ON THE SECOND FUNDAMENTAL FORMS OF THE INTERSECTION OF SUBMANIFOLDS

Jiazu Zhou

Abstract

Let G be a Lie group and H its subgroup, and let M^{p}, N^{q} be two submanifolds of dimensions p, q, respectively, in the Riemannian homogeneous space G / H. We study the relationships between the second fundamental forms of $M^{p} \cap g N^{q}$ and the second fundamental forms of M^{p}, N^{q} for $g \in G$. We find that the second fundamental form of $M^{p} \cap g N^{q}$ can be expressed by the curvature functions of M^{p}, N^{q} and the "angle" between M^{p} and N^{q}. All results achieved are the generalizations of known results of the classical differential geometry in \mathbf{R}^{3}.

1. Introduction

Let G be a Lie group (that is, a manifold equipped with group structure), which is assumed to have a left and also right invariant Riemannian metric. Let H be a closed subgroup of G. Then G / H is a Riemannian homogeneous space. Denote by $d g$ the kinematic density of G (the Haar measure in geometric measure theory). Let M^{p}, N^{q} be two submanifolds of dimensions p, q, respectively, in G / H. We assume that M^{p} is fixed and N^{q} is moving under the action $g \in G$. It is always assumed that M^{p} and N^{q} are in general positions, that is, for almost all $g \in G$, the dimension of $M^{p} \cap g N^{q}$ is $p+q-\operatorname{dim}(G / H) \geq 0$.

Let $I\left(M^{p} \cap g N^{q}\right)$ be an integral invariant of the submanifold $M^{p} \cap g N^{q}$ of dimension $p+q-n$. Evaluating the integral of type

$$
\begin{equation*}
\int_{G} I\left(M^{p} \cap g N^{q}\right) d g \tag{1.1}
\end{equation*}
$$

[^0]and expressing by the integral invariants of submanifolds M^{p} and N^{q} is called the kinematic formula for $I\left(M^{p} \cap g N^{q}\right)$ in integral geometry. For example, in the case that G is the group of isometry of \mathbf{R}^{n}, M^{p} and N^{q} are submanifolds of \mathbf{R}^{n}, and $I\left(M^{p} \cap g N^{q}\right)=\operatorname{vol}\left(M^{p} \cap g N^{q}\right)$, the volume of $M^{p} \cap g N^{q}$, the evaluation of $\int_{G} I\left(M^{p} \cap g N^{q}\right) d g$ leads to formulas due to Poincare, Blaschke, Santalo, Howard and others (see [9, 11, 12] for references). If G is the unitary group $U(n+1)$ acting on complex projective space $\mathbf{C P}{ }^{n}, M^{p}$ and N^{q} are complex analytic submanifolds of $\mathbf{C P}^{n}$, and $I\left(M^{p} \cap g N^{q}\right)$ is the integral of a Chern class leads to the kinematic formula of Shifrin [14]. If M, N are two domains of the Euclidean space \mathbf{R}^{n} and $I(M \cap g N)=\chi(M \cap g N)$ is the Euler characteristic of the intersection of two domains M and N for rigid motion $g \in G$ of \mathbf{R}^{n}, then $\int_{G} \chi(M \cap g N) d g$ can be expressed explicitly by the integrals of elementary symmetric functions of principal curvatures over the boundaries and the Euler characteristics of the two domains M and N. This well-known fundamental kinematic formula in integral geometry is due to S. S. Chern [5, 6]. Refer to [1-3, 7, 10, 13, 18, 19, 23] for literatures of kinematic formulas.

An important unsolved problem is that can an invariant $I\left(M^{p} \cap g N^{q}\right)$ (either intrinsic or extrinsic) be expressed by invariants of submanifolds M^{p} and N^{q}. At least we are not aware of letting $I(M \cap g N)=\operatorname{diam}(M \cap g N)$, the diameter of intersection $M \cap g N$ of two domains M and N in \mathbf{R}^{n}. The classical Euler formula says that the curvature κ of intersection curve $M \cap g N$ of two surfaces M and N in \mathbf{R}^{3} can be expressed by their normal curvatures of surfaces and the angle between M and N.

Proposition 1. Let M and N be two surfaces in \mathbf{R}^{3} with the normal curvatures κ_{n}^{M} and κ_{n}^{N}. Let κ be the curvature of the intersection curve $M \cap g N$ and ϕ be the angle between M and $g N$. Then we have the following Euler formula ([4, 15])

$$
\begin{equation*}
\kappa^{2} \sin ^{2} \phi=\left(\kappa_{n}^{M}\right)^{2}+\left(\kappa_{n}^{N}\right)^{2}-2 \cos \phi\left(\kappa_{n}^{M}\right)\left(\kappa_{n}^{N}\right) \tag{1.2}
\end{equation*}
$$

We used this formula to prove the C-S. Chen's kinematic formula ([3, 23]). Let H_{M}, H_{N} be, respectively, mean curvatures of M, N, and let

$$
\begin{equation*}
\tilde{H}_{M}=\int_{M} H_{M}^{2} d \sigma, \quad \tilde{H}_{N}=\int_{N} H_{N}^{2} d \sigma \tag{1.3}
\end{equation*}
$$

Then we have the the following kinematic formula

$$
\begin{align*}
& \int_{G}\left(\int_{M \cap g N} \kappa^{2} d s\right) d g \tag{1.4}\\
= & 2 \pi^{2}\left\{\left(3 \tilde{H}_{M}-2 \pi \chi(M)\right) F_{N}+\left(3 \tilde{H}_{N}-2 \pi \chi(N)\right) F_{M}\right\},
\end{align*}
$$

where F_{M}, F_{N} are areas of M, N, respectively, and $\chi($.$) is the Euler characteristic.$
Our main task of this paper is to find the Euler formula (1.2) in higher dimensions. We obtain a fundamental formula over the second fundamental form of $M^{p} \cap g N^{q}$, that is, the second fundamental form of the intersection $M^{p} \cap g N^{q}$ can be written as the linear combination of the second forms of M^{p} and N^{q}. Since all curvature functions are determined by the second fundamental forms, our formula contains a great deal of curvature information in geometry.

