|| - ||..; w € D} of equivalent norms in X such that

(lex(@lexoy = N€@)llea)) /A < wlléx(@)]ley (o). OF
(1.2) [Ex(O)lley ) < exp(WA)]|E(0)]] (o)

then we have ||uy — )| < M exp(w)||ug — G|, by using the metric V (z,y) :=
inf{fo1 1¢(0) | c(py dO; ¢(0) = x, (1) = y} which is equivalent to the metric induced
by the original norm ||-|| in X. In discussing the continuous dependence of solutions
on initial data, it is therefore natural to assume the existence of a family {|| -
|lw;w € D} of equivalent norms in X satisfying (1.2). This consideration leads
us to the dissipativity condition (D1)-(D2), by noticing that the first term on the
right-hand side of (1.1) is the principal part and ¢ () is written as ¢ (0) = (I —
AA(ex(6)) 71 ((0) + A(dA(ex(8))éx(6))ea(6)).

In Section 2 we introduce a range condition with growth condition, using a
vector-valued functional ¢. In case of concrete problems, such a functional ¢ is
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constructed according to the nature of nonlinear systems and is used to ensure the
global existence of solutions as well as their asymptotic properties. In fact, we
give an application of our main theorem to the global existence and exponential
decay property of solutions of quasi-linear wave equations of Kirchhoff type with
acoustic boundary conditions in Section 6. The construction and convergence of
approximate solutions will be discussed in Sections 3 and 4 respectively. Section 5
contains the proof of the main theorem (Theorem 2.9). In the final section, we give
an approach to the local solvability of quasi-linear wave equations with Wentzell
boundary conditions in the space of continuous functions.

2. AssuMPTIONS AND MAIN RESULTS

Let (X, | -|lx) and (Y, - |[y) be real Banach spaces and Y is assumed to be
continuously embedded in X. The norm closure of Y in X is denoted by Y. The
symbol B(X,Y) stands for the Banach space of bounded linear operators on X to
Y with usual operator norm || - || x,y. The norm of B(X, X) is denoted simply by
| - |lx. For 7 > 0 the norms of Banach spaces C([0, 7]; X) and C'([0, 7]; X) are
defined by || flloc = sup{|[f(#)llx;t € [0,7]} for f € C([0,7]; X) and [|g[lcr =
ll9lloo+ 119"l fOr g € C1(]0, 7]; X), respectively. The notations a Ab := min(a, b),
a Vb :=max(a,b), Ry :=[0,00) and By (r) := {w € Y; ||w||y < r} are used.

Let W be an open, convex subset of Y and D a closed subset of Y such that
D c W. We make the following assumptions on {A(w);w € W} appearing in
(QE; uo).

(Al) D(A(w)) =Y foreachw € W and {A(w);w € W} C B(Y, X). Moreover,
for each r > 0 there exists c4(r) > 1 such that

ca(r)Hully < Jlullx + [|A(w)ulx < ea(r)ully
forueY and w € By (r)N D.
(A2) For each w € W there exists dA(w) € B(X, B(Y, X)) such that
%1_1)101(14(11) +tz)y — A(w)y)/t = (dA(w)z)y in X, fory, z €Y.
(A3) For each r > 0 there exists a nondecreasing function pga(r;o) : Ry — R4
with lim, o pga(r; o) = 0 such that
|[dA(w) — dA(2)|lx,B(v,x) < paa(r; lw—z|x) forw, z € By (r)nW.

(A4) For each r > 0 there exist hx(r) > 0 and Mx(r) > 1 such that for w €
By (r)n D and h € (0, hx(r)], the resolvent operator (I — hA(w))~! exists
as a bounded linear operator on X and satisfies

I(Z = hA(w)) ™ |lx < Mx(r).
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The following five basic lemmas will be often used in the following sections.
Lemma 2.1 is proved by a density argument with the help of (A4).

Lemma 2.1. Let u € D. Then limy o(I — hA(u)) 'z =z in X, for z € Y.
Lemma 2.2 follows easily from condition (A3).

Lemma 2.2. For each r > 0 there exists Mga(r) > 0 such that
[dA(w) | x,Bv,x) < Maa(r) forw e By (r)NW.
Lemma 2.3. For each r > 0 and w, z € By (r) N W it holds that
[A(w) = A(2)[ly.x < Maa(r)|w - z[|x.

Proof. Letr > 0 and w, z € By (r) N W. Since W is convex, we notice that
Ow + (1 —0)z € By (r)NnW for 0 € [0,1]. By (A2) we have

1
A(w)y — A(2)y = /O (dA@Ow+ (1 — 0)2)(w — 2))y db

for y € Y. By Lemma 2.2, the desired inequality is obtained by estimating the
above identity. =

Lemma 2.4. Letr >0and h € (0, hx(r)). Then it holds that
H(I — hA(w))_le,y < MX,y(T, h) for w € By(?") NnD,

where My y (r,h) = ca(r)(Mx(r) + h=1(Mx(r) + 1)) and Mx(r) is a constant
specified in (A4).

Proof. Letr >0, h € (0,hx(r)) and w € By (r)ND. Then, by (Al) we have
I(Z = hA(w) ™ ally < ealr)(I( = hA(w)) "'zl x + [|A(w)( — hA(w)) " z] x)

for x € X. Since A(w)(I —hA(w))™' = h=1((I — hA(w))~! —1I), an application
of condition (A4) to the above inequality gives the desired inequality. ]

Lemma 25. Letr > 0, h € (0,hx(r)) and w, w € By(r) N D. Then we
have

(I — hA(w)) ™ = (I — hA(D)) | x,y < hMx,y (r,h)*Mga(r)|w — @l x.
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Proof. By Lemmas 2.3 and 2.4, the desired inequality is obtained by estimating
the identity

(I —hA(w))™t — (I — hA(w))™?
= h(I — hA(w)) " (A(w) = A(@))(I — hA(w))

for r >0, h € (0,hx(r)) and w € By (r)N D. [ |

The next proposition shows that the so-called range condition holds under an
additional assumption.

Proposition 2.6. Suppose that (A1) through (A4) hold. Suppose further that
(21) (I —hA(w))""(D)c D forr>0,he(0,hx(r)] and w € By(r)N D.

Then for any u € D with A(u)u € Y and € > 0 there exists ho > 0 such that to
each h € (0, hg| there corresponds uj, € D satisfying ||up — ul|y < e and

(up, —u)/h = A(up)up,.

Proof. Lete > 0 and let w € D be such that A(u)u € Y. Then, we set
ro = ||lu|ly +¢& and pg = Mx (ro)ca(ro)ro. Since A(u)u € Y, there exists y € YV
such that 4c4(ro) Mx (ro)[|A(u)u — y[|x < e. Choose hg > 0 so small that

ho < hx(ro), QhQMx(TQ)MdA(TQ)TQ < 1,
2hoca(ro)Mx (ro)(ca(ro)(ro + [[ylly)+2Maa(ro) poro) < e,

and let i € (0, ho]. Then, we want to find u;, € D satisfying the desired conditions.
To do this, we define a subset £ of Y by

E={veD;v-uly <e, |lv-ulx <hpo}
and a mapping @ : £ — Y by
dv = (I —hA(w)) 'u forvekE.

To show that ®(E) C E, let v € E. Since E C By (ro) N D, it follows from (2.1)
that ®v € D. By conditions (A4) and (Al) we see that

(22)  [[Pv—ullx = hll( - hA(v)) " Av)ullx < hMx (ro)ealro)llully;
hence ||Pv — u||x < hpo by the definition of py. Since
[A(0)(Pv — u)|[x
< (I = hA@)) "ty —yllx + (I = hA)) ™" = I)(A(v) — A(u))ulx
HI((I = hAw)) " = D(A(w)u - y)|Ix
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and (I — hA(v))~'y —y = h(I — hA(v))"tA(v)y, we have

[A(w)(@v — u)|lx < hMx (ro)ca(ro)llylly
(2.3) +2Mx (1o
+2Mx (1o

Maa(ro)llv — ullxlully
[A(uw)u -yl x

by (Al), (A4) and Lemma 2.3. Adding (2.2) and (2.3) and using the fact that
llully < roand |jv —u||x < hpo, we find that || Pv — ully < e by (Al1). Itis thus
proved that ®(E) C E, by the definition of E.

Consider the sequence {v;}:2, in E defined inductively by vy = u and v; =
$v;_q for i =1,2,...Since E C By(ro) N D, we have by Lemma 2.3

)
)

|Pv — Pofx = h|(I - hA(v)) " (A(v) — A(0)) D0 x
S th(TQ)MdA(TQ)TQH’U — ﬁ”x
Since hMx (ro)Mga(ro)ro < 1, the above inequality implies that {v;}32, is a
Cauchy sequence in X, and hence there exists v € X such that v; — v in X as

i — oo. Itshould be noticed by the definition of {v; } that A(v;_1)v; = (v;—u)/h —
(v—wu)/hin X as i — oo. Since

[A(vi—1)(vi —vj)llx < [[A(vi—1)vi — A(vj—1)vjllx + Maa(ro)rollvi-1 — vj-1llx

and HUZ — ’Uj”y < CA(TQ)(H’UZ‘ — 'UjHX + HA('Uz‘—l)('Uz‘ — ’Uj)”)(), we see that Vi — U
inY as ¢ — oo. Since F is a closed subset of Y, it follows that v € F and
(v —wu)/h = A(v)v. The proof is thus complete. |

In addition to conditions (Al) through (A4), we introduce a notion of ‘local
quasi-dissipativity’ of { A(w);w € W} in the following sense.

(D1) There exists a family {|| - |l.; w € D} of norms in X such that for each » > 0
there exists cx(r) > 1 satisfying

ex (M) Hzllx < |z)lw < ex(r)|jz||x for z € X and w € By (r) N D.
(D2) For each r > 0 there exists w(r) > 0 such that

I(Z = hA(up) " ]l < exp(w(r)(1+m)h)|z].

forz € X, h € (0,hx(r)],n > 0and up, u € By(r) N D with ||up —u —
hA(up)up|| < hn.

A condition similar to (D1)-(D2) was proposed by Hughes et al. [8], but certain
smoothness assumption of norms in w was imposed there.
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Proposition 2.7. Suppose that conditions (D1), (D2) and the assumptions of
Proposition 2.6 are satisfied. Suppose further that

for each oo > 0 there exists r > 0 such that
we D and ||ully, + ||A(u)ull, < o imply that ||ul|y < r.

(2.4)

Then there exists G € C(R;R;) such that

(2.5) lin;llsoup(qﬁ(uh) — ¢(u))/h < G(¢p(u)) foru € D with A(u)u €Y,

where ¢(u) = |ully + ||A(u)ull, for u € D, and {u} is the sequence in D
specified in Proposition 2.6.

Proof. Letwu € D be such that A(u)u € Y. Lete >0 and set r. = |ully +e&.
Then, by Proposition 2.6 there exists kg > 0 such that to each h € (0, hg| there
corresponds wuy, € D satisfying |lup, — ully < e and (up, — u)/h = A(up)up. Let
h € (0, ho) N (0, hx(r:)]. Then we have uy, = (I —hA(uy)) 'u by condition (A4).
Since u, up, € By (r:) N D, we see by (D2) that

(2.6) [unlluy, + [1ACun)unll, < expwlra)h)(ffullu + [[A(un)ullu)-

Since ||A(up)u — A(w)ul|x < hMga(re)||A(up)un| x||ully by Lemma 2.3, we
have by (D1) and (Al)

27) JACun)u — AQu)ully < hex (re)ea(rs) Maa(re)r?.

Combining (2.6) and (2.7), and taking the limsup as & | 0, we find

(2.8) lirzllsoup@(uh) — ¢(u))/h < @(r)p(u) + x (r)ea(r)Maa(r)r,

where r = ||u||y. Here @, ¢x, ¢4 and M 44 are nondecreasing, continuous functions
dominating w, cx, ca and Mg, respectively. These functions can be constructed in
a way similar to the construction of F below.

