A GENERALIZATION OF BESSEL'S INTEGRAL FOR THE BESSEL COEFFICIENTS

Per W. Karlsson

Abstract

We derive an integral over the m-dimensional unit hypercube that generalizes Bessel's integral for $J_{n}(x)$. The integrand is $G(x \psi(\mathbf{t})) \exp (-2 \pi$ i $\mathbf{n} \cdot \mathbf{t})$, where G is analytic, and $\psi(\mathbf{t})=\mathrm{e}^{2 \pi \mathrm{i} t_{1}}+\ldots+\mathrm{e}^{2 \pi \mathrm{i} t_{m}}+\mathrm{e}^{-2 \pi \mathrm{i}\left(t_{1}+\ldots+t_{m}\right)}$, while \mathbf{n} is a set of non-negative integers. In particular, we consider the case when G is a hypergeometric function ${ }_{p} F_{q}$.

1. Introduction

The series definition of the Bessel function

$$
\begin{equation*}
J_{\nu}(z)=\frac{\left(\frac{1}{2} z\right)^{\nu}}{\Gamma(\nu+1)}{ }_{0} F_{1}\left[{ }_{\nu+1} \left\lvert\,-\frac{1}{4} z^{2}\right.\right], \quad-\nu \notin \mathbb{N} \tag{1}
\end{equation*}
$$

and Bessel's integral representation

$$
\begin{equation*}
2 \pi J_{n}(z)=\int_{0}^{2 \pi} \exp (\mathrm{i}(z \sin \varphi-n \varphi)) \mathrm{d} \varphi, \quad n \in \mathbb{Z} \tag{2}
\end{equation*}
$$

are well known and may be found in many textbooks; see, for instance, Ch. 7 in [1] or Ch. 6 in [2].

We are interested in establishing a multidimensional generalization of (2). However, it is more convenient to work within the framework of hypergeometric functions. Accordingly, we set $z=x \exp \left(-\frac{1}{2} \pi i\right)$ and $\varphi=\frac{1}{2} \pi+2 \pi t$ to obtain the equivalent representation

In the sequel we shall establish a generalization of (3) in terms of an integral over the m-dimensional unit hypercube.

[^0]
2. The Generalized Integral

Let boldface letters denote m-dimensional vectors with the customary dot product. The analogue of the factor $\exp (-2 \pi \mathrm{i} n t)$ may reasonably be expected to be $\exp (-2 \pi$ in $\cdot \mathbf{t})$, where $n_{1}, \ldots, n_{m} \in \mathbb{N}_{0}$. It is less evident what should take the place of $\exp (x \cos (2 \pi t))$. Some preliminary considerations indicated that we should consider $G(x \psi(\mathbf{t}))$, where
(4) $\quad \psi(\mathbf{t})=\exp \left(2 \pi \mathrm{i} t_{1}\right)+\ldots+\exp \left(2 \pi \mathrm{i} t_{m}\right)+\exp \left(-2 \pi \mathrm{i}\left(t_{1}+\ldots+t_{m}\right)\right)$,
while G is an analytic function. Introduce its Maclaurin expansion

$$
\begin{equation*}
G(\xi)=\sum_{k=0}^{\infty} \frac{g(k)}{k!} \xi^{k}, \quad|\xi|<R, \tag{5}
\end{equation*}
$$

where for brevity $g(k)$ is written instead of the derivative $G^{(k)}(0)$. The integral to be investigated thus reads,

$$
\begin{equation*}
I=\int_{0}^{1} \cdots \int_{0}^{1} G(x \psi(\mathbf{t})) \exp (-2 \pi \mathbf{i n} \cdot \mathbf{t}) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{m} \tag{6}
\end{equation*}
$$

This may, on account of (5), be written

$$
\begin{equation*}
I=\sum_{k=0}^{\infty} g(k) x^{k} L(k) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
L(k)=\int_{0}^{1} \cdots \int_{0}^{1} \frac{[\psi(\mathbf{t})]^{k}}{k!} \exp (-2 \pi \mathrm{in} \cdot \mathbf{t}) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{m} \tag{8}
\end{equation*}
$$