The formulas we are pursuing can be applied to achieve more kinematic formulas in general homogeneous space G / H. In [18], we obtained a generalized Euler formula for hypersurfaces in \mathbf{R}^{n} and as its applications we achieved the kinematic formulas for mean curvature powers of hypersurface. Moreover, we obtained an extension of Hadwiger's containment problem, i.e., a sufficient condition for one domain to contain another in the Euclidean space $\mathbf{R}^{2 n}$. The significance of kinematic formulas are not just interested in their own light but also can be applied to other geometry branches. In their papers ([8, 11, 17, 18, 20-24]), Grinberg, Ren, Zhang, and Zhou obtained the sufficient conditions for Hadwiger's containment problem in high dimensions and the Willmore functional deficit estimate for convex surfaces in \mathbf{R}^{3}. As one see, our motivation of writing this paper clearly comes from the integral geometry.

2. Preliminaries

Let X be a p-dimensional submanifold immersed in an n-dimensional Riemannian space \mathbf{N}. We choose a local field of orthonormal frames e_{1}, \cdots, e_{n} in \mathbf{N} such that, restricted to X, the vector e_{1}, \cdots, e_{p} are tangent to X. We make use of the following convention on the ranges of indices:

$$
\begin{align*}
1 & \leq A, B, C, \cdots \leq n \\
p+1 & \leq i, j, k, \cdots \leq n \tag{2.1}\\
1 & \leq \alpha, \beta, \gamma, \cdots \leq p
\end{align*}
$$

With respect to the frame field of \mathbf{N} chosen above, let $\omega_{1}, \cdots, \omega_{n}$ be the field of dual frames. Then the structure equations of N are given by

$$
\begin{equation*}
d x=\sum_{A} \omega_{A} e_{A} \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
d \omega_{A}=-\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0 \tag{2.3}
\end{equation*}
$$

$$
\begin{gather*}
d \omega_{A B}=-\sum_{C} \omega_{A C} \wedge \omega_{C B}+\Phi_{A B}, \quad \Phi_{A B}=\frac{1}{2} \sum_{C, D} K_{A B C D} \omega_{C} \wedge \omega_{D} \tag{2.4}\\
K_{A B C D}=K_{C D A B}, K_{A B C D}=-K_{A B D C}=-K_{B A C D}, \\
K_{A B C D}+K_{A D B C}+K_{A C D B}=0 .
\end{gather*}
$$

If these are restricted to X, then

$$
\begin{equation*}
\omega_{i}=0 . \tag{2.6}
\end{equation*}
$$

Since $0=d \omega_{i}=-\sum_{\alpha} \omega_{i \alpha} \wedge \omega_{\alpha}$, by Cartan's lemma we can write

$$
\begin{equation*}
\omega_{i \alpha}=\sum_{\beta} h_{\alpha \beta}^{i} \omega_{\beta}, \quad h_{\alpha \beta}^{i}=h_{\beta \alpha}^{i} . \tag{2.7}
\end{equation*}
$$

From these formulas, we obtain

$$
\begin{equation*}
d \omega_{\alpha \beta}=-\sum_{\gamma} \omega_{\alpha \gamma} \wedge \omega_{\gamma \beta}+\Omega_{\alpha \beta}, \quad \Omega_{\alpha \beta}=\frac{1}{2} \sum_{\gamma, \sigma} R_{\alpha \beta \gamma \sigma} \omega_{\gamma} \wedge \omega_{\sigma} \tag{2.9}
\end{equation*}
$$

$$
\begin{array}{ll}
R_{\alpha \beta \gamma \sigma}=R_{\gamma \sigma \alpha \beta}, & R_{\alpha \beta \gamma \sigma}=-R_{\alpha \beta \sigma \gamma}=-R_{\beta \alpha \gamma \sigma}, \tag{2.10}\\
& R_{\alpha \beta \gamma \sigma}+R_{\alpha \sigma \beta \gamma}+R_{\alpha \gamma \sigma \beta}=0 .
\end{array}
$$

$$
\begin{equation*}
d \omega_{i j}=-\sum_{k} \omega_{i k} \wedge \omega_{k j}+\Omega_{i j}, \quad \Omega_{i j}=\frac{1}{2} \sum_{\alpha, \beta} R_{i j \alpha \beta} \omega_{\alpha} \wedge \omega_{\beta} . \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
R_{i j \alpha \beta}=R_{\alpha \beta i j}, R_{i j \alpha \beta}=-R_{i j \beta \alpha}=-R_{j i \alpha \beta}, \quad R_{i \alpha \beta \gamma}+R_{i \gamma \alpha \beta}+R_{i \beta \gamma \alpha}=0 . \tag{2.12}
\end{equation*}
$$

The Riemannian connection of X is defined by $\left(\omega_{\alpha \beta}\right)$. The form $\left(\omega_{i j}\right)$ defines a connection in the normal bundle of X. We call

$$
\begin{equation*}
I I=\sum_{i} I I_{i} e_{i}=\sum_{i}<d^{2} x, e_{i}>e_{i}=\sum_{i, \alpha, \beta} h_{\alpha \beta}^{i} \omega_{\alpha} \omega_{\beta} e_{i} \tag{2.13}
\end{equation*}
$$

the second fundamental form of the immersed submanifold X. Sometimes we shall denote the second fundamental form by

$$
\begin{equation*}
I I_{i}=<d^{2} x, e_{i}>=\sum_{\alpha, \beta} h_{\alpha \beta}^{i} \omega_{\alpha} \omega_{\beta}=<I I, e_{i}> \tag{2.14}
\end{equation*}
$$

or simply its components $h_{\alpha \beta}^{i}$. The length of the second fundamental form II of X is defined by

$$
\begin{equation*}
|I I|^{2}=\sum_{i}\left|I I_{i}\right|^{2}=\sum_{i} \sum_{\alpha, \beta}\left(h_{\alpha \beta}^{i}\right)^{2} . \tag{2.15}
\end{equation*}
$$