To obtain the desired function G, we employ the two functions F and F
from R, to R, defined by F(¢) = sup{||ully;u € D, ¢(u) < &} and F(&) =

f“ F (o) do, respectively. Since F and F are nondecreasing, F' ¢ C(R,;R,),

[ully < F(¢(u)) for u € D and F(€) < F(¢) for £ > 0, we see by (2.8) that the
function G, defined by G(&) = W(F(€))¢ + ex (F(€))ea(F (€))Maa(F(€))F(€)*
is the desired one satisfying (2.5). [ |

As a special case of our main result (Theorem 2.9) stated later, we can show
the local existence of C''-solution to (QE; uy).
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Theorem 2.8.  Suppose that conditions (A1) through (A4), (D1), (D2), (2.1)
and (2.4) are satisfied. Then for each ug € D with A(ug)ug € Y, there exists a
unique function  in C ([0, 70); Y) N C*(]0, 79); X ) satisfying u(0) = uo,

u'(t) = A(u(t))u(t) fort €0, 79),
P(u(t)) < m(t; d(ug)) fort € [0,7),

where ¢ is specified by Proposition 2.7 and 7 is the maximal existence time of the
maximal solution m(t; ¢(ug)) to

p'(t) = G(p(t), p(0) = d(uo).

Because of localized conditions, the Cauchy problem (QE; wy) may have only
local C'-solutions by Theorem 2.8. The purpose of this paper is to discuss the
unique global existence of C!-solution to (QE; wug). To do this, it is necessary to
consider the growth of C*-solutions. Here the growth of a C*-solution is specified
by using a vector-valued functional ¢ = (¢;);-; : D — R’ such that each ¢; is
lower semicontinuous on D, and a comparison function g = (g;)1_; € C(R’;R")
satisfying the following conditions:

(9l) ¢g;(0)>0fori=1,2,...,n.
(92) Foreachi=1,2,...,n, gi(r) is nondecreasing in r; with j # 1.

In order to consider global C"-solutions to the Cauchy problem (QE; v) satisfying
the growth condition

o(u(t)) < m(t; p(uo))),

where the order ‘<’ in R™ is defined in the way that o = ()} < 5 = (6;)1 if
and only if a; < 3; for all i = 1,2, ..., n, we employ the following range condition
with growth condition (¢)-(R):

() For each o € R7} there exists » > 0 such that p(u) < a implies |jul|y < r.

(R) Foreache > 0andu € D with A(u)u € Y there exist h € (0,¢] and uy, € D
such that

(up —u)/h = A(up)up,
Jur, —ully <e,
(p(un) —(u)/h < g°(p(u)),

where the i-th component g5 of ¢° is defined by ¢5(p) = gi(p)+¢ for p € R7}.
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In the following, the number r, defined by r = sup{||ully;u € D, p(u) < a}, is
called the number specified in condition (¢) by «.

For o € R7}, we denote by 7(«) the maximal existence time of the maximal
solution m(¢; ) = (m;(t; )", to the Cauchy problem for g

The main theorem in this paper is stated as follows:

Theorem 2.9. Suppose that conditions (A1) through (A4), (D1), (D2), (¢) and
(R) are satisfied. Then for each ug € D with A(ug)ug € Y, there exists a unique
function v € C([0,79); Y) N C([0, 70); X) satisfying u(0) = uy,

o' (t) = A(u(t))u(t) fort € [0, 1),
e(u(t)) < m(t; @(ug)) fort e [0,70),

where 79 = 7(¢(up)).

3. Basic LEMMAS FOR THE CONSTRUCTION OF APPROXIMATE SOLUTIONS

For ¢ > 0 and « € R, we denote by 7°(«) the maximal existence time of the
maximal solution m®(¢; o) = (m;(¢; ), to the Cauchy problem for ¢°

We start with the following lemma.

Lemma3.1. Letn>0,7>0, FeC'([0,7;X)andt € [0,7). Letu € D,
w € Y and assume that A(u)u € Y and A(u)w + F(t) € Y. Then there exist
d € (0,n], us € D and ws € Y satisfying the following ten conditions:

i) t+o<T.
(i) Jus —u — S A(us)us||x < om.
(i) flus — ully <.
(V) o(us) <m(5;p(u)).
V) [[A(us)us — (I = 0A(us)) " (Alw)u + 6(dA(u) A(u)u)u) || x < on.
Vi) JJws —w — 0(A(us)ws + F(t +0))||x < .
(vii) JJws —wl|ly <.
(viii) || A(ug)ws + F(t 4+ 6) — (I — 5A(us)) " (A(u)w + F(t)
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+o((dA(u) A(w)u)w + F'(1))) ]| x < on.
(ix) A(U5)U5 Y.
(X) A(us)ws + F(t+9) € Y.
Proof. Letr > 0, F € CY([0,7];X)and t € [0,7). Letu € D, w € YV
and assume that A(u)u € Y and A(u)w + F(t) € Y. Let n > 0. Then, by range

condition (R) there exists a null sequence {h} of positive numbers and a sequence
{ug} in D such that

(3.1) (ug —w)/hi = A(ug)ug,
(3.2) Jue —ully <1/,
3.3) ((ur) — @)/l < g"*(p(u)),

for k=1,2,... It follows from (3.1) that
(3.4) Alup)up, €Y fork=1,2,...
We prove that for sufficiently large k,

(3.5) o(ur) <m(hi; p(u)).

To do this, choose a positive integer ky such that kon > 1 and set p(t) = ¢(u) +
tg'/*(p(u)) for t > 0. Then we have (d/dt)(m; (t; ¢ (u))=pi(1))]i=0 = ¢ (¢(u))—
gil/ko(ap(u)) > 0 for 1 < i < n. By the continuity of m” and p, one finds 5y > 0
such that 0o < 7((u)) and (d/dt)(m"(t; (u)) — p(t)) > 0 for t € [0, dg]. Since
m"(0; ¢(u)) — p(0) = 0, we have m"(t; p(u)) > p(t) for t € [0, dp]. Substituting
t = hy into this inequality, we have, by (3.3), (3.5) for & large enough to satisfy
k > ko and hy < dg. Since the sequence {uy} is convergent in Y as k& — oo
(by (3.2)), there exists 9 > 0 such that uy € By (r9) N D for £ > 1. By con-
dition (A4) we notice that (I — hyA(uy))~t € B(X) for sufficiently large % and
(I — hiA(ug)) | x is bounded as k — oo. Since ug = (I — hypA(uy)) tu for
sufficiently large k, it follows from (A2) that

Al = (I = by Alu)) ™ (A(w)u
i [ (dA(Buy, + (1 H)u)A(uk)uk)ud0>.
Since ||ug — ully — 0 and ||(I — hxA(ug))~!||x is bounded as k — oo, we have

limg 00 thzl (A(ug)ug

(3.6)
—(I = b A(ug)) " (A(u)u + hi(dA(u) A(u)u)u)) || x = 0.
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Next, consider the sequence {w;} in Y defined by
(3.7) wp = (I — hp A(ug)) " (w + b F(t + hg)) fork=1,2,...
Then, we find the relation
(38)  A(up)wy+ F(t+hy) = (I — hiAug)) " (Alup)w + F(t + hy));
hence
(3.9) Alup)wg + F(t +hg) €Y fork=1,2,...
By (3.7) we have

wy, — w = hp(I — hpA(ug)) " HA(ur)w + F(t + hy)),

which vanishes in X as k — oo, since the sequence {u} converges to v in Y and
(I = hA(ug))~Y|x is bounded as k — co. By (3.8) we have

Alur) (wp—w) = (I ~h A(ur)) ™ (Alup)w+F(t + hy)) = (Alur)w + F(t + hy)).

An application of Lemma 2.1 to the right-hand side implies that A(u)(w, — w)
tends to zero in X as k — oo. It follows from (Al) that

(3.10) |lwk —w|y — 0 ask — oo.

Using (3.8) combined with the identity
1
Alur)w — Au)w = hy / (dA(Oug + (1 — 0)u) A(ug ug )w do),
0

we see by Lemma 2.3, (A3) and (3.2) that
17t (A(ug)wy + F(t+ hy) — (I — hiA(ug)) " (A(u)w + F(t)

(3.11)
+ hi((dA(u)A(u)u)w + F'(t))))||x vanishes as k — oo.

The desired element (9, us, ws) € (0,n] x D x Y can be found by (3.1), (3.2), (3.4)
through (3.7), and (3.9) through (3.11). |

The following lemma will be used for the construction of approximate solutions
with nice properties.

Lemma 3.2. Letwvy € D, 2 €Y, 7€ (0,7(¢(w))), F € C([0,7]; X) and
assume that A(vo)vg € Y and A(vg)zo + F(0) € Y. Let n be a positive number
satisfying < 1 and 7 < 7"((vo)). Then there exists a sequence {(s;, v;, zj)}32,
in [0,7) x D x Y such that the following conditions are satisfied:
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"
(i) sj—sj_1 <nforj=1,2,...

(i) flvj —vj—1 = (85 — s-1) A(vj)vjllx < (s; = sj—1)nfor j=1,2,...

(iv) ||lv; —vj_illy <npforj=1,2,...
V) A(v;)v; = (I = (55 = 8j-1) A(v;)) " (A(vj-1)vj1

+(s5—8j-1)(dA(vj_1)A(vj—1)vj—1)vj_1)|| x < (sj—sj_1)nforj=1,2,...

(Vi) o(vj) <m(sj —sj-1;0(vj-1)) forj =1,2,...

(vii) A(vj)vjeY forj=1,2,...

(Vi) [|zj—zj-1=(s5—s5-1) (A(vj)zj+ F(s5)) [ x < (sj—sj-1)nforj=1,2,....
(ix) |lzj —zj—1lly <npforj=1,2,...

) NA(vj)z + F(sj) — (I = (85 — sj-1)A(v;)) " (A(vj—1)zj—1 + F(sj—1) +
(85— sj-1)((dA(vj_1) A(vj—1)vj—1)2j—1+ F'(s5-1)))l| x < (85 —sj—1)n for
j=1,2,...

(xi) A(Uj)Zj + F(Sj) cyY forj=1,2,...

(xii) limj_ 55 = 7.

=

O=sy<s1<--<s;<---<7forj=1,2,...

To prove Lemma 3.2 we need the following basic estimates.

Lemma 3.3. Letr >0,7>0, 7€ (0,1 and F € C'([0,7]; X). Let {6}/,
be a sequence in (0, hx(r)], {vj}fio a sequence in By (r)ND, {zj}fio a sequence
in Y such that they satisfy that Zjil d; < 7 and that

(3.12) |vj —vj—1 = 8;A(v;)vjllx < dm,
(3.13) |25 — zj—1 — 6;(A(vj)z; + F(s5))llx < d;m,

[A(vs)z + F(sj) — (I = 6;A(v5)) " (A(vj—1)zj—1 + F(sj-1))lIx

(3.14)
< 8;Mo(r, | Fllcr)(lzj-1lly + 1)

for 1 < j < K, where sp = 0, s; = >J_, & for 1 < j < K, and My is a
nonnegative function defined on R% and nondecreasing in each variable. Then there
exist nonnegative functions M;, i = 1,2, 3, defined on Ri which are nondecreasing
with respect to each variable and satisfy the following conditions:

@ llzlly < Mi(r 7 llzolly, [Fller)  for0<j < K.