Next, by the multinomial theorem,

$$
\begin{aligned}
& \frac{[\psi(\mathbf{t})]^{k}}{k!} \exp (-2 \pi \mathrm{in} \cdot \mathbf{t}) \\
= & \sum_{\mathcal{J}_{k}} \frac{\exp \left[2 \pi \mathrm{i}\left(\mu_{1} t_{1}+\ldots+\mu_{m} t_{m}-\mu_{0}\left(t_{1}+\ldots+t_{m}\right)-\left(n_{1} t_{1}+\ldots+n_{m} t_{m}\right)\right)\right]}{\mu_{0}!\mu_{1} \cdots \mu_{m}!} \\
= & \sum_{\mathcal{J}_{k}} \frac{\exp \left[2 \pi \mathrm{i}\left(\mu_{1}-\mu_{0}-n_{1}\right) t_{1}\right] \cdots \exp \left[2 \pi \mathrm{i}\left(\mu_{m}-\mu_{0}-n_{m}\right) t_{m}\right]}{\mu_{0}!\mu_{1}!\cdots \mu_{m}!},
\end{aligned}
$$

where the index set \mathcal{J}_{k} is given by the inequalities

$$
\begin{equation*}
\mu_{0} \geq 0, \mu_{1} \geq 0, \ldots, \mu_{m} \geq 0, \mu_{0}+\mu_{1}+\ldots+\mu_{m}=k \tag{9}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
L(k)= & \sum_{\mathcal{J}_{k}} \frac{1}{\mu_{0}!\mu_{1}!\cdots \mu_{m}!} \int_{0}^{1} \exp \left[2 \pi \mathrm{i}\left(\mu_{1}-\mu_{0}-n_{1}\right) t_{1}\right] \mathrm{d} t_{1} \times \\
& \cdots \times \int_{0}^{1} \exp \left[2 \pi \mathrm{i}\left(\mu_{m}-\mu_{0}-n_{m}\right) t_{m}\right] \mathrm{d} t_{m} \\
= & \sum_{\mathcal{J}_{k}} \frac{1}{\mu_{0}!\mu_{1}!\cdots \mu_{m}!} \delta\left(\mu_{1}, \mu_{0}+n_{1}\right) \cdots \delta\left(\mu_{m}, \mu_{0}+n_{m}\right) \\
= & \sum_{k=0}^{\infty} \frac{1}{\mu_{0}!\left(\mu_{0}+n_{1}\right)!\cdots\left(\mu_{0}+n_{m}\right)!}
\end{aligned}
$$

where $\delta(\kappa, \lambda)$ is Kronecker's delta. The condition $k=\mu_{0}+\mu_{1}+\ldots+\mu_{m}$ implies that the last sum is empty unless we have

$$
\begin{equation*}
k=(m+1) \mu_{0}+n_{1}+\ldots+n_{m} \tag{10}
\end{equation*}
$$

for some integer μ_{0}. Introducing for brevity

$$
\begin{equation*}
N=n_{1}+\ldots+n_{m} \tag{11}
\end{equation*}
$$

we may now state the result,
(12) $L(k)=\left\{\begin{array}{rr}\frac{1}{\mu!\left(\mu+n_{1}\right)!\cdots\left(\mu+n_{m}\right)!}, & k=(m+1) \mu+N, \quad \mu \in \mathbb{N}, \\ 0, & \text { otherwise. }\end{array}\right.$

Inserting this into (7) we obtain

$$
\begin{aligned}
I & =\sum_{k=0}^{\infty} g(k) x^{k} L(k)=\sum_{\mu=0}^{\infty} \frac{g((m+1) \mu+N) x^{(m+1) \mu+N}}{\mu!\left(\mu+n_{1}\right)!\cdots\left(\mu+n_{m}\right)!} \\
& =\frac{x^{N}}{n_{1}!\cdots n_{m}!} \sum_{\mu=0}^{\infty} \frac{g((m+1) \mu+N)\left(x^{m+1}\right)^{\mu}}{\mu!\left(n_{1}+1\right)_{\mu} \cdots\left(n_{m}+1\right)_{\mu}}
\end{aligned}
$$

Thus, the final result is,

$$
\begin{align*}
& \int_{0}^{1} \cdots \int_{0}^{1} G(x \psi(\mathbf{t})) \exp (-2 \pi \mathbf{i n} \cdot \mathbf{t}) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{m} \\
& =\frac{x^{N}}{n_{1}!\cdots n_{m}!} \sum_{\mu=0}^{\infty} \frac{g((m+1) \mu+N)\left(x^{m+1}\right)^{\mu}}{\mu!\left(n_{1}+1\right)_{\mu} \cdots\left(n_{m}+1\right)_{\mu}} \tag{13}
\end{align*}
$$

for $|x|$ sufficiently small.