The mean curvature vector \vec{H} is defined by

$$
\begin{equation*}
\vec{H}=\frac{1}{p} \sum_{i}\left(\operatorname{trace}\left(I I_{i}\right)\right) e_{i}=\frac{1}{p} \sum_{i}\left(\sum_{\alpha} h_{\alpha \alpha}^{i}\right) e_{i}, \tag{2.16}
\end{equation*}
$$

and its length H, that is,

$$
\begin{equation*}
H=\frac{1}{p}\left\{\sum_{i}\left(\operatorname{trace}\left(I I_{i}\right)\right)^{2}\right\}^{1 / 2}=\frac{1}{p}\left\{\sum_{i}\left(\sum_{\alpha} h_{\alpha \alpha}^{i}\right)^{2}\right\}^{1 / 2} \tag{2.17}
\end{equation*}
$$

is called the mean curvature of X.
Let $X^{p} \subset Y^{q} \subset \mathbf{N}(p \leq q<n)$ be two submanifolds. If we choose the frame

$$
\begin{equation*}
\left(e_{1}, \cdots, e_{p}, e_{p+1}, \cdots, e_{q}, e_{q+1}, \cdots, e_{n}\right) \tag{2.18}
\end{equation*}
$$

such that $e_{1}, \cdots, e_{p} \in T\left(X^{p}\right)$ and $e_{1}, \cdots, e_{q} \in T\left(Y^{q}\right)$, then we have the mean curvature vector \vec{H}_{X} of X^{p}, the mean curvature vector \vec{H}_{Y} of Y^{q}, respectively, are

$$
\begin{align*}
\vec{H}_{X} & =\frac{1}{p} \sum_{i=p+1}^{q}\left(\sum_{\alpha=1}^{p} h_{\alpha \alpha}^{i}\right) e_{i}+\frac{1}{p} \sum_{j=q+1}^{n}\left(\sum_{\alpha=1}^{p} h_{\alpha \alpha}^{j}\right) e_{j} \tag{2.19}\\
& =\vec{H}_{\mathbf{G e o}(X)}+\vec{H}_{\operatorname{Nor}(Y)}, \\
\vec{H}_{Y} & =\frac{1}{q} \sum_{j=q+1}^{n}\left(\sum_{\rho=1}^{q} h_{\rho \rho}^{j}\right) e_{j} \\
& =\frac{1}{q} \sum_{j=q+1}^{n}\left(\sum_{\rho=1}^{p} h_{\rho \rho}^{j}\right) e_{j}+\frac{1}{q} \sum_{\mathrm{J}=q+1}^{n}\left(\sum_{\rho=p+1}^{q} h_{\rho \rho}^{j}\right) e_{j} \tag{2.20}\\
& =\frac{p}{q} \vec{H}_{\operatorname{Nor}(Y)}+\frac{1}{q} \sum_{j=q+1}^{n}\left(\sum_{\rho=p+1}^{q} h_{\rho \rho}^{j}\right) e_{j} .
\end{align*}
$$

Therefore

$$
\begin{equation*}
\vec{H}_{\mathrm{Nor}(Y)}=\frac{1}{p}\left\{q \vec{H}_{Y}-\sum_{j=q+1}^{n}\left(\sum_{\rho=p+1}^{q} h_{\rho \rho}^{j}\right) e_{j}\right\} \tag{2.21}
\end{equation*}
$$

If $p=n-2, q=n-1$ then we have

$$
\begin{equation*}
\vec{H}_{X}=\frac{1}{n-2} \sum_{\alpha=1}^{n-2} h_{\alpha \alpha}^{n-1} e_{n-1}+\frac{1}{n-2} \sum_{\alpha=1}^{n-2} h_{\alpha \alpha}^{n} e_{n} \tag{2.22}
\end{equation*}
$$

It follows that $\vec{H}_{\operatorname{Nor}(Y)}$ only depends on Y (normal bundle of X). Where $\vec{H}_{\mathbf{G e o}(X)}$ is defined as the geodesic curvature vector at $x \in Y$ (related to X) and $\vec{H}_{\mathbf{N o r}(Y)}$ the normal curvature vector at $x \in Y$ (relative to X). Their lengths, i.e., $\left|\vec{H}_{\mathbf{G e o}(X)}\right|=\kappa_{g}(X),\left|\vec{H}_{\mathbf{N o r}(Y)}\right|=\kappa_{n}(Y)$ are called, respectively, the geodesic curvature of X at $x \in X$ (relative to Y), normal curvature of Y at $x \in X$. It is obviously (by (2.21)) that the normal curvature is determined by the mean curvature H_{Y} and the trace of the second fundamental forms $\left(h_{\alpha \beta}^{j}\right)$ of $X(\alpha, \beta=$ $1, \cdots, p ; j=q+1, \cdots, n)$ and it is an (extrinsic) invariant. Therefore the geodesic curvature is also an (extrinsic) invariant. These $h_{\alpha \beta}^{j}(j=p+1, \cdots, q)$ are called the geodesic curvature components at $x \in Y$ (relative to X) and those $h_{\alpha \beta}^{j}(j=$ $q+1, \cdots, n)$ are called the normal curvature components at $x \in Y$ (relative to X). It is obvious that two submanifolds Y and Y^{\prime} of the same dimension which are tangent at submanifold X have the same normal curvature (relative to X.)

The above result actually is the classic Meusnier's theorem when $X \equiv \Gamma$ is a smooth curve containing in a surface $Y \equiv \Sigma \subset \mathbf{R}^{3}$. That is, let κ be the curvature at $x \in \Gamma, T$ and N be, respectively, the tangent and the normal of Γ, and κ_{g} and κ_{n} be, respectively, the geodesic curvature and the normal curvature of Σ at x along T. Let n be the normal of Σ and $\mu=n \wedge T$, then we have the following Meusnier's formula

$$
\begin{equation*}
\kappa N=\kappa_{g} \mu+\kappa_{n} n \tag{2.23}
\end{equation*}
$$

Let V and W be vector subspaces of dimensional p and q, respectively. Let v_{p+1}, \ldots, v_{n} be an orthonormal basis of $N(V)$ and w_{q+1}, \ldots, w_{n} an orthonormal basis of $N(W)$, that is,

$$
\begin{align*}
N(V) & =\operatorname{span}\left\{v_{p+1}, \cdots, v_{n}\right\} \tag{2.24}\\
N(W) & =\operatorname{span}\left\{w_{q+1}, \cdots, w_{n}\right\}
\end{align*}
$$

the normal spaces to V, W, respectively. The angle between subspaces V and W is defined by

$$
\begin{equation*}
\Delta(V, W)=\left\|v_{p+1} \wedge \cdots \wedge v_{n} \wedge w_{q+1} \wedge \cdots \wedge w_{n}\right\| \tag{2.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\|x_{1} \wedge \cdots \wedge x_{k}\right\|^{2}=\left|\operatorname{det}\left(<x_{i}, x_{s}>\right)\right| . \tag{2.26}
\end{equation*}
$$