(0) llzj — zellx < Ma(T, 7, ||z0lly, | Fllen)(sj —sk)  for0 <k <j< K.
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(c) HA(vj)2j + F(s;) — ﬁ (I - 51A(Ul))_1(A(vp)zp +F(3P))HX
I=p+1

< Ms(7, 7, [lzolly, [|[Fllor) (s —sp)  for0<p<j<K.
Proof. To prove (a) we use the sequence {aj}fio in R, defined by
aj = ||zjllv; + [ A(v5)z; + F(sj)ll; for0<j<K.
(

If we set €j = (Zj — Zj_l)/éj — A(’Uj)Zj + F(Sj)) for 1 < j < , then we
have |le;]|lx <n (by (3.13)) and z; = (I — 8;A(v;)) ™" (zj-1 + 8;(F(s) +¢;)) for
1 <j < K. By (3.12) we use conditions (D1) and (D2) to find

3.15)  lzlle; < exp(w(r) (1 +m)8;) (|zj-1llo;—, + ex (r)8;([1Flloc + 1))
for 1 < j < K. By (3.14) we have
[A(vs)z5 + F(sj)llo;, < exp(w(r)(1+n)d;)([[A(vj-1)zj-1 + F(sj-1)llv,
+ 8ex (r) Mo(r, [ Fllen) (21 lly + 1))
for 1 <j < K. Since
1zj-1lly < ca(r)(llzj-1llx + [|A(vj-1)zj-1llx) < ca(r)(ex(r)aj—1 + [ Flloo)
for 1 <j < K (by (Al) and (D1)), it follows that
1A(vj)zj + F(s5)llv; < exp(w(r)(1+n)d;)
(3.16) (lA(vj—1)zj—1 + F(sj-1)llo;_,
+85ex (r)Mo(r, || Fller) (ea(r) (ex (r)aj-1+ [ Flloo) +1))
for 1 < 7 < K. Adding (3.15) and (3.16), we have
aj < exp((w(r)(1+n) + M(r, ||[Fllc1))d;) (a1 +0;M(r, || Fl|c1))

for 1 < 5 < K, where M is a function on Ri satisfying the same properties as
M. This implies that

(3.17)  a; <exp((w(r)(L+n) + M(r, [[Fllc1))s;)(ao + ;M (r, [|[Fllc1))

for 0 < j < K. Since ||zj|ly < ca(r)(ex(r)a; + || Flloo) for 0 < j < K and
ag < cx(r)(ca(r)|lzolly + |F|leo) by (Al) and (D1), the desired inequality (a)
follows from (3.17).
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Let0 <k < j < K. By (3.13) and (a), we have
Izt = z1-1llx < &i(n + ca(r)Mu(7, 7, [20lly, [|Fllcr) + [ Flloo)

for k +1 <1 < j. Adding the above inequality from [ = k + 1 to j, we obtain the
desired inequality (b) with My(t, 7, A\, 1) = 1+ p+Ca(r)My(t,r, A, ).

To prove (c), let 0 < p < j < K, and set Py = [[/_,, (I — §1A(v)) !
for k with p < k£ < j. By (3.12) we use condition (D2) to find that || P; ;|| x <
cx(r)2exp(w(r)(1 +n)7) for p < k < j. This inequality together with (a) and
(3.14) implies that

| Pj i (A(vk) 2k + F(sk)) — Pjg—1(A(vk—1)2e—1 + F(sr-1))ll
<ex (r)?exp(w(r)(14+m)7)0 Mo (r, | Fllcr) (Ma (7, 7, |20l v, | Fl[c1) +1)

for p+ 1 < k < j. The desired inequality (c) is obtained by adding the above
inequality from k£ = p + 1 to j. [ ]

Corollary 3.4. Letr >0, 7 >0 andn € (0,1]. Let {5j}§<:1 be a sequence
in (0, hx(r)] and {vj}fio a sequence in By (r) N D such that they satisfy that
Y6, <7 and

(3.18) H’Uj —Vj—1— 5jA('Uj)'UjHX < 5j77 for 1 S] < K.

Then there exists a nonnegative function M 4 defined on Ri that is nondecreasing
with respect to each variable and that satisfies

[T (T A () =TTy (T =0A) My <Malrrlylly) (s = 52)
foro<p<k<j<KandyeY.

Proof. Lety € Y and 0 <p < K. Then, the sequence {y; f:p in Y, defined
by y, =y and y; = (I —§;A(v;)) " ty;—1 for p+1 < j < K, satisfies the identities
that Yj — Yj—1 — (5jA(vj)yj =0and

A(vj)y; = (I = 6;A(0;)) " (A(vj—1)yj—1 + (A(v)) — A(vj—1))yj-1)
for p+1 < j < K. By condition (A4), Lemma 2.3 and (3.18) we find that
(I = 8;A(v;)) M (A(v)) — A(vj-1))yj-1lx
< Mx(r)Maa(r)d;(n +ca(r)r)llyj-1lly

for p+1 < j < K. We thus see that the sequence {yj}f:p satisfies (3.13) and
(3.14) with z; = yj1p, F' =0 and Moy(r, p) = M x(r)Mga(r)(1 +ca(r)r). The
desired result is a direct consequence of Lemma 3.3 (b). |
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Proof of Lemma 3.2. For each (u,w,t) € D x Y x [0,7) satisfying A(u)u,
A(w)w + F(t) € Y, we define 6(u,w, t) by the supremum of § € (0, 7] such that
there exists ug € D and ws € Y satisfying (i) through (x) in Lemma 3.1. It should
be noticed that §(u, w, t) > 0 by Lemma 3.1. Let k£ > 1 and assume that a sequence
{(sj,vj, 2) f;ol in [0,7) x D x Y has been chosen such that conditions (i) through
(xi) in Lemma 3.2 are satisfied. Since vy_1 € D and z;_1 € Y satisfy (vii) and
(xi) with j = k — 1, we have 0(vg—1, 2k—1, sk—1) > 0 by the notice mentioned
above. By the definition of 6(vx_1, 2zx—1, Sx—1), there exist o, € (0, 7], vy € D and
zi € Y such that §; > §(vk—1, 2k—1, sk—1)/2 and such that (sg, vk, %) satisfies (i)
through (xi) with j = k, where s = si_1 + 0.

It remains to show that (xii) holds. To do this, suppose to the contrary that
5 := limj oo s; < 7. Then we first show that {v;} and {z;} are convergent
sequences in Y. To check the assumptions of Lemma 3.3, set ag = (,i)i
where g ; = sup{m; (t; p(vo)); t € [0, 7]} < oo for i = 1,2,...,n, and let ry be
the number specified in condition (¢) by ao. Then, we have v; € By (r9) N D
for j = 1,2,... (by (vi)). Since the sequence {s;} is convergent as j — oo, we
choose a positive integer py such that s; — s;—1 < hx(ro) for j > py. We see
by Lemma 3.2 (iii), (viii) and (x) that (3.12), (3.13) and (3.14) are satisfied with
Mo (r, 1) = M x (r)(Mga(r)ea(r)r + p) + 1. We therefore apply Lemma 3.3 and
Corollary 3.4 to find that the sequence {z;} is bounded in Y as j — oo and that
hmj,k—>oo sz — zk”X =0 and

limsup; oo [|A(v))z; — Alvi) 2kl x
< 2cx(ro)? exp(w(ro) (1 +n)7) | A(vp)2zp + F(sp) — yllx

+ 2M3(7, o, || 20|y, | Fllc1) (5 — sp)

for p > pp and y € Y. Since A(vy)z, + F(sp) € Y, we see that {A(vj)z;} is a
Cauchy sequence in X. By condition (iii) we have

Jvj — vkl x < (calro)ro +mn)(sj — sk),
which tends to zero as j, k — oo. Since
12; = zklly < calro)(llz — zellx  +[1A(vs)z; — Alve) 2k x
+[[A(or) = Avy)llv.xllz&llv)

and since the facts shown above imply the right-hand side vanishes as k, ;7 — oo,
the completeness of Y ensures that the sequence {z;} converges in Y as j — oc.
By z we denote the limit {z;} in Y. By the above argument with F' = 0, we see
that the sequence {v;} converges in Y to some v as j — oo.
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Now, the closedness of D in Y implies that v € D. Since A(vg)vk, A(vk)zk +
F(sy) € Y and since A(vg)vr, — A(9)v and A(vg)zk + F(s) — A(0)Z + F(3)
as k — oo, we have A(v)v, A(v)z + F(5) € Y. We therefore apply Lemma 3.1 to
find § € (0,7/2]N (0, hx(ro)/2], vs € D and zs € Y satisfying the following ten
conditions:

s+0<T.
[vs — v — 3 A(vs)vsllx < 0(n/2).
Jvs — olly <n/2.
(3.19) o(vs) < m"2(8; (0)).

(3.20) [l A(vs)vs — (I — 6A(vs)) ™ (A(0)o + 6(dA(0) A(0)0)0) || x < 8(n/2).
Iz — 2 = 6(A(vs) 25 + F(5 +6)) | x < 6(n/2).
Iz5 = 2lly < n/2.
| A(vs)zs + F(5+ ) — (I — §A(vs)) 1 (A(0)Z + F(5)
+6((dA(0)A(0)v)Z + F'(5)))llx < 6(n/2).
A(vs)vs €Y.
Avs)zs + F(5+0) €Y.

Set vy = 5+ — sp_q for k > 1. Then we want to show that (i) through (x)
in Lemma 3.1 with (¢, §, us, ws, u, w) replaced by (sg—1, Yk, Vs, 25, Vk—1, 2k—1) are
satisfied. It is obvious that v, — d as k& — oo, sx_1 +7% = §+0 < 7 and
that v, € (0,n)N (0, hx(ro)) for k sufficiently large. By Lemma 3.2 (vi) we have
p(v;) <m(sj—sk—1;p(vg—1)) for j > k, so that p(v) < m"(5—sk—1; p(vk-1)).
This together with (3.19) implies p(vs) < m"(v; ¢(vk—1)). Since vs € By (rg) N
D we see by (A4) that (I — hA(vs))~! is analytic in h € (0, hx(ro)); hence
limy o0 (I — y£A(vs)) ™t = (I — §A(vs))~1 in B(X). By (3.20) we then have

| A(vs)vs — (I — 1A(vs)) " (A(vk—1)vk—1
Ak (dA(vgp—1) A(Vk—1)Vk—1)Vk—1) | x < V%1

for sufficiently large k. This means that condition (v) in Lemma 3.1 with (4, us, u)
replaced by (7%, vs, vi—1) is satisfied. All the other conditions are checked similarly.
By the definition of § (vg—_1, 2k—1, Sk—1), itis thus shown that v, < §(vk—1, 2k—1, Sk—1)
for sufficiently large k. Since 0(vk—1, 2k—1, Sk—1) < 20, — 0 as k — oo, we have
0 < 0, which contradicts to the fact that ¢ is positive. ]
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4. APPROXIMATE SOLUTIONS AND MILD SOLUTIONS

Our purpose is to find a unique global classical solution to (QE; ug). By a
classical solution to (QE; u¢) on [0,7] we mean a function v € C1([0,7]; X) N
C(]0,T7;Y) satisfying (QE; wo) for ¢t € [0, T]. A classical solution on [0, co) is said
to be global. For our purpose we need the construction of approximate solutions
with “nice’ properties, although we employ the so-called method of discretization in
time in the following sense:

Definition 4.1. Lete >0, up € D and T > 0. Assume that {(¢;, u;)}Y, is
a sequence in [0, c0) x D satisfying the following three conditions:

() 0=ty <ty < ---<ty_1<T<tp.
(€||) t; —ti—1 S&“fOI"iZl,Q,...,N.
(eiii) Huz — Uj—1 — (tz‘ — ti_l)A(ui)uiHX < 8(751‘ —tiq) fori=1,2,...,N.

Then, the function w : [0, 7] — X defined by

ug fort =0,
u(t) =
U; fOI‘tE(ti_l,ti]ﬂ[O,T]andi=1,2...,N

is called an e-approximate solution to (QE; u¢) on [0, T7]. If there exists a € R”}
such that an -approximate solution «* satisfies u°(t) € D(«) for t € [0, 77, then
u® is called an e-approximate solution constrained in D(«). Here D(«) = {u €
D;o(u) < o}

Definition 4.2. Lete > 0, up € D and T > 0. A function v € C(]0,T]; X)
is called a mild solution to (QE; wg) on [0, T if for each sufficiently small £ > 0
there exists an e-approximate solution u® to (QE; ug) on [0, 7] such that

|lu(t) —u(t)||x <e for ¢ € [0, T7.
It is easy to show the following fundamental result.

Proposition 4.3. Let up € D and 7" > 0. Then a classical solution to (QE;
up) on [0, T7] is a mild solution.

Conversely, if there exists a mild solution u to (QE; ug) on [0,77] such that
it is the limit function of a sequence {u°} of s-approximate solutions to (QE; wuy)
on [0,7] in Y, then w is a classical solution to (QE; ug) on [0,7]. In this case,
the limit function w(¢) of the sequence { A(u®(¢))u®(t)} coincides with A(w(t))u(t)
and formally satisfies the equation w’(¢) = A(u(t))w(t) + (dA(u(t))w(t))u(t). For
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this reason, it is necessary to consider the problem of whether the inhomogeneous
Cauchy problem involved with a mild solution «

w'(t) = A(u(t)w(t) + f(t) fort € [0, T
(CP: 2. /)" { w(0) ==z

is solvable, in discussing the convergence in Y of a sequence of approximate solu-
tions to (QE; ug) on [0, T7.