3. The Hypergeometric Case

Assume now that G is a hypergeometric function,

$$
G(\xi)={ }_{p} F_{q}\left[\begin{array}{c|c}
a_{1}, \ldots, a_{p} & \xi] ; \tag{14}\\
c_{1}, \ldots, c_{q} & \xi] ; \text {, } \\
1, \ldots
\end{array}\right.
$$

we then have

$$
\begin{equation*}
g(k)=\frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(c_{1}\right)_{k} \cdots\left(c_{q}\right)_{k}} . \tag{15}
\end{equation*}
$$

Furthermore, by the multiplication formula for the Pochhammer symbol we obtain

$$
\begin{aligned}
(\alpha)_{N+(m+1) \mu} & =(\alpha)_{N}(\alpha+N)_{(m+1) \mu} \\
& =(\alpha)_{N}(m+1)^{(m+1) \mu}\left(\frac{\alpha+N}{m+1}\right)_{\mu}\left(\frac{\alpha+N+1}{m+1}\right)_{\mu} \ldots\left(\frac{\alpha+N+m}{m+1}\right)_{\mu},
\end{aligned}
$$

and, by insertion, we arrive at the desired integral formula:

$$
\begin{align*}
& \int_{0}^{1} \ldots \int_{0}^{1}{ }_{p} F_{q}\left[\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
c_{1}, \ldots, c_{q}
\end{array} \right\rvert\, x \psi(\mathbf{t})\right] \exp (-2 \pi \mathrm{in} \cdot \mathbf{t}) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{m} \\
& =\frac{\left(a_{1}\right)_{N} \cdots\left(a_{p}\right)_{N} x^{N}}{\left(c_{1}\right)_{N} \cdots\left(c_{q}\right)_{N} n_{1}!\cdots n_{m}!} \tag{16}\\
& \quad \times{ }_{(m+1) p} F_{(m+1) q+m} \times\left[\left.\begin{array}{l}
\mathcal{P}_{\mathrm{N}} \\
\mathcal{P}_{\mathrm{D}}
\end{array} \right\rvert\,\left[x(m+1)^{p-q}\right]^{m+1}\right],
\end{align*}
$$

where the parameter sets are given as follows

$$
\begin{align*}
& \mathcal{P}_{\mathrm{N}}=\left\{\Delta\left(m+1, a_{1}+N\right), \ldots, \Delta\left(m+1, a_{p}+N\right)\right\}, \\
& \mathcal{P}_{\mathrm{D}}=\left\{\Delta\left(m+1, c_{1}+N\right), \ldots, \Delta\left(m+1, c_{q}+N\right), n_{1}+1, \ldots, n_{m}+1\right\} \tag{17}
\end{align*}
$$

with, as usual,

$$
\begin{equation*}
\Delta(\nu, \alpha)=\left\{\frac{\alpha}{\nu}, \frac{\alpha+1}{\nu}, \ldots, \frac{\alpha+\nu-1}{\nu}\right\} . \tag{18}
\end{equation*}
$$

As to the hypergeometric functions in (16) we must, in general, require $p \leq q+1$. Moreover, in the case $p=q+1$ they are hypergeometric series for $|x|(m+1)<1$; otherwise, analytic continuations have to be considered.

4. Particular Cases

We note some results obtained by further specialization.
4.1. Assume that one of the numerator parameters a_{1}, \ldots, a_{p} equals a negative integer $-M$. If $M<N$, the right-hand memeber of (16) vanishes. If $N \leq M \leq$ $N+m$, the hypergeometric function on the right-hand side of (16) reduces to unity and we are left with the prefactor.
4.2. For $m=1$, we obtain $\psi(t)=2 \cos (2 \pi t)$, and the formula (16) yields,

$$
\begin{align*}
& \int_{0}^{1}{ }_{p} F_{q}\left[\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
c_{1}, \ldots, c_{q}
\end{array} \right\rvert\, 2 x \cos (2 \pi t)\right] \exp (-2 \pi \mathrm{i} n t) \mathrm{d} t \\
& =\frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n} x^{n}}{\left(c_{1}\right)_{n} \cdots\left(c_{q}\right)_{n} n!} \times \tag{19}\\
& \times{ }_{2 p} F_{2 q+1}\left[\left.\begin{array}{r}
\frac{1}{2}\left(a_{1}+n\right), \frac{1}{2}\left(a_{1}+n+1\right), \ldots, \frac{1}{2}\left(a_{p}+n\right), \frac{1}{2}\left(a_{p}+n+1\right) \\
\frac{1}{2}\left(c_{1}+n\right), \frac{1}{2}\left(c_{1}+n+1\right), \ldots, \frac{1}{2}\left(c_{q}+n\right), \frac{1}{2}\left(c_{q}+n+1\right), n+1
\end{array} \right\rvert\, 4^{p-q} x^{2}\right] .
\end{align*}
$$