If V, W are both $(n-1)$-dimensional then $\Delta(V, W)=|\sin \theta|$, where θ is the angle between normals of V and W. It is obvious that

$$
0 \leq \Delta(V, W) \leq 1
$$

with

$$
\begin{array}{lll}
\Delta(V, W)=0 & \text { if and only if } & V \cap W \neq\{0\}, \\
\Delta(V, W)=1 & \text { if and only if } & V \perp W \tag{2.27}
\end{array}
$$

Also if g is an isometry of E^{n}, then $\Delta(g V, g W)=\Delta(V, W)$.
Let G be a Lie group (a smooth submanifold which is also a group in such a way that the group operations are smooth) acting on a left coset space G / H by left multiplication, where H is a closed subgroup of G. We assume that G / H has an invariant Riemannian metric. Let M^{p}, N^{q} be submanifolds in G / H, of dimensions p, q, respectively.

Let us list indices that we will use very often through the rest of this paper in the following table:

$$
\begin{gather*}
1 \leq A, B, C \leq n ; \quad 1 \leq \alpha, \beta \leq p+q-n ; \quad p+q-n+1 \leq i, j \leq n ; \\
p+q-n+1 \leq a, b \leq p ; \quad 1 \leq e, f \leq p ; \quad p+1 \leq \lambda, \mu \leq n ; \tag{2.28}\\
p+q-n+1 \leq h, l \leq q ; \quad 1 \leq u, v \leq q ; \quad q+1 \leq \rho, \sigma \leq n .
\end{gather*}
$$

Let $x e_{A}$ be orthonormal frames, so that $x \in M^{p}$ and e_{1}, \cdots, e_{p} are tangent to M^{p} at x. Similarly, let $x^{\prime} e_{A}^{\prime}$ be frames, such that $x^{\prime} \in g N^{q}$ and $e_{1}^{\prime}, \cdots, e_{q}^{\prime}$ are tangent to $g N^{q}$ at x^{\prime}. Suppose g be generic, so that $M^{p} \cap g N^{q}$ is of dimension $p+q-n$. We restrict the above families of frames by the condition

$$
\begin{equation*}
x=x^{\prime}, \quad e_{\alpha}=e_{\alpha}^{\prime} \tag{2.29}
\end{equation*}
$$

Geometrically the latter means that $x \in M^{p} \cap g N^{q}$ and e_{α} are tangent to $M_{p} \cap g N^{q}$ at x. The two submanifolds M^{p} and N^{q} at x have a scalar invariant, which is also called the "angle" between M^{p} and N^{q}, i.e.,

$$
\begin{equation*}
\Delta^{2}=\left|\operatorname{det}\left(e_{\lambda}, e_{\rho}^{\prime}\right)\right|=\left|\operatorname{det}\left(e_{a}, e_{h}^{\prime}\right)\right| . \tag{2.30}
\end{equation*}
$$

In the case of that M^{p} and N^{q} are both hypersurfaces $(p=q=n-1)$ it is the absolute value of the cosine of the angle between their normal vectors.

The second fundamental forms are all symmetric bilinear functions on $T_{x} M \times$ $T_{x} M$ for all x in M. That is, the second fundamental form of M at $x \in M$ is a symmetric bilinear mapping

$$
\begin{equation*}
h_{x}^{M}: M_{x} \times M_{x} \longrightarrow M_{x}^{\perp} \tag{2.31}
\end{equation*}
$$

where M_{x} is the tangent bundle of M and M_{x}^{\perp} is the normal bundle of M at x. If e_{1}, \cdots, e_{n} is orthonormal basis of \mathbf{N} such that e_{1}, \cdots, e_{p} is a basis of M_{x} and e_{p+1}, \cdots, e_{n} is a basis of M_{x}^{\perp}, then the components of h_{x}^{M} in this basis are the numbers $\left(h_{x}^{M}\right)_{\alpha \beta}^{i}=<h_{x}^{M}\left(e_{\alpha}, e_{\beta}\right), e_{i}>, 1 \leq \alpha, \beta \leq p, p+1 \leq i \leq n$.

3. The Euler-meusnier Formulas

Let G be the isometry group acting on the n-dimensional Riemannian space \mathbf{N}. Let M^{p}, N^{q} be a pair of submanifolds \mathbf{N}, where $p+q-n \geq 0$ so that generically $M^{p} \cap g N^{q}$ is always a submanifold of dimension $p+q-n$ for almost all $g \in G$. Our goal is to express the second fundamental forms of the intersection of $p+q-n$ dimensional manifold $M_{g}^{p+q-n}=M^{p} \cap g N^{q}$ in terms of those of M^{p} and $g N^{q}$ and the "angle" between M^{p} and $g N^{q}$.

We choose orthonormal frames $\left\{e_{A}\right\}$ and $\left\{e_{B}^{\prime}\right\}$ such that:
(1) $e_{\alpha}=e_{\alpha}^{\prime}$;
(2) $e_{1}, \cdots, e_{p+q-n} \in T\left(M^{p} \cap g N^{q}\right)$;
(3) $e_{1}, \cdots, e_{p} \in T\left(M^{p}\right)$;
(4) $e_{1}, \cdots, e_{p+q-n}, e_{p+q-n+1}^{\prime}, \cdots, e_{q}^{\prime} \in T\left(g N^{q}\right)$;
(5) $e_{p+1}, \cdots, e_{n} \in N\left(M^{p}\right)$, the normal bundle of M^{p};
(6) $e_{q+1}^{\prime}, \cdots, e_{n}^{\prime} \in N\left(g N^{q}\right)$, the normal bundle of $g N^{q}$;
(7) $\operatorname{span}\left\{e_{p+1}, \cdots, e_{n}, e_{q+1}^{\prime}, \cdots, e_{n}^{\prime}\right\}=\operatorname{span}\left\{e_{p+q-n+1}, \cdots, e_{p}, e_{p+q-n+1}^{\prime}, \cdots\right.$, $\left.e_{q}^{\prime}\right\}=N\left(M^{p} \cap g N^{q}\right)$, the normal bundle of $M^{p} \cap g N^{q}$.
For the families of frames $x e_{A}$ and $x e_{A}^{\prime}$, let

$$
\begin{gather*}
\omega_{A}=\left(d x, e_{A}\right), \quad \omega_{A}^{\prime}=\left(d x^{\prime}, e_{A}^{\prime}\right) \tag{3.1}\\
\omega_{A B}=\left(d e_{A}, e_{B}\right), \quad \omega_{A B}^{\prime}=\left(d e_{A}^{\prime}, e_{B}^{\prime}\right) \tag{3.2}
\end{gather*}
$$

so that

$$
\begin{equation*}
\omega_{A B}+\omega_{B A}=0, \quad \omega_{A B}^{\prime}+\omega_{B A}^{\prime}=0 \tag{3.3}
\end{equation*}
$$