Definition 4.4. Letug e D, T >0and a € R}. Letu € C([0,77; X) be a
mild solution to (QE; ug) such that « is a uniform limit of e-approximate solutions
constrained in D(«). Let e > 0 be sufficiently small. Then, by Definitions 4.1 and
4.2, there exists a sequence {(t;, u;)}, in [0, 00) x D satisfying (gi) through (eiii)
and the following conditions:

(eiv)  u; € D(a) fori=0,1,..., N.
(ev)  |Ju(t;) —uillx <efori=0,1,...,N.

Let x € X and f € C([0,T); X). Assume that {(w;, fi)}¥, is a sequence in
Y x X satisfying the three conditions below:

(evi)  (w; —wi—1)/(ti —tic1) = A(u)w; + f; fori=1,2,..., N.
(evii)  |Jwo — z||x <e.
(eviii) |f(t) — fillx <eforte[ti_i,t;]N[0,T]fori=1,2,...,N.
Then the function w : [0, 7] — X, defined by
wo fort =0,
w(t) =
W; fort € (ti—1,t;)N[0,T)and i =1,2,..., N,
is called an e-approximate solution to (CP; z, f)* on [0, T].

Definition 45. Let w € C([0,T]; X). The function w is called a mild
solution to (CP; z, f)" on [0, T if for each sufficiently small £ > 0 there exists an
g-approximate solution w® to (CP; z, f)* on [0, T such that

lw'(t) —w(t)|x <e  forte0,T).

The following is a key lemma to prove the convergence of c-approximate solu-
tions.

Lemma 46. LetO<7<7,7r>0,FeC(0,7;X)and f € C([0,7]; X).
Let {(t;, u;, w;, &4, fi) Yo be a sequence in [0,7) x (By (r)ND) xY x X x X
satisfying the following three conditions:
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N 0=thr<ty < - <ty 1 <T<itny<T.
(II) (uz — ’U,Z‘_l)/(tz‘ — tz‘_l) = A(’U,Z)’U,Z + & for i = 1,2,...,N.
(III) (wz - wi_l)/(ti - ti—l) = 14(’11,2)’11)Z + fi fori=1,2,...,N.

Using this sequence, we define two functions u, w : [0, 7] — Y by

ug fort =0,
u(t) =
U; forte(ti_l,ti]ﬂ[o,ﬂ andi=1,2,..., N,

wy fort =0,
w(t) =
W; forte(ti_l,ti]ﬂ[o,ﬂ andi=1,2,..., N.

Let { (s, vj, 2, M5, Fj) } 520 be asequence in [0, 7) x (By (r)N D) x Y x X x X
satisfying the following three conditions:
(iv) 0=s9<s1<---<sj<---<7andlimj_s; =7.
(v) (’Uj — vj_l)/(sj — Sj_l) = A(’l}j)’l}j +nj forj=1,2,...
(VI) (Zj — zj_l)/(sj — Sj—l) = A(vj)zj + Fj fOI’j =1,2,...

Using this sequence, we define two functions v, z : [0, 7) — Y by

vy fort =0,
u(t) =
Vj fort e (sj_l,sj] andj:1,2,...,

zg fort =0,
z(t) =

Zj fort e (sj_l,sj] and j=12 ...

Let K be a positive integer satisfying s x 1 < 7 < s and assume that

— Lt < i g
(4.1) A= max (ti —ti1) < min  (s; —s55-1),
(4.2) |A] < hx(r).

Then we have
Ju(t) —v(@®)llx < M (7,7 e)(|luo — vol[x + [A]

(4.3)
+o+n+e) fortel0,7],
lwt) = 2(®)llx < M7, 7,€) (lwo = 2ollx + M([luo — voll x
wa HA|+5+n+e)+0+7+E+ pr(|P|)

+\A\(HFHOO+HfHoo)+HF—fHL/(O,t;m))forte[O,?],
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where |P| = maxi<j<i+1(s; — 55-1), M = maxi<j<x || 2]ly,

e = max |l&llx, &= max sup{||f(t) — fillx;t € [ti—1,t:] N[0, 7]},

1<i<N 1<i<N
0= <R lvoj —vjally, 6= A 12 — zj-1lly,
= amax njllx, 0= max sup{|[F() = Fyllxit € [sj1, 5},

pr(r) = max{|[F(s) = F(t)|x;s,t € [0,7], |s —t| <7}

and M (7, r, ) is a nonnegative function on Ri and nondecreasing with respect to
each variables.

Proof. Consider the function z : [0, 7) — Y defined by
Z(t) = zj_1+(t—sj—1)(zj—2j-1)/(sj—sj—1) forte[sj_i,s;]and j =1,2,...
Then, by (4.2) we use condition (A4) to find that
2(ti) = (I = (ti = ti1) Auw)) "' (E(tim1) + (i — ti-1) fi)
for1 <i < N,where f; := (2(t;)—2(ti—1))/(ti—ti—1)—A(u;)Z(t;) for 1 < i < N.

By (iii) we have w; = (I— (tz‘ —ti_l)A(ui))_l(wi_l—i—(ti —tz‘_l)fz‘) forl1 <i<N.
Since ||ei]|x < e for 1 <i < N, it follows from (D1) and (D2) that

12(t) = willee < exp(@(r)(L+ &)t — i) (5(tm) = wima s
+ (6~ ti)ex (0)lfi = fillx)
for 1 <4 < N; hence

12(t:) — wil x < ex(r)?exp(w(r)(1+6)(7 +¢))

(4.5) ><<Hzo—onX+22:1(tk—tk—1)!!fk—kaX>

for 1 <4 < N. By the definition of Z weseethat 1 <! < N, 1 <p < K and
sp—1 <t < spq1 imply that

(4.6) l2p = 2(t)lly < max([lzp — zp-1lly, l2p11 = 2lly) < 0.

By the preceding arguments, the estimate of the last term on the right-hand side
of (4.5) necessary to obtain the desired inequality (4.4). To do this, let 1 < k < N
and o € (tgp_1,tx). Since tx—1 < tny_1 < T < sk, there exists an integer ¢ with
1 < ¢ < K such that ¢, € [sq—1,54). By condition (4.1), one of the following
cases happens:



Quasi-Linear Evolution Equations 315

()t € [sq-1,5¢) ()t € [sq, Sg+1)-

In both cases, we have s;_1 < tp_1 < 0 < t; < Sg41 and v(o) = vq OF Vgy1.
Since u(o) = uy we have

[ A(vg)zq + Fy — Alur)Z(tk) — frllx
< [I(A(v(0)) — A(u(0)))zqllx + [[(Avg) — A(vg+1))zqllx
+ [ ACur) (2(tr) — 29) | x + [ F (o) = F(o)lx + [1f(0) — fullx
+[|Fy — F(sq)llx + |F(sq) — Fo)llx
< Maa(r)M|jv(o) — w(o)||x + Maa(r)ea(r)Ms + ca(r)d
+[F (o) = f(o)lx +E+7+pr(|P)),

4.7

where f(t) = f(t A7) for t € [0, 7]. Here we have used Lemma 2.3 and (4.6) with
(I,p) = (k, q) to obtain the last inequality. .
Now, we begin by considering the case (I1). By the definition of f, we find

fk — fi = ((tk = 8¢)/ (tk — ti—1)) ((2q+1 — 2¢) / (8g+1 — Sq)
(4.8) — A(ur)2(tk) — fi) + ((sq = te—1)/(te — tk-1))
((zg = 2g-1)/(sq = $q-1) — Alur) 2(t) — fr)-
Since A(vgt1)2g+1 + Fyp1 — (A(vg)zq + Fy) s written as
A(vg+1)(2g+1 — 2g) + (A(vg11) — A(vg))zg + (Fy1 — F(sq)) + (F(s9) — Fy),
we have
[A(vg+1)2g+1 + Fa1 — (A(vg)zg + Fo)llx < ca(r)d + MdA(r)CA(r)(SM + 21).
This inequality together with (4.7) implies that
1(Zg+1 = 2q)/ (sq+1 = 8¢) — Alur) 2(te) — fillx
(4.9) < Mya(r)Mlu(o) = v(0) |l x + 2Mga(r)ea(r)Ms + 2e(r)d + 37
+pr(IP)) + |1 F(o) = f(o)llx + &
Applying (4.7) and (4.9) to (4.8), we have
1f = frllx < Maa(r)Mu(o) = v(0)| x
(4.10) + 2Mga(r)ea(r) Mo + 2c4(r)d + 37
+pr([P|) + |1 F(0) = f(o)|lx +&
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In the case (1), (4.10) is also valid by (4.7) because fo— fu = Alvg)zg + Fy —

A(ug)Z(ty) — fi. by the definition of fi.. The term Y%, (tx — te_1)|| i —kax in
(4.5) is thus estimated by integrating (4.10) over (¢;_1, t;;) and adding the resulting
inequality from k£ =1 to i.

Now, let ¢ € [0,7]. Then there exist 1 < ¢ < N and 1 < j < K such that
t € (ti—1,ti] N (sj—1,s;]. Since (4.1) implies s;_; < t; < s;41, it follows from
(4.6) that ||z; — 2(t;)||x < ca(r)d. We substitute (4.10) into (4.5) to estimate
|2(t;) — w;||x. This yields that

Jw(t)—2(t)x < M(7,r, €)<Hw0—ZOHX+J\7fJHU(U)—U(U)deU
(4.11) /HF o)x do + &+ M(|A| +0)

A Flloo + 1 llo0) + 8 + 1+ pr(|P])).

If fi=¢e; Fj =njand F = f =0, thenwi:ui,zj:vj,ézs,5:(5,77:77,
M < rand prp = 0. In this special case we have by (4.11),

[u(t) —o ()| x <M(T, 7, ) <Hu0—von+fot [u(o) —v(o)|x do+|A| +5+?7+€)

for t € [0,7]. An application of Gronwall’s inequality gives the desired inequality
(4.3). Substituting (4.3) into (4.11), we obtain the desired inequality (4.4). ]

The continuous dependence of mild solutions on initial data is given by

Proposition 4.7. Let 5 > « > 0 and let ug, 4y € D(«) be such that A(ug)uy,
A(g)ig €Y. Let 7 € (0,7()). Let u and 4 be mild solutions to (QE; u¢) and
(QE; 1) on [0, 7] respectively such that they are uniform limit of s-approximate
solutions constrained in D(/3). Then we have

lu(t) —u(t)||x < C(T, e, B)||ug — tol| x fort € [0, 7],
where C(7, a, 3) denotes a constant depending on 7, « and £.

Proof. By assumption and the definition of mild solutions to (QE; ) on [0, 7],
for each sufficiently small £ > 0 there exists an e-approximate solution u* to (QE;
up) on [0, 7] constrained in D(3) such that ||u(t) — u®(t)||x < e for t € [0,7].
We use Lemma 4.6 to estimate the difference between ¢ and an cs-approximate
solution @° to (QE; 1up) on [0, 7]. To do this, let 7 € (7, 7(«)) and let v = (v;)i-,
where v; = sup{m;(t;a) + 1;t € [0, 7]} vV 3; for i = 1,2,...,n. Denote by r the
number specified in condition (¢) by the vector 4. The number » depends only on
a, 3. Then there exists 7y € (0,1] N (0, hx(r)] such that n € (0, 7o) implies that
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7 < 7 () and m"(t; ) < m(t; ) + 1 for t € [0,7]. Let n € (0,70]. Then we
apply Lemma 3.2 with 29 = v = o and F' = 0 to find a sequence {(s;, v;)}72, in
[0, 7) x D satisfying (i) through (vii) and (xii) in Lemma 3.2. Condition (vi) implies
that v; € D(~) for j > 1; hence v; € By (r)ND for j > 1 and u*(t) € By (r)ND
for ¢t € [0,7]. Let K be the positive integer satisfying sx—1 < 7 < sg, and choose
g0 >0 such that gg < min1§j§K+1(3j — Sj_l) and eg < hx(r). Lete € (0,50].
Then we have by Lemma 4.6.