We may, furthermore, take $p=0=q$, and replace x with $\frac{1}{2} x$. This leads to (3).
4.3. Let $m=2, p=1, q=0, a_{1}=\frac{1}{2}, \mathbf{n}=(n, 2 n)$. Moreover, let $x \rightarrow \frac{1}{3}$; then on the right-hand side of (16) a ${ }_{3} F_{2}[1]$ appears to which Watson's theorem applies. After a few steps involving elementary properties of the Pochhammer symbol, and the duplication formula for the Gamma function, we arrive at the formula

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{1} \frac{\exp \left(-2 \pi \mathrm{i} n\left(t_{1}+2 t_{2}\right)\right)}{\sqrt{1-\frac{1}{3}\left[\exp \left(2 \pi \mathrm{i} t_{1}\right)+\exp \left(2 \pi \mathrm{i} t_{2}\right)+\exp \left(-2 \pi \mathrm{i}\left(t_{1}+t_{2}\right)\right)\right]}} \mathrm{d} t_{1} \mathrm{~d} t_{2} \tag{20}\\
& =\frac{\pi\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{4^{n}\left[\Gamma\left(\frac{1}{2} n+\frac{7}{12}\right) \Gamma\left(\frac{1}{2} n+\frac{11}{12}\right)\right]^{2}}=\frac{1}{4 \pi} \Gamma\left[\begin{array}{l}
\frac{1}{2} n+\frac{1}{12}, \frac{1}{2} n+\frac{5}{12} \\
\frac{1}{2} n+\frac{7}{12}, \frac{1}{2} n+\frac{11}{12}
\end{array}\right] .
\end{align*}
$$

4.4. The case $m=3, p=1, q=0, a_{1}=1, \mathbf{n}=(n, n, 2 n)$, and $x \rightarrow \frac{1}{4}$, is reminiscent of the preceding one. A parameter cancellation takes place, and we obtain a ${ }_{3} F_{2}[1]$ to which we can, again, apply Watson's theorem. The formula obtained reads,

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{\exp \left(-2 \pi \mathrm{in} n\left(t_{1}+t_{2}+2 t_{3}\right)\right) \mathrm{d} t_{1} \mathrm{~d} t_{2} \mathrm{~d} t_{3}}{1-\frac{1}{4}\left[\exp \left(2 \pi \mathrm{i} t_{1}\right)+\exp \left(2 \pi \mathrm{i} t_{2}\right)+\exp \left(2 \pi \mathrm{i} t_{3}\right)+\exp \left(-2 \pi \mathrm{i}\left(t_{1}+t_{2}+t_{3}\right)\right)\right]} \\
& =\frac{\pi\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{4^{n}\left[\Gamma\left(\frac{1}{2} n+\frac{5}{8}\right) \Gamma\left(\frac{1}{2} n+\frac{7}{8}\right)\right]^{2}}=\frac{1}{2 \sqrt{2} \pi} \Gamma\left[\begin{array}{c}
\frac{1}{2} n+\frac{1}{8}, \frac{1}{2} n+\frac{3}{8} \\
\frac{1}{2} n+\frac{5}{8}, \frac{1}{2} n+\frac{7}{8}
\end{array}\right] . \tag{21}
\end{align*}
$$

5. Further Generalization

One might consider a function G of several variables (see, e.g., [3]) in such a way that the integrand would involve (for example) $G\left(x_{1} \psi(\mathbf{t}), \ldots, x_{r} \psi(\mathbf{t})\right)$. Although the corresponding investigation would proceed along similar lines, and the function L would again be useful, the resulting expressions would be rather bulky; we shall, therefore, leave this approach aside.

References

1. A. Erdélyi et al., Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953.
2. E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960; Reprinted by Chelsea, Bronx, New York, 1971.
3. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.

Per W. Karlsson
Department of Mathematics,
Technical University of Denmark, Matematiktorvet,
DK-2800 Lyngby,
Denmark

[^0]: Received February 9, 2005, revised March 8, 2005.
 Communicated by H. M. Srivastava.
 2000 Mathematics Subject Classification: 33C10.
 Key words and phrases: Bessel functions, Hypergeometric functions, Watson's theorem.