When restricted to M^{p}, N^{q} we have, respectively,

$$
\begin{equation*}
\omega_{\lambda}=0, \quad \omega_{\rho}^{\prime}=0 \tag{3.4}
\end{equation*}
$$

And restricted to M_{g}^{p+q-n}, we have

$$
\begin{equation*}
\omega_{\alpha \lambda}=\sum_{\beta} h_{\alpha \beta}^{\lambda} \omega_{\beta}, \quad \omega_{\alpha \rho}^{\prime}=\sum_{\beta} h_{\alpha \beta}^{\prime \rho} \omega_{\beta}, \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{\alpha \beta}^{\lambda}=h_{\beta \alpha}^{\lambda}, \quad h_{\alpha \beta}^{\prime \rho}=h_{\beta \alpha}^{\prime \rho}, \tag{3.6}
\end{equation*}
$$

The second fundamental forms $I I^{g}$ of $M_{g}^{p+q-n}=M^{p} \cap g N^{q}$

$$
\begin{equation*}
I I^{g}=\sum_{i} I I_{i}^{g} e_{i}=\sum_{i}<d^{2} x, e_{i}>e_{i}=\sum_{i, \alpha, \beta} h_{\alpha \beta}^{i} \omega_{\alpha} \omega_{\beta} e_{i}, \tag{3.7}
\end{equation*}
$$

related to frames $\left\{e_{A}\right\},\left\{e_{A}^{\prime}\right\}$ are, respectively

$$
\begin{align*}
& I I^{g}=\sum_{a} I I_{a} e_{a}+\sum_{\lambda} I I_{\lambda} e_{\lambda} ; \\
& I I^{g}=\sum_{h} I I_{h}^{\prime} e_{h}^{\prime}+\sum_{\rho} I I_{\rho}^{\prime} e_{\rho}^{\prime}, \tag{3.8}
\end{align*}
$$

where

$$
\begin{array}{ll}
I I_{a}=\left(d^{2} x, e_{a}\right)=\sum_{\alpha, \beta} h_{\alpha \beta}^{a} \omega_{\alpha} \omega_{\beta} ; & I I_{\lambda}=\left(d^{2} x, e_{\lambda}\right)=\sum_{\alpha, \beta} h_{\alpha \beta}^{\lambda} \omega_{\alpha} \omega_{\beta} ; \\
I I_{h}^{\prime}=\left(d^{2} x, e_{h}^{\prime}\right)=\sum_{\alpha, \beta} h_{\alpha \beta}^{\prime h} \omega_{\alpha} \omega_{\beta} ; & I I_{\rho}^{\prime}=\left(d^{2} x, e_{\rho}^{\prime}\right)=\sum_{\alpha, \beta} h_{\alpha \beta}^{\prime \rho} \omega_{\alpha} \omega_{\beta} . \tag{3.9}
\end{array}
$$

The submanifolds M^{p} and $g N^{q}$ have a scalar invariant, which is the "angle" between M^{p} and $g N^{q}$,

$$
\begin{equation*}
\Delta^{2}=\left|\operatorname{det}\left(e_{a}, e_{\rho}^{\prime}\right)\right|=\left|\operatorname{det}\left(a_{\rho a}\right)\right|=\left|\operatorname{det}\left(e_{\lambda}, e_{h}^{\prime}\right)\right|=\left|\operatorname{det}\left(b_{\lambda h}\right)\right|, \tag{3.10}
\end{equation*}
$$

$a_{\rho a}$ and $b_{\lambda h}$ are the angle elements between M^{p} and N^{q}.
For a pair of hypersurfaces $(p=q=n-1)$ it is clearly the absolute value of the sine of the angle between their normal vectors.

We are now in the position to prove our theorems.
Theorem 1. Let M^{p}, N^{q} be, respectively, a pair of submanifolds of dimensions p, q in an n-dimensional Riemannian space \mathbf{N} with $p+q-n \geq 0$. Let $h_{\alpha \beta}^{\lambda}, h_{\alpha \beta}^{\rho}$ be the second fundamental forms of M^{p}, N^{q}, respectively. Let Δ be the angle between M^{p} and $g N^{q}$, for $g \in G$, the group of isometry of \mathbf{N}. Let $I I^{g}$ be the
second fundamental form of the intersection submanifold $M_{g}^{p+q-n}=M^{p} \cap g N^{q}$. Then we have

$$
\begin{align*}
\Delta^{2} I I^{g}= & \sum_{\lambda, \alpha, \beta}\left(h_{\alpha \beta}^{\lambda}-\sum_{\sigma} a_{\lambda \sigma} h_{\alpha \beta}^{\prime \sigma}\right) \omega_{\alpha} \omega_{\beta} e_{\lambda} \tag{3.11}\\
& +d s \sum_{\rho, \alpha, \beta}\left(h_{\alpha \beta}^{\prime}-\sum_{\mu} b_{\rho \mu} h_{\alpha \beta}^{\mu}\right) \omega_{\alpha} \omega_{\beta} e_{\rho}^{\prime}
\end{align*}
$$

where $a_{\lambda \sigma}$ and $b_{\rho \mu}$ are angle elements between M^{p} and N^{q}.
Proof. We wish to express $\left(d^{2} x, e_{a}\right)$ as a linear combination of $I I_{\lambda}$ and $I I_{\rho}^{\prime}$. Therefore we set

$$
\begin{equation*}
e_{\rho}^{\prime}=\sum_{a} a_{\rho a} e_{a}+\sum_{\lambda} a_{\rho \lambda} e_{\lambda} \tag{3.12}
\end{equation*}
$$

so that

$$
\begin{equation*}
a_{\rho a}=\left(e_{\rho}^{\prime}, e_{a}\right), \quad a_{\rho \lambda}=\left(e_{\rho}^{\prime}, e_{\lambda}\right) \tag{3.13}
\end{equation*}
$$