(4.12)  ||ut(t) —v(@®)|lx < M (7,7, ¢)(||uo — ol x + 2¢ +2n) forte0,7],

where v : [0,7) — X is the function defined by v(¢) = 4o for ¢ = 0, and v; for
t € (sj—1,s;] and j = 1,2,... Since u° satisfies an estimate similar to (4.12), it
follows that

[u”(t) = a(8) | x < 2M (7,7, e)([luo — dollx + 2(e + 1))

for t € [0,7]. The desired result is obtained by letting ¢ — 0 in the above in-
equality. [ |

Proposition 4.8. Let3 > a > 0, and letug € D(«) be such that A(ug)ug € Y.
Let 7 € (0,7(«)). Let u be a mild solution to (QE;u¢) on [0,7] which is a
uniform limit of e-approximate solutions constrained in D(f3). Let z, & € Y and
f. f € C([0,7]; X). Let w and @& be mild solutions to (CP;xz,f)* and (CP;&,f)"
on [0, 7] respectively. Then we have

lw(t) =@ ()| x < CF a.B)(lz = &llx + If = flloioux) fort e [0,7].

Proof. By the definition of mild solutions of (CP;x, f)* on [0, 7], for each
sufficiently small £ > 0 there exists an s-approximate solution w® to (CP;x,f)"
on [0,7] such that ||w®(t) — w(t)||x < e for t € [0,7]. We use Lemma 4.6
to estimate the difference between w® and an s-approximate solution ¢ to (CP;
&, f)* on [0,7]. To do this, let 7 € (7,7(c)) and let v = (v;)7_, where v; =
sup{m;(t; o) + 1;¢t € [0,7]} Vv 3; for i = 1,2,...,n. Denote by r the number
specified in condition () by the vector v. The number » depends only on o, 3. Then
there exists ny € (0,1] N (0, hx(r)] such that n € (0, no] implies that 7 < 77(«)
and m"(t; ) < m(t;a) + 1 for t € [0,7]. Let n € (0,m0] and let (zo, F') in
Y x C*([0, 7]; X) be fixed arbitrarily such that A(ug)zo + F(0) € Y. Then there
exists a sequence {(s;, vj, zj) }32, in [0, 7) x D x Y satisfying conditions (i) through
(xii) with vq replaced by ug in Lemma 3.2. It should be noticed by Lemma 3.3 that

1zjlly < Mi(r, 7, |lzolly, [ Fllcr)
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for j > 1. Similarly to the argument in the proof of Proposition 4.7, we find by
Lemma 4.6

|w(t) — 2(t)|x < M (7,7, &) 2Mi(7, 7, [|20lly, | Fllc1) (e +n)
(4.13) +{|w(0) = 20l|x + 21+ 2pr(n) + €
+e([[Flloo + 1flloo) + I1F = fllr0,4:x))

for t € [0,7], where z : [0,7) — Y is the function defined by z(0) = z, and
z(t) = zj for t € (sj_1,s;] and j = 1,2,... Since an estimate similar to (4.13)
holds for w*®, we find

|w(t) —wt)|x <CF, o B)(|lz—20lx + 1T — 20llx
+1F = fllzroex) + 1F = f”Ll(O,t;X))

for ¢t € [0, 7]. By Lemma 4.9 below, the desired result is obtained by letting zp — =
in X and F' — f in C([0, 7]; X) in the above inequality. n

Lemma 4.9. LetT >0, ug € D and A(ug)ug € Y. Then the set
E={(20,F); €Y, FeCY[0,T]; X), A(ug)zo + F(0) € Y}
is dense in Y x C([0, T]; X).

Proof. Letx € Y and f € C([0,T]; X). Then there exists a sequence
{(zg, fr)} In Y x C1([0,T); X) such that ||z — x| x — 0 and ||fx — flleo — O
as k — oo. Choose a null sequence {ht} of positive numbers such that hj €
(0, hx(|luolly)] for k& > 1, and put zx = (I — hpA(ug)) ! (zx + hifr(0)) for
k = 1,2,... Then it is easily seen that z;, € Y and A(ug)z + f1(0) = (I —
hy A(ug)) " (A(uo)zk + f1(0)) € Y; hence (21, fi) € E for k =1,2,... Since

Ik — @llx < (7 = hrAuo)) " Ix (I — 2l x + kel fe(0) ] x)
I = hrAluo)) "'z — =|x,

we have limy_.o, 2z = 2 in X, by Lemma 2.1 and condition (A4). ]

Lemma 4.10. Let 3> a > 0 and let up € D(«) be such that A(ug)ug € Y.
Let 7 € (0,7(«x)) and let w be a mild solution to (QE;u) on [0, 7] such that u
is a uniform limit of c-approximate solutions constrained in D(3). Let z € Y,
f € C(]0,7]; X) and let w be a mild solution to (CP; z, f)*“ on [0,7]. Then we
have

lw(t) = yllx < C(F o, B) ([l = yllx + [ fllLr0,6x) + tea(r)lylly)
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for t € [0,7] and y € Y, where r is the number specified in condition () by (.

Proof. By assumption, for each sufficiently small ¢ > 0 there exists an e-
approximate solution u¢ to (QE; ug) on [0, 7] constrained in D(/3) such that ||u®(t) —
u(t)||x < e fort e [0,7]. It follows from Lemma 2.3 that A(«°(¢)) converges in
B(Y, X) uniformlyon [0, 7] ase | 0. Lety € Y, and set f(t) = — limg o A(u®(t))y
and w*(t) =y for ¢ € [0, 7]. Then we have

(@°(t7) — @ (t;_1))/ (t; — 1) = A(ui)w"(£7) — Au;)y

for i =1,2,..., N¢, where {(¢,u$)}Y, is the sequence in [0, 00) x D by which
the s-approximate solution «< is defined as in Definition 4.1. The continuity of f in
X on [0, 7] follows from that of u, by Lemma 2.3. Since maxj<;< - sup{||f(£) +
A(ul )yl x;t € [t5_,,t5]N[0,7]} — 0 as e | 0, we see that w° is an e-approximate
solution to (CP; v, f)* on [0,7]. This implies that the function w(t) = y for
t € [0,7] is a mild solution to (CP; y,f)* on [0,7]. Since ||f(t)|x = limo |
A(uf(t)yl|x < ca(r)||yl|ly fort € [0, 7], the desired result is obtained by Proposi-
tion 4.8. ]

5. ExisTENCE oF CLASSICAL SOLUTIONS

In this section we discuss the convergence of c-approximate solutions of (QE;
ug) and give the proof of our main theorem (Theorem 2.9).

Lemma 5.1. Letwup € D and A(ug)ug € Y. Let 7 € (0,7(p(ug))) and a €
R . Assume that for each sufficiently small £ > 0, there exists an s-approximate
solution u® to (QE; wup) on [0, 7] constrained in D(«). Then there exists a mild
solution u to (QE; ug) on [0, 7] such that

sup{|lu®(t) — u(t)||x;t € [0,7]} — 0 ase — 0.

Proof. Arguments similar to those in the proof of Proposition 4.7 imply that
there exists a function v : [0, 7] — X such that sup{||u®(¢)—u(t)||x;t € [0,7]} — 0
as ¢ — 0. We have only to show the continuity of » in X on [0,7]. Since ¢ is
constrained in D(«), there exists » > 0 such that u®(t) € By (r) for ¢t € [0, 7]
and € > 0 (by condition (p)). It follows from (giii) that ||u®(t) — u®(s)||x <
(ca(r)r+e)(|t — s| +¢) for t, s € [0,7]. This implies that u € C([0,7]; X). =

Lemma 5.2. Let ug € D be such that A(ug)up € Y, and let 0 < 7 < 7 <
T(p(ug)). Let a; = sup{m;(t; p(up)) + 1;t € [0, 7]} fori =1,2,...,n and put
a = (o4)f,. Then there exists a mild solution to (QE; u) on [0, 7] which is a
uniform limit of e-approximate solutions constrained in D(«).
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Proof. We choose ¢y € (0, 1] such that € € (0, ] implies that 7 < 7¢(¢(ug))
and m® (t; p(uo)) < m(t; (up)) + 1 for t € [0, 7]. By Lemma 3.2 with vy = z9 =
up and F' = 0, there exists an e-approximate solution constrained in D(«) for each
e € (0, &0]. The desired result follows from Lemma 5.1. ]

Lemma 5.3. Let up € D be such that A(ug)ug € Y, and let « € R" and
T € (0,7(p(up))). Let u be a mild solution to (QE; ug) on [0,7] such that «
is a uniform limit of e-approximate solutions constrained in D(«). Then, for any
r €Y and f € C([0,T]; X), there exists a mild solution to (CP; z, f)“ on [0, 7.

Proof. We begin by showing the lemma under the assumption that there exists
an e-approximate solution w* to (CP; x, f)* on [0, T'] for sufficiently small ¢ > 0. In
a way similar to the proof of Proposition 4.8, we see that sup{ ||w(t) —w*(t)|| x; t €
[0,T]} — 0 as A\, u — 0. This implies the existence of a function w : [0,7] — X
such that sup{||w®(t) —w(¢)||x;t € [0,T]} — 0 as e — 0. To prove the continuity
of w in X on [0,7], let 7 € (T, 7(p(ug))) and (29, F) € Y x C*([0,7]; X) be
fixed arbitrarily such that A(ug)zo + F(0) € Y. Let z : [0,7) — Y be the function
constructed in the proof of Proposition 4.8, by using a sequence {(s;, vj, 2;)}72
in [0, 7) x D x Y satisfying conditions (i) through (xii) with v, replaced by ug in
Lemma 3.2. Then we have, by Lemma 3.2 (viii),

12(8) = z(s)l[x < ([t = sl +n)(calr)Mu(r, 7, [[20lly, [ Fllcr) + [ Flloe + 1)

for t, s € [0,T7], where r is a constant depending only on « and o(ug). After
combining this inequality with (4.13) and letting € — 0, we take the limitas n | 0
to find

[w(t) —w(s)lx < Cllz = 2ollx + 1 = fllpro,r:x))
+ [t = sl(ca(r) M7, 7, || 20lly, [[Fllcn) + [1F1loo)

for ¢t,s € [0,T], where C is a positive constant independent of ¢, s, zg, F. By
Lemma 4.9, this inequality implies that w is continuous in X on [0, 7.

By the above argument we have only to show the existence of c-approximate
solution to (CP; z, f)" on [0, T for sufficiently small ¢ > 0. Lete € (0, hx(r)). By
assumption, there exists a sequence {(¢;, u;) }¥, in [0, 00) x D satisfying conditions
(i) through (ev). Since 2 € Y, we choose wy € Y such that ||wo — z||x < &, and
define a sequence {w;}Y, in Y inductively by

wi = (I = (t; — tim1) A(wi)) " (wimy + (6 — tic1) f (1))

for i = 1,2,...,N. Then, the function w : [0,7] — X, defined by w(t) =
wo for t = 0 and w; for ¢t € (t;—1,t;]N[0,7] and ¢ = 1,2,..., N, is an e-
approximate solution to (CP; z, f)" on [0,T7, since || f(t) — f(ti—1)|lx < py(e)
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fort € [ti—1,t)N[0,T]and i = 1,2,..., N, where p; stands for the modulus of
continuity of f in X on [0, T]. |

To prove our main theorem (Theorem 2.9), assume that uy € D, A(ug)ug € Y
and set 7o = 7(p(ug)) in the rest of this section. Take arbitrarily 7 € (0, 79) and
T € (T,70). Let a; = sup{m;(t; p(up)) + 1;¢t € [0, 7]} for i = 1,2,...,n and put
a = (a;)!,. Denote by r the number specified in condition (¢) by the vector «,
and let Ao € (0, hx(r)). Then, we define an operator B by

B(w, z) = (dA(w)2) (I — MA(w)) ™ (w — Xo2)

for (w,z) € (By(r) N D) x X, and investigate some properties of B, which will
be used to show the convergence in Y of approximate solutions of (QE; ).

Lemma5.4. (i) Foreach R > 0 there exist L g(R) > 0 and a nondecreasing
function pp(R;-) : Ry — Ry such that pp(R;0) | 0 as o | 0 and that

[1B(w, 2) = B(w, 2)|| x < pp(R; lw—blx)+ Le(R)|z - 2| x

for (w, z), (w, 2) € (By(r)N D) x Bx(R).
(if) For each R > 0 there exists M g(R) > 0 such that

|B(w, z)||x < Mp(R) for (w,z) € (By(r)ND)x Bx(R).