Under our hypothesis $\Delta=\left|\operatorname{det}\left(a_{\rho a}\right)\right| \neq 0$. let $\left(b_{b \sigma}\right)$ be the inverse matrix of $\left(a_{\rho a}\right)$, so that

$$
\begin{equation*}
\sum_{\sigma} b_{b \sigma} a_{\sigma a}=\delta_{b a}, \quad \sum_{a} a_{\rho a} b_{a \sigma}=\delta_{\rho \sigma} \tag{3.14}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
e_{a}=\sum_{\rho} b_{a \rho} e_{\rho}^{\prime}+\sum_{\lambda} b_{a \lambda} e_{\lambda} \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{a \lambda}=-\sum_{\rho} b_{a \rho} a_{\rho \lambda} \tag{3.16}
\end{equation*}
$$

The condition $\left(e_{\rho}^{\prime}, e_{\sigma}^{\prime}\right)=\delta_{\rho \sigma}$ is expressed by

$$
\begin{equation*}
\sum_{a} a_{\rho a} a_{\sigma a}+\sum_{\lambda} a_{\rho \lambda} a_{\sigma \lambda}=\delta_{\rho \sigma} \tag{3.17}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
I I_{a}=\left(d^{2} x, e_{a}\right)=\sum_{\alpha, \beta} h_{\alpha \beta}^{a} \omega_{\alpha} \omega_{\beta}=\sum_{\rho} b_{a \rho} I I_{\rho}^{\prime}+\sum_{\lambda} b_{a \lambda} I I_{\lambda} \tag{3.18}
\end{equation*}
$$

By the same way, We wish to express $\left(d^{2} x, e_{h}^{\prime}\right)$ as a linear combination of $I I_{\lambda}$ and $I I_{\rho}^{\prime}$. Therefore we set

$$
\begin{equation*}
e_{\lambda}=\sum_{h} b_{\lambda h} e_{h}^{\prime}+\sum_{\sigma} b_{\lambda \sigma} e_{\sigma}^{\prime} \tag{3.19}
\end{equation*}
$$

so that

$$
\begin{equation*}
b_{\lambda h}=\left(e_{\lambda}, e_{h}^{\prime}\right), \quad b_{\lambda \sigma}=\left(e_{\lambda}, e_{\sigma}^{\prime}\right) \tag{3.20}
\end{equation*}
$$

Under our hypothesis $\Delta=\left|\operatorname{det}\left(b_{\lambda h}\right)\right| \neq 0$. let $\left(a_{l \mu}\right)$ be the inverse matrix of $\left(b_{\lambda h}\right)$, so that

$$
\begin{equation*}
\sum_{\lambda} a_{h \lambda} b_{\lambda l}=\delta_{h l}, \quad \sum_{h} b_{\lambda h} a_{h \mu}=\delta_{\lambda \mu} \tag{3.21}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
e_{h}^{\prime}=\sum_{\lambda} a_{h \lambda} e_{\lambda}+\sum_{\sigma} a_{h \sigma} e_{\sigma}^{\prime} \tag{3.22}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{h \sigma}=-\sum_{\lambda} a_{h \lambda} b_{\lambda \sigma} \tag{3.23}
\end{equation*}
$$

The condition $\left(e_{\lambda}, e_{\mu}\right)=\delta_{\lambda \mu}$ is expressed by

$$
\begin{equation*}
\sum_{l} b_{\lambda l} b_{\mu l}+\sum_{\sigma} b_{\lambda \sigma} b_{\mu \sigma}=\delta_{\lambda \mu} \tag{3.24}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
I I_{h}^{\prime}=\left(d^{2} x, e_{h}^{\prime}\right)=\sum_{\alpha, \beta} h_{\alpha \beta}^{\prime h} \omega_{\alpha} \omega_{\beta}=\sum_{\sigma} a_{h \sigma} I I_{\sigma}^{\prime}+\sum_{\lambda} a_{h \lambda} I I_{\lambda} \tag{3.25}
\end{equation*}
$$

To express the second fundamental forms of M_{g}^{p+q-n} as a linear combination of $I I_{\lambda}$ and $I I_{\rho}^{\prime}$, we set

$$
\begin{equation*}
I I^{g}=\sum_{\lambda, \alpha, \beta} X_{\alpha \beta}^{\lambda} \omega_{\alpha} \omega_{\beta} e_{\lambda}+\sum_{\rho, \alpha, \beta} Y_{\alpha \beta}^{\rho} \omega_{\alpha} \omega_{\beta} e_{\rho}^{\prime} \tag{3.26}
\end{equation*}
$$

where $X_{\alpha \beta}^{\lambda}$ and $Y_{\alpha \beta}^{\prime \rho}$ are to be determined.

Therefore, by (3.12) we have

$$
\begin{align*}
I I^{g} & =\sum_{\lambda, \alpha, \beta} X_{\alpha \beta}^{\lambda} \omega_{\alpha} \omega_{\beta} e_{\lambda}+\sum_{\rho, \alpha, \beta} Y_{\alpha \beta}^{\rho} \omega_{\alpha} \omega_{\beta}\left(\sum_{a} a_{\rho a} e_{a}+\sum_{\lambda} a_{\rho \lambda} e_{\lambda}\right) \\
& =\sum_{a, \alpha, \beta}\left(\sum_{\rho} a_{\rho a} Y_{\alpha \beta}^{\rho}\right) \omega_{\alpha} \omega_{\beta} e_{a}+\sum_{\lambda, \alpha, \beta}\left(X_{\alpha \beta}^{\lambda}+\sum_{\rho} a_{\rho \lambda} Y_{\alpha \beta}^{\rho}\right) \omega_{\alpha} \omega_{\beta} e_{\lambda} . \tag{3.27}
\end{align*}
$$

From (3.9), and (3.27) we have

$$
\left\{\begin{array}{l}
h_{\alpha \beta}^{a}=\sum_{\rho} a_{\rho a} Y_{\alpha \beta}^{\rho} ; \tag{3.27}\\
h_{\alpha \beta}^{\lambda}=X_{\alpha \beta}^{\lambda}+\sum_{\rho} a_{\rho \lambda} Y_{\alpha \beta}^{\rho} .
\end{array}\right.
$$

Similarly, by (3.9), (3.26) and (3.27) we have

$$
\begin{align*}
I I^{g} & =\sum_{\lambda, \alpha, \beta} X_{\alpha \beta}^{\lambda} \omega_{\alpha} \omega_{\beta}\left(\sum_{h} b_{\lambda h} e_{h}^{\prime}+\sum_{\sigma} b_{\lambda \sigma} e_{\sigma}\right)+\sum_{\sigma, \alpha, \beta} Y_{\alpha \beta}^{\sigma} \omega_{\alpha} \omega_{\beta} e_{\sigma}^{\prime} \tag{3.29}\\
& =\sum_{h, \alpha, \beta}\left(\sum_{\lambda} b_{\lambda h} X_{\alpha \beta}^{\lambda}\right) \omega_{\alpha} \omega_{\beta} e_{h}^{\prime}+\sum_{\sigma, \alpha, \beta}\left(Y_{\alpha \beta}^{\sigma}+\sum_{\lambda} b_{\lambda \sigma} X_{\alpha \beta}^{\lambda}\right) \omega_{\alpha} \omega_{\beta} e_{\sigma}^{\prime},
\end{align*}
$$

and

$$
\left\{\begin{array}{l}
h_{\alpha \beta}^{\prime h}=\sum_{\lambda} b_{\lambda h} X_{\alpha \beta}^{\lambda} ; \tag{3.30}\\
h_{\alpha \beta}^{\prime \sigma}=Y_{\alpha \beta}^{\sigma}+\sum_{\lambda} b_{\lambda \sigma} X_{\alpha \beta}^{\lambda} .
\end{array}\right.
$$

Combining (3.28) and (3.30) together gives

$$
\left\{\begin{array}{l}
h_{\alpha \beta}^{\lambda}=X_{\alpha \beta}^{\lambda}+\sum_{\rho} a_{\lambda \rho} Y_{\alpha \beta}^{\rho} ; \tag{3.31}\\
h_{\alpha \beta}^{\prime \rho}=Y_{\alpha \beta}^{\rho}+\sum_{\lambda}^{\rho} b_{\rho \lambda} X_{\alpha \beta}^{\lambda},
\end{array}\right.
$$

or

$$
\binom{h_{\alpha \beta}^{\lambda}}{h_{\alpha \beta}^{\rho}}=\left(\begin{array}{cc}
\left(I_{\lambda \lambda}\right) & \left(a_{\lambda \rho}\right) \tag{3.32}\\
\left(b_{\rho \lambda}\right) & \left(I_{\rho \rho}\right)
\end{array}\right)\binom{X_{\alpha \beta}^{\lambda}}{Y_{\alpha \beta}^{\rho}} .
$$

Finally, the equations (3.32) lead to

$$
\begin{align*}
\binom{X_{\alpha \beta}^{\lambda}}{Y_{\alpha \beta}^{\rho}} & =\left(\begin{array}{cc}
\left(I_{\lambda \lambda}\right) & \left(a_{\lambda \rho}\right) \\
\left(b_{\rho \lambda}\right) & \left(I_{\rho \rho}\right)
\end{array}\right)^{-1}\binom{h_{\alpha \beta}^{\lambda}}{h_{\alpha \beta}^{\rho}} \\
& =\frac{1}{\Delta^{2}}\left(\begin{array}{cc}
\left(I_{\lambda \lambda}\right) & \left(-a_{\lambda \rho}\right) \\
\left(-b_{\rho \lambda}\right) & \left(I_{\rho \rho}\right)
\end{array}\right)\binom{h_{\alpha \beta}^{\lambda}}{h_{\alpha \beta}^{\prime}}, \tag{3.33}
\end{align*}
$$

where $\Delta^{2}=\operatorname{det}\left(\begin{array}{cc}\left(I_{\lambda \lambda}\right) & \left(a_{\lambda \rho}\right) \\ \left(b_{\rho \lambda}\right) & \left(I_{\rho \rho}\right)\end{array}\right)$.
That is

$$
\begin{align*}
\Delta^{2} X_{\alpha \beta}^{\lambda} & =h_{\alpha \beta}^{\lambda}-\sum_{\sigma} a_{\lambda \sigma} h_{\alpha \beta}^{\prime \sigma}, \\
\Delta^{2} Y_{\alpha \beta}^{\rho} & =h_{\alpha \beta}^{\prime \rho}-\sum_{\mu} b_{\rho \mu} h_{\alpha \beta}^{\mu} . \tag{3.34}
\end{align*}
$$

Inserting (3.34) into (3.26) we complete the proof of our Theorem 1.
Let M, N be two hypersurfaces in the Euclidean space \mathbf{R}^{n}. We choose the frames $\left\{e_{A}\right\}$ and $\left\{e_{A}^{\prime}\right\}$ such that $e_{1}=e_{1}, \cdots, e_{n-2}=e_{n-2}^{\prime}$ are tangent to $\Sigma_{g}=$ $M \cap g N$ and e_{n}, e_{n}^{\prime} are, respectively, the normal vector of M, N. The angle between M and N is $\Delta=|\sin \phi|$ and $a_{\lambda \sigma}=b_{\rho \mu}=\cos \phi$. Then we have the following

Theorem 2. Let M, N be two hypersurfaces of class C^{2} in the Euclidean space \mathbf{R}^{n} and let $h_{i j}^{n}, h_{i j}^{\prime n}$ be the normal curvatures of M, N, respectively. Then we have

$$
\begin{equation*}
\sin ^{2} \phi I I_{\Sigma_{g}}=\left(\sum_{i, j} h_{i j}^{n}-\cos \phi \sum_{i, j} h_{i j}^{\prime n}\right) e_{n}+\left(\sum_{i, j} h_{i j}^{\prime n}-\cos \phi \sum_{i, j} h_{i j}^{n}\right) e_{n}^{\prime} \tag{3.35}
\end{equation*}
$$

where $\cos \phi=\left(e_{n}, e_{n}^{\prime}\right)$.
By taking the normal of (3.35) we have the following generalized Euler formula
Theorem 3. Let M, N be two hypersurfaces of class C^{2} in \mathbf{R}^{n} and let $h_{i j}^{n}$, $h_{i j}^{\prime n}$ be the normal curvatures of M, N, respectively. Then we have