Proof. Since assertion (ii) is a direct consequence of assertion (i), we have only
to show assertion (i). To do this, let (w, z), (W, 2) € (By(r) N D) x Bx(R). Since
B(w, z) — B(w, z) is written as
((dA(w) — dA(W))2) (I — XoA(w)) ™ w — Xz
(dA(@) (2 = £))(I = Ao A(w)) ™ H(w —

(dA@)2)((I = AoA(w)) ™" = (I = M A(w)) 1) (w — Ao2)
(dA(W@)2)(I = Mo A(w))H(w — b — Ao(z — 2)),

)
)\QZ)

assertion (i) follows from condition (A3), Lemmas 2.2, 2.4 and 2.5. |

The above lemma implies that the operator B : (By(r) N D) x X — X is
uniquely extensible to the operator B : By (r)N D x X — X.

Lemma 5.5. Let u be a mild solution to (QE; u) on [0, 7] obtained by Lemma
5.2, Let T € (0, 7] and assume that there exists w € C([0,T]; X) such that w is
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a mild solution to (CP; A(ug)ug, f*)* on [0,T], where f*(t) = B(u(t), w(t)) for
t € [0,T]. Then w is a classical solution to (QE; u) on [0, 7] and satisfies

w(t) = A(u(t))u(t) fort e [0,T],
p(u(t)) < m(t; p(uo)) fort €0, 7).
Proof. Let n € (0,1] be such that 7 < 77(p(up)) and m(t; p(ug)) <

m(t; o(up)) + 1 for ¢ € [0,7]. By Lemma 3.2 with vy = 29 = up and F' = 0, we
then find a sequence {(s;;, vj)}fio in [0, 7) x D satisfying the following conditions:

(i) 0=sp<s1<--<sg_1<T<sg.
(i) sj —sj—1 <nforj=1,2,... K.
(i) Jvj —vj—1 — (55 — sj—1)A(vj)vjllx < (sj —sj_1)pfor j =1,2,..., K,
where vy = uyg.
(iv) |lv; —vj_illy <npforj=1,2,... K.
(V) @(v;) <m'(sj;¢(ug)) for j=0,1,..., K.
Vi) [1A;)v; — (I = (55— 55-1) A(v3) " (A(vj-1)vj1

+(sj—5j-1)B(vj-1, A(vj—1)vj-1))llx < (s5—sj-1)nforj=1,2,.... K.

Here it should be noticed that condition (v) implies that v; € D(«) for 0 < j < K;;
hence there exists » > 0 such that v; € By (r)Nn D for 0 < j < K.

Since the function v" : [0,7] — X, defined by v"(t) = uo for ¢t = 0 and v; for
t € (sj—1,s;]N[0,T]and j = 1,2,..., K, is an np-approximate solution to (QE;
up) on [0, T] constrained in D(«), it follows from Lemma 5.1 and Proposition 4.7
that

sup{[|v”(t) —u(t)l|lx;t € [0, T]} — 0 asn—0.

Let zo € Y be such that ||zo — A(up)up||x < n and define a sequence {zj}fio in
Y inductively by

B1)  zi=(I— (55— 55-1) A1) (zjm1 + (85— 55-1) " (55-1))
for j = 1,2,..., K. Since f¥ € C([0,T]; X) by Lemma 5.4, we see that the
function 27 : [0,T] — X, defined by 2" (t) = 2z, fort = 0 and z; fort € (s;j_1, s;|N

[0,T)and 7 = 1,2,..., K, is an n-approximate solution to (CP; A(ug)ug, f*“)".
By the first part in the proof of Lemma 5.3 and by Proposition 4.8, we have

sup{||2"(t) —w(t)||x;t €[0,T]} — 0 forn — 0.
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By (vi) and (5.1) we have
25— A(vj)vjllo;, <exp(w(r)(1+n)(sj—s51))(1zj1—A(vj1)viallv,
(5.2) +ex(r)(s5 — sj-1) | B(vj-1, A(vj_1)vj_1)
— B(u(sj—1), w(sj—1))|x + ex(r)(sj — sj-1)n)
for j =1,2,..., K. Lemma 5.4 implies that
|B(vj—1, A(vj—1)vj-1) — B(u(sj-1), w(sj-1))| x
< pp(R;sup{|[v"(t) — u(t)||x;t € [0, TT})
+ Lp(R)ex (r)||A(vi—1)vj—1 — zj-1 ij—l
+ Lp(R) sup{[|2"(t) —w(t)||x;t € [0, T]}

(5.3)

for j =1,2,..., K, where R = max(ca(r)r, sup{||w(t)||x;t € [0,T]}). Com-
bining (5.2) and (5.3), we have

5.0 25— A(vj)vjllo; < exp((w(r)(1+n) +ex(r)*Lp(R))(sj — sj-1))
X(l1zj—1 = A(vj—1)vj—illo;_; + ex(r)C(R,m)(s; — sj-1))

for j=1,2,..., K, where

C(R,n) = pp(R;sup{[lv"(t) —u(t)|[x;t € [0,T]})

+ Lp(R) sup{[|z"(t) —w(t)||x;t € [0, T]} +n.
Solving (5.4), we obtain the inequality
125 — A(vj)vjlle, < exp((w(r)(1+n) + ex(r)*Lp(R))sj)ex (r)(C(R,m)s; +n)

for j =0,1,..., K. This implies that

sup{||z7(t) — A(v"(¢))v"(t)||x;t € [0,T]} — 0 asn— 0.

Since v"(t) — u(t) and A(v"(t))v"(t) — w(t) in X uniformly on [0, 7], we see
that v"(¢) converges in Y to u(¢) uniformly on [0, 7] and that A(u(t))u(t) = w(t)
for ¢t € [0, 7). It follows from (iii) and (v) that « is a classical solution to (QE; wy)
on [0, T'] satisfying o (u(t)) < m(t; (ug)) for t € [0,T7]. n

Proof of Theorem 2.9. Let u be the unique mild solution to (QE; u¢) on [0, 7]
such that « is a uniform limit of e-approximate solutions constrained in D(«). The
existence of u is ensured by Lemma 5.2,
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We first show that there exist 7' € (0,7] and v € C([0,77]; X) such that v is
a mild solution to (CP; A(ug)uo, f*)* on [0,T], where fU(t) = B(u(t),v(t)) for
t € [0, T]. To do this, we introduce a subset X of C([0, T]; X) defined by

X={vel(0,T]; X);v(0) = A(ug)ug, ||v(t)— A(up)uo|lx <1 fort e [0,T]},

where T' € (0, 7] is yet to be determined. It is obvious that X is a nonempty, closed
subset of C([0,T]; X). Let v € X. Since A(ug)ug € Y and f¥ € C([0,T]; X),
it follows from Lemma 5.3 and Proposition 4.8 that there exists a unique mild
solution 2V € C([0,T7; X) to (CP; A(ug)ug, f¥)* on [0,T]. We define a mapping
¢ : X — C([0,7T]; X) by ®v = 2¥ for v € X. By Proposition 4.8, Lemmas 4.10
and 5.4, we have

[(@v)(#) = yllx < M(T, a)([|A(uo)uo — yllx +T(Mp(R) + ca(r)llylly)),
[(@v)(2) = (20) ()|l x < M(7, @) Lp(R)T[v = 9|co,

fort € [0,7]and y € Y, where R = ||A(uo)uo||x+1andy € Y. Since A(up)ug €
Y, an elementy € Y can be chosen such that (M (7, ) +1)|| A(uo)uo—y| x < 1/2.
It follows that for sufficiently small 7' € (0, 7], ® maps X into itself and @ is strictly
contractive on X. By Banach’s fixed point theorem, the mapping ® has a unique
fixed point v in X. This implies that v is a mild solution to (CP; A(ug)ug, f*)* on
[0, 7).

Now, we define t,.x by the supremum of T' € [0, 7] such that there exists
v € C([0,T]; X) being a mild solution to (CP; A(ug)uo, f¥)* on [0,T]. Then, we
have 0 < tnmax < T by the above argument. By Proposition 4.8 and the definition of
tmax there exists v € C([0, tmax); X ) such that for each 7' € (0, tax) the restriction
of v on [0,77] is a mild solution to (CP; A(ug)uo, f°)* on [0,7]. By Lemma 5.5
we see that « is a unique classical solution to (QE; wu) on [0, tmax) Satisfying the
following conditions:

(5.5) o(u(t)) <m(t;p(ug)) for t € [0, tmax)-

(5.6) 9(t) = A(u(t))u(t) for t € [0, tumax)-

Once the fact that ¢,,,x = 7 is shown, the proof of Theorem 2.9 is complete because
7 is an arbitrary number in (0, 9).

Now, assume to the contrary that 7 > ty.. Then, we see that the limit
limyye,,,.. u(t) exists in Y. Indeed, take F' € C([0,tmax]; X) arbitrarily. Then,
by Lemma 5.3 with T' = t,.x, We see that there exists a mild solution z €
C(]0, tmax); X) to (CP; A(ug)ug, F)*. By Proposition 4.8, we have

(5.7) [Au(t))u(t) = 2(t)|lx < M(7,q) /0 1£°(0) = F(o) | x do
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for t € [0, tmax); hence

lim sup || A(u(t))u(t) — A(a(t))a(t)|| x < 2M (7, o) /0 NS (0) = F(o) | x do

£, 67 tmax

By (5.5) and (5.6) we have ||o(t)||x < ca(r)r for ¢ € [0, tmax); hence f¥ €
L>®(0, tmax; X) C LY(0, tyax; X) by Lemma 5.4. 1t follows by density argument
that the limit lim,,, A(u(t))u(t) exists in X. Since w is a classical solution to
(QE; ug) 0N [0, tmax) satisfying u(t) € D(a) for t € [0, tmax), We have

lut) —u(®)x < /t [A(u(o))u(o)|lx do < ca(r)rlt —t] — 0 as ¢, 1 tmax.

These facts imply that the limit @ := limy 14, u(t) exists in Y.

Now, we introduce the space X of all elements z € C(]0,T]; X) such that
2(t) = A(u(t))u(t) (= o(t)) for t € [0,tmax) and ||z(t) — A(u)ulx < 1 for
t € [tmax, T], and the mapping ¥ : X — C([0,7]; X) defined by ¥z = w* where
w? is a unique mild solution to (CP; A(ug)uo, f*)* on [0, T], where T' € (tmax, 7]
will be determined in the later arguments. It is easily seen that X is a honempty,
closed subset of C([0, 7']; X ) and that the mapping ¥ is unambiguous by Proposition
4.8 and Lemma 5.3. We want to show that ¥ has a unique fixed point irlX for some
T € (tmax,7]. To do this, let z € X. To demonstrate that ¥ maps X into itself,
we notice that (Uz)(t) = o(t) for ¢ € [0, tmax), because f7(¢) = B(u(t), v(t)) for
t € [0, tmax). Consider the function g € C([0, 7]; X') defined by

B(u(t),o(t))  for t € [0, tmax),
g(t) = { - )
B(uv A(u)u) fort e [tmam 7'],

and let @ be a mild solution to (CP; A(ug)ug, g)* on [0,7]. The existence of w
is guaranteed by Lemma 5.3. Since f#(t) = g(¢) for t € [0,tmax) We find by
Proposition 4.8

G8)  (T2)(t) —w®)|x < M(7, Oé)/t 1% (o) = B(a, A(w)a)| x do

for t € [tmax,T]. Since w(t) = o(t) for t € [0,tmax) (by uniqueness of mild
solutions), we see by (5.6) that @ (tmax) = A(u)u. Since [[u(t)|ly < r fort €
[0, tmax) (by (5.5)), we have [|f*(¢)[|lx = [| B(u(t), 2(t))|lx < Mp(ca(r)r+1) for
t € [0,T] (by Lemma 5.4). It follows from (5.8) that

1(®2)(1) — A(w)allx < [|0(t) = D (tmax) | x +2M (7, @) (t = tmax) Mp(ca(r)r+1)
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for ¢t € [tmax, T]. This inequality implies that ¥ maps X into itself for T sufficiently
close to tax. Let z, 2 € X. By Proposition 4.8 we have

1(W2)(t) = (P2)(D) | x < M(T, a)(T = tmax) L(ca(r)r + 1|z = Zlloo

for t € [tmax, T']. This means that the mapping W is strictly contractive on X if T
is chosen sufficiently close t0 ¢,.. We thus~see that for some T' € (tmax, 7, the
mapping ¥ has a unique fixed point w in X, and so w is a mild solution to
(CP; A(up)ug, f*)* on [0,T]. This contradicts the maximality of ¢y.x; hence
tmax = T. [ ]

6. QuAsI-LINEAR WAVE EQUATIONS OF KIRCHHOFF TYPE WITH
AcousTic BouNDARY CONDITIONS

We consider the mixed problem for the quasi-linear wave equation of Kirchhoff
type with acoustic boundary condition

uge(z,t) — B(|[Vul(-, t)||?) Au(x, t) + vug(z,t) =0 in Q2 x (0, 00),

u(z,t) =0 on Ty x (0,00),

m(x)ou(z, t) + d(x)de(x, t) + k(x)d(z, t) + pur(z,t) =0 on Ty x (0, 00),
%ﬁ’” = d(x,t) on Ty x (0,00),

u(z,0) =up(z), u(z,0)=uvo(x), 0(x,0)=70(z), &(z,0)=00(x),

where Q is a bounded domain of RY with smooth boundary T' = I'y UT';. Here
Iy # 0, Ty and T'y are closed and disjoint, and n represents the unit outward normal
to I'. The symbol |[w]| is defined by |jw|| = (J, |w(z)|?dz)'/? for w € L*(%).
The function 3 € C*(R,;R) is assumed to satisfy that 3(s) > 5o > 0 for s € R,
and v, p > 0. It is also assumed that d is a nonnegative, continuous function on I'y
and that m, k are positive, continuous functions on T';.

Matsuyama and lkehara [12] studied the global existence and decay property of
solutions in the case where T'; = (). Frota and Goldstein [6] discussed the global
well-posedness for the Carrier equations with acoustic boundary conditions by using
Galerkin’s and energy method.

Theorem 6.1. (1) There exists » > 0 such that for each initial datauq € H*(Q)
with y(ug) = 0 on Ty and Aug € L3(Q), vo € HY(Q) with y(vg) = 0 on
Lo, 60,00 € L?(Ty) satisfying || Vuo| + |Auol| + | Vvoll + || + 0| < r and
Jo(Aug)p+Vug-V dr = frl ooy(¢) dS forany ¢ € H(Q) withy(¢) = 0on T,
the mixed problem mentioned above has a unique solution u € C ([0, c0); H*(2))N
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C?([0,00); L%(2)) and § € C?%([0, o0); L?(T1)) such that v(u) = 0 on T'g, Au €
C([0,00); L*()) and [o,(Au)¢+Vu-Védz = [ 6v(4)dS forany ¢ € H'(Q)
with y(¢) = 0 on Ty, where v : H1(Q2) — L*(T") is the trace map.

(I1) Assume in addition that d is positive on T"1. Then, the following exponential
decay of the energy holds:

IVu@@)[| + llue (@)1 + 168 + 16: ()| < M exp(-wt)  for ¢ > 0.
Proof. LetV = {ve HYQ); y(v)=0onTy}and H(A,Q)={veV;Av e
L?(©2)}. Notice that

(6.1) lo| < C|Vo|  forveV,

(6.2) lv(v)| < C||Vv| forveV,

where |w| := ([;., [w(z)|*dS)"/? for w € L*(T';). For simplicity in notation, we
write u for v(u) in the following arguments.

Let X =V x L2(Q) x L?(T'1) x L?(';) and let Y be the space of all elements
(u,v,6,0) € H(A,Q) x V x L?(T'1) x L?(Ty) such that

/Q(Au)qﬁ—i—Vu-Vqﬁdx:/ opdS

1N}

for any ¢ € V. For simplicity in notation, the above identity is written as
(Au, ¢) + (Vu, Vo) = (o, )1,
The spaces X and Y are real Banach spaces under the norms defined by
I(u, 0,8, 0)l1x = (IVull® + [[v]* + 18] + |o]*) /2 for (u,v,6,0) € X
and
1(w, 0,8, 0) Iy = (V] + [|Au]| + | Vol® + (5] +|o|*) /2 for (u,v,6,0) €Y

respectively.
We use Theorem 2.9 with D = W =Y to solve the above-mentioned mixed
problem. For each (w, z,£,n) € Y, define a linear operator A((w, z,£,7)) in X by

A((w, 2,6,0))(u,v, 6,0) = (v, B(|Vw||*)Au — vv, o, —(1/m)(do + kS + pv))

for (u,v,9,0) € D(A((w, 2,£,7n))) =Y. Then, we have A((w, z,£,n)) € B(Y, X)
by (6.2). By using the identity that

Au = B(|Vw )T B(IVwl) Au — vv) + vB([Vwl?) "o
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and the property that 3(s) > [y > 0 for s € R, condition (Al) is easily checked.
Condition (A2) is satisfied with the operator dA((w, z,¢,n)) € B(X,B(Y, X))
defined by

(dA((w, 2, &) (@, 2,,7)) (u, v, 6, 0) = (0,26'(| Vw||*)(Vw, Vi) Au, 0, 0)

for (w, z,&,n), (u,v,9,0) € Y and (w, z,€,7) € X. We easily see that the operator
dA((w, z,&,n)) defined above satisfies condition (A3), using the continuity of g’
on R,.

To check condition (A4), let » > 0 and (w, z,&,nm) € By(r). By a routine
argument with the help of the Riesz representation theorem, we see that for each
A > 0and (u,v,d,0) € X, there exists a unique (uy, vy, dx,0n) € Y such that
(ux, vx, Ox, 00) — AA((w, 2, &, m))(uy, vy, dx, ox) = (u, v, 0, 0); namely

(6.3) (ux — u) /A = vy

(6.4) (03 = v)/A = B(|Vw|?) Auy — voy

(6.5) (6x — 8)/A = oy

(6.6) (03 — 0) /A = —(1/m)(dox + Ky + puy)
(6.7) (Auy, ) + (Vuy, Vo) = (ox, d)r,  forp e V.

To check the remained part of condition (A4), we employ the family of norms in
X defined by

1(, 0,6, 0) w,e.e.0) = (Pl Vull® + pBUIVwl?) " o] + [K1/26]? + [0/

for (w, z,&,m) € Y. Clearly, condition (D1) is satisfied, since p > 0 and k, m are
positive continuous functions on I'y. Substituting ¢ = vy (= (ux —u)/A) € V into
(6.7) we find, by (6.4) and (6.6),

BUIVw||?)~H(vx — v) /A +voy, va) + (Vuy, V(uy —u) /)
+(ox, (1/p)(m(or— o) /A + dox + kdx))r, = 0.
By convexity of norms, we have

(I =AA((w, 2, &) "M, 0,8, 0) 12, e

(6.8)
—l(u,v,8,0)| )/ A+20pB(1|Vw|?) HlualP+2(d 205 < 0,

2
(w,z,€m
where vy, oy are defined by (uy, vy, 6x, o) = (I — MA((w, 2, £,1))) " (u, v, 6, o).
This inequality, together with condition (D1), implies that the remained part of (A4)
is satisfied.
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To check (D2), let (u,v,6,0) € X, (w,z,§,n),(wx 2x,En,1m0) € By(r)

and [[(wax, zx, Ex, Mn) — AA((wa, 2x, Ex, M) (W, 23, Ex, M) — (w, 2,€,1)||x < A
Then, we notice that ||Vw||, [[Vw,]|, |[Vz| < r and

(6.9) [V (wx —w — Xzp)|| < M.
By the inequality (6.8) we find that

H(I - )\A((w>\7 Z)\, 5)\7 nk)))_l(’uﬂ 'U, 57 O-)H(Zwk,zk,fk,nk) S H(u7 'U, 57 J)H%’wk,zk,fk,nk)'

Condition (D2) follows from this inequality combined with (6.9) and the inequalities
that

I, v,6,0)|

2 2
e inn) 00 G- e _ 1BUIVIP) = B(IVwal?)]
[ty 0,8,0)12, . ¢y B B(IVwal?)

and 5([|[Vwx|*) B[ Vw(|?) =B VwalP)] < 265" Mg (r?)r||V (w—ws)||, where
Mg/(R) = sup{|#(s)|; s € [0, R} for R € Ry.
To check (¢)-(R) we employ the three functionals on X defined by

¢1(u,v,6,0) = || (u,0,8,0)?7, , 5.0y
¢2(u,v,6,0) = B(|VullP) " pllvu +vl* + p| Vul|* + [m! 2o |* + |1/,
b3(u,v,0,0) = |pu + mo + dé|* + |(km)/25|?
and the functional on Y defined by
¢a(u,v,8,0) = [ A((u,v,6,0))(u,0,6,0)3, 1.6,

Let (u,v,d,0) € Y. Then, we see by Proposition 2.6 that there exists a sequence
{(ux, vx, Ox,02)} in Y such that

(6.10) (ux — w) /A = vy,
(6.11) (0 = 0) /A = B(IVur|*) Auy — vy,

(6.12) (65— 8)/A = o,

(6.13) (03 — 0)/A = —(1/m)(dox + kb + pvy),
(6.14) (Auy, @) + (Vuy, Vo) = (on, @), forany ¢ € V

and such that uy — winV, Auy — Auin L?(Q), vy —vinV, oy — oin L*(T1)
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and 5y, — & in L2(Ty) as A | 0. By (6.8) with (w, 2, £,m) = (uy, va, I, o), We
find that

(é1(ux, 2, 6, 02) = G1(u, v,8,0)) /A + 2vpB([[Vur||?) " loall* + 2/d' 05 |?
< p(BUIVurl?) ™t = BUIVull®) D v/

since A~ (B([[Vual?) = BIVul?) = [y 26/(IV (Gur + (1 = 0)u)[*)(V(Bux +
(1 =0)u), Vuy) df we have

lim SupAlO((bl(U’)w V), 5)\7 J>\) - ¢1 (’U,, v, 57 J))/)\
(6.15) +20pB(|[Vul?) o] + 2(d o]
< =2pf'([|[Vull?) B[ Vul|*) 72 (Vu, Vo) |v||%.

Substituting ¢ = vy + vuy € V into (6.14) and noting that (vy — v)/A + vvy =
((vx + vuy) — (v+ vu)) /X we find, by a way similar to the derivation of (6.15),

limsup/\lo(qﬁg(u,\, U, Ox, 02) — B2(u,v,8,0)) /X + 2vp||Vul||? + 2\d1/20\2
< =2pB'(I[Vul?)B(IVull®)"*(Vu, Vo) |vu +v]|* + 2vp(o, u)r,.
Substituting (6.10) and (6.12) into (6.13) we have
(6.16) ((pux+ moy + doy) — (pu+ mo + dd)) /A + ko) = 0.

Since (koyx, pux+mox+ddr)r, = (kdx, pur)r,+{kdx, m(5>\—5)/)\>rl+‘(kd)1/25>\‘2,
we take the inner product of (6.16) and puy + moy + doy to find that

lim sup(gs(ux, va, Ox, oz) — P3(u,v,9,0))/ A+ 2(ko, pu)r, + 2\(kd)1/2(5\2 <0.
ALO

By (6.8) we have
(1T =XA((ur,vx,00,00))) "LA((un,00,605,00)) (u, v,6,0)
—lA((ua v, 80, o)) 10,8, 0) 2,5/
< —2vpB(|Vuall?) “HIBUVurll?) Aux — vorlf?
—2|dY2(1/m)(dox + by + puy)|%.

2
”(u,\,v,\ﬁ,\ﬂ/\)

(6.17)

By the definition of the norm ||(u, v, d, o) ) we have

lw.zm
(A(ur, vxs 5. 03)) (1, 0, 8,012, s 61.00)
—[[A((w,v,6,0))(w,v,8,0) 12, .5 )/
= p(BIVurl?) MBI Vurl?) Au — vo?
—B([Vull>) B Vul?) Au = vol?) /.

(6.18)
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Adding (6.17) and (6.18), and passing to the limsup as A | 0, we have
liri\llsoup((ﬁzl(u;\, U, Oxy ON) — Palu,v,8,0))/A
+2pv([[Val?) T B(IVul?) Au — vol|?
(6.19) +2[dY2(1/m)(pv + do + k6)|?
< 20B([Vul®) =28 (I Vul*) (Vu, Vo) | B(/[Vu]?) Au — vol]?
HpvB(|Vul|?) 728 (IVull?)(Vu, Vo) (B(| Vul?) Au—vo, v).