$$
\begin{equation*}
\sin ^{2} \phi\left|I I_{\Sigma_{g}}\right|^{2}=\left(\sum_{i, j} h_{i j}^{n}\right)^{2}+\left(\sum_{i, j} h_{i j}^{\prime n}\right)^{2}-2 \cos \phi\left(\sum_{i, j} h_{i j}^{n}\right)\left(\sum_{i, j} h_{i j}^{\prime n}\right), \tag{3.36}
\end{equation*}
$$

where $\cos \phi=\left(e_{n}, e_{n}^{\prime}\right)$.
If $M, N \subset \mathbf{R}^{3}$ are two smooth surfaces, we choose the frames $\left\{e_{1}, e_{2}, e_{3}\right\}$ and $\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$ such that $e_{1}=e_{1}^{\prime}$, the tangent of the curve $\Gamma_{g}=M \cap g N$, for rigid motion $g \in G$, and e_{3}, e_{3}^{\prime} are, respectively the normal of M, N. Let κ_{n}^{M} and κ_{n}^{N} be, respectively the normal curvatures of M and N. Then we immediately obtain (also see [19])

Theorem 4. Let M, N be two smooth surfaces in \mathbf{R}^{3} and let κ_{n}^{M}, κ_{n}^{N} be the normal curvatures of M, N, respectively. Then we have

$$
\begin{equation*}
\sin ^{2} \phi I I_{\Gamma_{g}}=\left(\kappa_{n}^{M}-\kappa_{n}^{N} \cos \phi\right) e_{3}+\left(\kappa_{n}^{N}-\kappa_{n}^{M} \cos \phi\right) e_{3}^{\prime}, \tag{3.37}
\end{equation*}
$$

where $\cos \phi=\left(e_{3}, e_{3}^{\prime}\right)$.
Note $\left|I I_{\Gamma_{g}}\right|=\kappa$, the curvature of Γ_{g}. Then by taking the norm of (3.37) we immediately obtain the known classical Euler formula (1.2).

Acknowledgment

The work was partially supported by the Guizhou Province Sciences and Technologies Foundation. We would like to thank Professor Pengcheng Wu and Professor Chuanhan Lu for their supports. We would also like to thank Professor Hua Chen for his hospitalities and supports during our visiting to Wuhan University. Finally, we would like to thank anonymous referees for valuable comments.

References

1. J. E. Brothers, Integral geometry in homogeneous space, Trans. Amer. Math. Soc., 124 (1966), 480-517.
2. B-Y Chen, Geometry of Submanifolds, Marcel Dekker. Inc., New York, 1973.
3. C-S. Chen, On the kinematic formula of square of mean curvature, Indiana Univ. Math. J., 22 (1972-73), 1163-1169.
4. F. Chen, X. Zhao \& J. Zhou, An anlogue of the Euler formula, J. Math., 25 (2005) 1-4.
5. S. S. Chern, On the kinematic formula in the euclidean space of n dimensions, Amer. J. Math., 74 (1952), 227-236.
6. S. S. Chern, On the kinematic formula in integral geometry, J. Math. Mech., 16 (1966), 101-118.
7. H. Federer, Curvature measure, Trans. Amer. Math. Soc., 69 (1959), 418-491.
8. E. Grinberg, D. Ren \& J. Zhou, The Symmetric Isoperimetric Deficit and the Containment Problem in a Plan of Constant Curvature, preprint.
9. R. Howard, The kinematic formula in riemannian geometry, Memoirs Amer. Math. Soc., 509, 1993.
10. D. Klain and G-C. Rota, Introduction to Geometric Probability, Cambridge University Press, 1997.
11. D. Ren, Topics in Integral Geometry, Series in Pure Mathematics, World Scientific (Singapore), 191994.
12. L. A. Santal6, Integral Geometry and Geometric Probability, Addison-Wesley, Reading, Mass, 1976.
13. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, New York: Cambridge University Press, 1993.
14. T. Shifrin, The kinematic formula in complex integral geometry, Trans. Amer. Math. Soc., 264(2) (1981), 255-293.
15. M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or Perish Inc., 1979.
16. H. Weyl, On the volume of tubes, Amer. J. Math., 61(1939), 461-472.
17. G. Zhang, A Sufficient Condition for one Convex Body Containing Another, Chin. Ann. of Math., 9B-4 (1988), 447-451.
18. J. Zhou, Kinematic formulas for mean curvature powers of hypersurfaces and analogous of Hadwiger's theorem in $\mathbf{R}^{2 n}$, Trans. Amer. Math. Soc., 345 (1994), 243-262.
19. J. Zhou, Kinematic formula for square mean curvature of hypersurfaces, Bull. of the Institute of Math. (Academia Sinica), 22 (1994), 31-47.
20. J. Zhou, On the Willmore deficit of convex surfaces, Lectures in Applied Mathematics of Amer. Math. Soc., 30 (1994), 279-287.
21. J. Zhou, When can one domain enclose another in \mathbf{R}^{3} ? J. Austral. Math. Soc. (Series A), 59 (1995), 266-272.
22. J. Zhou, The sufficient condition for a convex domain to contain another in \mathbf{R}^{4}, Proc. Amer. Math. Soc., 121 (1994), 907-913.
23. J. Zhou, A kinematic formula and analogous of Hadwiger's theorem in space, Contemporary Mathematics, 140 (1992), 159-167.
24. J. Zhou, Sufficient conditions for one domain to contain another in a space of constant curvature, Proc. Amer. Math. Soc., 126 (1998), 2797-2803.

Jiazu Zhou
School of Mathematics and Statistics,
Southwest University,
Chongqing 400715,
and
Wuhan University,
Wuhan, Hubei 430072,
People's Republic of China
E-mail: zhoujz@swu.edu.cn
E-mail: zhou550001@sina.com

[^0]: Received January 16, 2005, revised August 22, 2005.
 Communicated by Shu-Cheng Chang.
 2000 Mathematics Subject Classification: Primary 52A22, 53C65; Secondary 51C16.
 Key words and phrases: Second fundamental form, Mean curvature, Normal curvature, EulerMeusnier formula.
 Supported in part by the Chinese NSF (grant No. 10671159), Hong Kong Qiu Shi Foundation and Southwest University.