Consider the functional ¢ on Y defined by g = ¢1 + ¢4. Then we have, by (6.15)
and (6.19),

liri\llsoup(apo(u,\, Ux, O, 0)) — @olu,v,0,0))/A
+2upB([[Vull®) " ([ol* + [18([Vul?) Au — vo|[?)

< 2(v+1)pB(|Vull?) 218 (IVuH NVl [ Vol (ol I8 Val?) Au—vo]?).
Since
(6.20) 20| Vull[[Voll < p([Vull® + [[Vo?) < wo(u, v,,0),
we have
(6.21) 1ini\llsoup(<ﬁo(ux\, A, Ox, 0)) = po(u,v,0,0)) /A

< (folyo(u, v, d,0)) = 2v)Tpo(u, v, 6, o),

where sT = max(s,0) for s € R and f; is a nondecreasing, continuous function
on Ry such that f,(0) = 0. The function G, defined by

G(s) = (fols) —2v)"s

for s € R, is a comparison function such that for each oy > 0 with fy(ag) < 2v,
the Cauchy problem for G with the initial condition 7(0) = « has the global
maximal solution m(t; ap) = ap. Since

1in;llSOUP(<Po(um Ux, 63, 02) = @o(u,v,0,0)) /A < Gpo(u, v, 0,0)),

condition (¢)-(R) is shown to be satisfied. Theorem 2.9 therefore asserts that for
each ag > 0 with fo(ap) < 2v, the mixed problem has a unique solution (u, d) in
the class

([0, 00); H(A, Q)N C([0,00); V) N C2([0, 00); LA(€2)) x C*([0, 00); L*(T'1))
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if the initial data (UQ, 0, 50, JQ) satisfies (po(’LLQ, 0, 50, JQ) < ayp.

If d is positive on T'; then the exponential decay of the energy is obtained. To
do this, we use the functional 1 on X defined by 1 = a¢1 + boo + ¢3, Where
a,b > 0 are yet to be determined. We have

linglsup(apl(u,\, U, O, 00) — @1(u,0,6,0)) /A
0

+2vp(af([|[Vull?)~Hv]* + bl Vul?) + 2(a + b)do|o|? + 2kodo|d]?
< (2/80) |8 (IVul )N Vullll Vollpi(u, v, 6, 0) + 2bvp(o, u)r, — 2p(kd, u)r,

where dy, k¢ are positive constants such that d(z) > do and k(x) > k¢ for z € T';.
Since | (kd, u)r,| < 0|d|?+ Cx, |[Vul|? for any g9 > 0 and |{o, u)r, | < &1||Vu|?+
C.,|o|? for any ; > 0, we find

linglsup(apl(u,\, U, 0, 00) — @1(u,0,6,0)) /A
0

+(CO - fl(‘PO(uv v, 57 J)))‘Pl(uv v, 57 J) <0,

by choosing &y, b, 1 and a in order so that 2peg < kodo, 2p(Cs, + brer) < vpb
and 2bvpC., < (a + b)dy and noting that ¢1(u,v,d, ) < c(B(||Vul|?) " |v|? +
| Vu||?+|o|?+|5|%) for some constant ¢ > 0. Here f; is a nondecreasing, continuous
function on R, such that f1(0) = 0 and we have used (6.20). This combined
with (6.21) implies that condition (¢)-(R) is satisfied with ¢ = (¢, 1) and the
comparison function g = (go, g1) defined by go(ro,71) = (fo(ro) — 2v)"r¢ and
g1(ro,m1) = (f1(ro) — co)r1 for r = (rg,71) € Ri. If oy > 0 is chosen such that
folap) < 2v and fi(ap) < co, then the maximal solution m(¢; o) of the Cauchy
problem for g with initial condition r(0) = o = (v, 1) i given by

{ mo(t; ) = ao,

m1(t; ) = exp((f1(ao) — co)t) .

We therefore have @o(u(t), v(t),d(t),o(t)) < ag and @1 (u(t), v(t),d(t), o(t)) <
exp((fi(ao) — co)t)aq for ¢ > 0 if the initial data (ug,vo, dp, 0g) Satisfies the
two conditions that ¢ (ug, vo, 00, 00) < o and o1 (ug, vo, oo, 00) < ;. Since
|(w, v, 6, 0) |3 < f2(po(u, v, 6, 0))e1(u,v,d,0) for (u,v,d,0) € X, where f, is a
nondecreasing function on R, we have || Vu||?+|jug||2+|8|2+ |62 < M exp(—wt)
for t > 0. [

7. QUASI-LINEAR WAVE EQUATIONS WITH WENTZELL BOUNDARY CONDITIONS

The systematic study of the second order Cauchy problems for operators with
Wentzell boundary conditions was initiated by Favini, Goldstein, Goldstein and
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Romanelli [5]. In [7] a general framework was developed which allows to study the
initial-boundary value problems for quasi-linear equations with Wentzell boundary
conditions. This section is devoted to another approach to such problems. We
apply Theorem 2.8 to the initial-boundary value problem for the quasi-linear wave
equation with Wentzell boundary condition

utt(xv t) = ¢($7 um(x7 t))ua:a:(xv t) + w(xv ’LL((I,', t)v um(x, t)v ’U,t(fI,', t))

for z € [0, 1],
O(J, ua(f; 1) taa(f; 1) + ¥ (4, w(ds 1), ualf, t), ue(d; 1))
= Bj(u (4, ) +v;(u(j, 1)) forj=0,1.

(7.1)

Theorem 7.1. Assume that the following conditions are satisfied:

(¢) ¢ € C'([0,1] x R;R) and there exists ¢o > 0 such that ¢(x,p) > ¢¢ for
(z,p) € 0,1] x R.

() ¥ e C[0,1] x R x R x R;R).

(3) Forj=0,1, 8; € C?(R;R) and 3;(0)

(v) Forj=0,1,7; € C*(R;R) and ~;(0) =

Then for each (ug,vo) € C%([0,1];R) x C1([0, 1]; R) with

¢, ug(5)ug(7) + (s uo(4), up(4), vo(d)) = B;(up(5)) + vi(uo(4))

for j = 0,1, there exist 7 > 0 and a unique v € C([0,T]; C?([0,1];R)) N
C1([0,T]; C([0,1];R)) N C?([0, T]; C([0, 1];R)) such that u satisfies equation
(7.1) for t € [0, T and the initial condition u(x,0) = uo(x) and u(x,0) = vo(x)
for z € [0, 1].

0.

Proof. We use the homogeneous reduction technique due to Kato [10]. Let
X be the space of all (u,v,k,&,n) € CL0,1] x C[0,1] x R x R? x R? such that
u(j) =& for j = 0,1, and let Y be the space of all (u,v,k,&,n) € C?[0,1] x
C'0,1] x RxR?xR? such that u(j) = &; and v(j) = n; for j = 0, 1. The spaces X
and Y are real Banach spaces under the norms ||(u, v, k, &£, n)||x = ||ullcr +||vllc+
|kl + I€llrz + [[n]lr2 and || (u, v, k, & n)lly = [[ullcz +[lvllcr + [k +[1€]lrz + In]lr2,
respectively.

Let D = {(u,v,k,&,n) € Y; k = 1}. To solve the problem (7.1), we ap-
ply Theorem 2.8 to the family {A((w, 2, ¢, f,9)); (w, 2,(, f,g) € Y} in B(Y, X)
defined by

A((w, 2,¢, f,9))(u,v,k,&n)
= (’U, ¢(7 ’U)/)’LLH + kw(v w, wlv Z), 0, m, B(w)u + C(w)f),
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where

B ((/0153(91”/@)) Cw) u/(j)>jo,1 for w € C2[0, 1) and u € [0, 1]
and
Clw)¢ = ((/Olfyj(ﬁw( ))d0> £j>jo,1 for w e C2[0,1] and € = (€0, 1) € R2.

Conditions (A1) through (A3) are easily checked. To check condition (A4) we need
the following lemma.

Lemma 7.2. ([17, Proposition 2.1] and [7]). (I) Let E = {(p,q) € C'[0,1] x
C[0,1]; p(0) = p(1) = 0} and w € C?[0, 1]. Define an operator Ag(w) in E by

{ (Ao(w)(p, 9)(x) = (q(z), ¢(z,w'(z))p"(z))
D(Ao(w)) = {(p,q) € C?[0,1] x C'[0,1]; p(0) = p(1) = 0, ¢(0) = ¢(1) = 0}.
Then the following assertions hold:

(i) The space E is a real Banach space under the norm

1P, @)l = max(‘sup{lg(z) + /é(x, w'(2))p'(x)]; 2 € [0, 1]},
sup{lq(z) — /o (z, w'(2))p'(z);z € [0, 1]})

for (p,q) € E. By E, we denote the space E equipped with the norm
12 @)l

(i) For r > 0 with ||w||c2 < r, there exists w(r) > 0 such that for any A > 0
with Aw(r) < 1, R(I — MAp(w)) = E,, and

I(Z = AAo(w)) (P, D) llw < (1= 2(r) (2 D)l for (p,q) € Eu.

(11) The family {||(p, q)||w; w € C?[0,1]} of the norms defined above satisfies the
following conditions:

(i) For each r > 0 there exists Mg(r) > 0 such that

(7.2) Mp(r)~ (Ipller + lale) < 1w, @)llw < Mp(r)(Ipller + lalc)

for (p,q) € F and ||w| g2 <.
(if) For each r > 0 there exists Lg(r) > 0 such that
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(7.3) 1P, )l < exp(Le(r)w —bllc)l(P, @)l

for (p, ¢) € E and [Jwl|cz, [li]c> <7

The operator Ly from R? into C°°[0, 1], defined by (Lo&)(z) = (1 — )& +x&;
for = € [0, 1], plays an important role in verifying condition (A4). Such an operator
is called a Dirichlet operator. Let (u,v,k,&,n) € X and (w, z,¢, f,g) € By(r)N
D. Setp =u—Lo& and ¢ = v— Lgn. Then we apply Banach’s fixed point theorem
to the mapping ® from E,, x R? x R? into itself, defined by

O((5,q), & 1) = (I = Mo(w)) " ((p, @) + A0, kb (-, w, ', 2) — Lod(w))),
&+ Aij,n+ Ad(w))
for (p,4) € E, and £,7 € R?, where d(w) := B(w)(p + Lo€) + C(w)E for

w € C?[0,1]. By Lemma 7.2, this yields that for sufficiently small A > 0 depending
on r, the problem

((pxs an) = (@) /A = Ao(w) (px, ) + (0, kao (-, w, ', z) — Lod(w)),
(kx—k)/A=0,

(Ex = /A=,

(m—m)/A = d(w)

has a solution (py, gx, kx, Ex, my) € C?[0,1] x C1[0, 1] x R x R? x R? satisfying
that |k, = |k| and

[, @) llw + 1Ex IRz + lI7Al[R2
< (1= 2w(m) " l(p; D llw + AC)([kal + [IpAlor + 163 ][R2))
+€llre + Mmallge + Inllge + AC(r) ([pallcr + €xlIr2)-
A combination of the above two estimates shows that

(L= AB(r) ([ )l + [FA] + [Ex1lr2 + 177 ]|r2)

(7.4)
<@, Dllw + K]+ 11€]lR2 + lI7]]R2-

We employ the family {||(u, v, &, &, 1)l(w,z,c, 7,9 (W, 2,C, f,g) € Y} of norms in
X defined by

(s 0, K, &)l w2, 1.9) = 1w = Lo&s v = Lon)llw + K] + [|€]lr2 + [17]gz-
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Condition (D1) follows from (7.2). The inequality (7.4) together with (7.3) im-
plies condition (D2). If we set uy := px + Lo&\ and vy := gx + Lgny, then
we see that (uy, vy, kx, €, mx) 1S @ solution of the equation (wy, vy, kx, Ex, Mx) —

)‘A((’wv 2, Ca f7 g))(“’)\v U, k)n 5)\7 77/\) = (’Ll,, v, kv 57 77) and

(L= ABE) [ (wx, vas kxs Exs M) (w,z,¢,1.9) < (s 05 K5 E0) (w210, £,9)-

This means that condition (A4) is satisfied. If & = 1 then kx(= k) = 1; hence
condition (2.1) is satisfied. By condition (¢), for each a > 0 there exists » > 0
such that w € C2[0,1] and ||(p, q)|lw < « imply that ||p’||c, |lg|lc < 7; from which
condition (2.4) holds. ]
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