
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 11, No. 1, pp. 215-229, March 2007
This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON THE SECOND FUNDAMENTAL FORMS OF THE INTERSECTION
OF SUBMANIFOLDS

Jiazu Zhou

Abstract. Let G be a Lie group and H its subgroup, and let Mp, Nq be two
submanifolds of dimensions p, q, respectively, in the Riemannian homogeneous
space G/H . We study the relationships between the second fundamental forms
of Mp ∩ gN q and the second fundamental forms of Mp, Nq for g ∈ G. We
find that the second fundamental form of Mp ∩ gN q can be expressed by
the curvature functions of Mp, Nq and the “angle” between M p and N q.
All results achieved are the generalizations of known results of the classical
differential geometry in R3.

1. INTRODUCTION

Let G be a Lie group (that is, a manifold equipped with group structure), which
is assumed to have a left and also right invariant Riemannian metric. Let H be a
closed subgroup of G. Then G/H is a Riemannian homogeneous space. Denote
by dg the kinematic density of G (the Haar measure in geometric measure theory).
Let M p, N q be two submanifolds of dimensions p, q, respectively, in G/H . We
assume that M p is fixed and N q is moving under the action g ∈ G. It is always
assumed that M p and N q are in general positions, that is, for almost all g ∈ G, the
dimension of Mp ∩ gN q is p + q − dim(G/H) ≥ 0.

Let I(M p ∩ gN q) be an integral invariant of the submanifold M p ∩ gN q of
dimension p + q − n. Evaluating the integral of type

(1.1)
∫

G

I(Mp ∩ gN q) dg
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and expressing by the integral invariants of submanifolds Mp and N q is called the
kinematic formula for I(Mp ∩ gN q) in integral geometry. For example, in the case
that G is the group of isometry of Rn, Mp and N q are submanifolds of Rn, and
I(Mp ∩ gN q) = vol(Mp ∩ gN q), the volume of Mp ∩ gN q, the evaluation of∫
G I(Mp ∩ gN q) dg leads to formulas due to Poincaré, Blaschké, Santaló, Howard

and others (see [9, 11, 12] for references). If G is the unitary group U(n+1) acting
on complex projective space CPn, Mp and N q are complex analytic submanifolds
of CPn, and I(Mp ∩ gN q) is the integral of a Chern class leads to the kinematic
formula of Shifrin [14]. If M , N are two domains of the Euclidean space Rn and
I(M ∩ gN ) = χ(M ∩ gN ) is the Euler characteristic of the intersection of two
domains M and N for rigid motion g ∈ G of Rn, then

∫
G χ(M ∩ gN ) dg can be

expressed explicitly by the integrals of elementary symmetric functions of principal
curvatures over the boundaries and the Euler characteristics of the two domains M
and N . This well-known fundamental kinematic formula in integral geometry is
due to S. S. Chern [5, 6]. Refer to [1-3, 7, 10, 13, 18, 19, 23] for literatures of
kinematic formulas.

An important unsolved problem is that can an invariant I(M p ∩ gN q) (either
intrinsic or extrinsic) be expressed by invariants of submanifolds M p and N q. At
least we are not aware of letting I(M ∩ gN ) = diam(M ∩ gN ), the diameter of
intersection M ∩ gN of two domains M and N in Rn. The classical Euler formula
says that the curvature κ of intersection curve M ∩gN of two surfaces M and N in
R3 can be expressed by their normal curvatures of surfaces and the angle between
M and N .

Proposition 1. Let M and N be two surfaces in R3 with the normal curvatures
κM

n and κN
n . Let κ be the curvature of the intersection curve M ∩gN and φ be the

angle between M and gN . Then we have the following Euler formula ([4, 15])

(1.2) κ2 sin2 φ =
(
κM

n

)2
+
(
κN

n

)2 − 2 cosφ
(
κM

n

) (
κN

n

)
.

We used this formula to prove the C-S. Chen’s kinematic formula ([3, 23]). Let
HM , HN be, respectively, mean curvatures of M , N , and let

(1.3) H̃M =
∫

M

H2
M dσ, H̃N =

∫
N

H2
N dσ.

Then we have the the following kinematic formula

(1.4)

∫
G

(∫
M∩gN

κ2ds

)
dg

= 2π2
{(

3H̃M − 2πχ(M)
)

FN +
(
3H̃N − 2πχ(N )

)
FM

}
,
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where FM , FN are areas of M , N , respectively, and χ(.) is the Euler characteristic.
Our main task of this paper is to find the Euler formula (1.2) in higher di-

mensions. We obtain a fundamental formula over the second fundamental form of
Mp ∩ gN q, that is, the second fundamental form of the intersection M p ∩ gN q can
be written as the linear combination of the second forms of Mp and N q. Since all
curvature functions are determined by the second fundamental forms, our formula
contains a great deal of curvature information in geometry.

The formulas we are pursuing can be applied to achieve more kinematic formu-
las in general homogeneous space G/H . In [18], we obtained a generalized Euler
formula for hypersurfaces in Rn and as its applications we achieved the kinematic
formulas for mean curvature powers of hypersurface. Moreover, we obtained an
extension of Hadwiger’s containment problem, i.e., a sufficient condition for one
domain to contain another in the Euclidean space R2n. The significance of kine-
matic formulas are not just interested in their own light but also can be applied to
other geometry branches. In their papers ([8, 11, 17, 18, 20-24]), Grinberg, Ren,
Zhang, and Zhou obtained the sufficient conditions for Hadwiger’s containment
problem in high dimensions and the Willmore functional deficit estimate for convex
surfaces in R3. As one see, our motivation of writing this paper clearly comes from
the integral geometry.

2. PRELIMINARIES

Let X be a p-dimensional submanifold immersed in an n-dimensional Rieman-
nian space N. We choose a local field of orthonormal frames e1, · · · , en in N such
that, restricted to X , the vector e1, · · · , ep are tangent to X . We make use of the
following convention on the ranges of indices:

(2.1)

1 ≤ A, B, C, · · · ≤ n,

p + 1 ≤ i, j, k, · · · ≤ n,

1 ≤ α, β, γ, · · · ≤ p.

With respect to the frame field of N chosen above, let ω1, · · · , ωn be the field of
dual frames. Then the structure equations of N are given by

(2.2) dx =
∑
A

ωAeA,

(2.3) dωA = −
∑
B

ωAB ∧ ωB , ωAB + ωBA = 0,
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(2.4) dωAB = −
∑
C

ωAC ∧ ωCB + ΦAB , ΦAB =
1
2

∑
C,D

KABCD ωC ∧ ωD .

(2.5)
KABCD = KCDAB , KABCD = −KABDC = −KBACD,

KABCD + KADBC + KACDB = 0.

If these are restricted to X , then

(2.6) ωi = 0.

Since 0 = dωi = −∑α ωiα ∧ ωα, by Cartan’s lemma we can write

(2.7) ωiα =
∑
β

hi
αβ ωβ , hi

αβ = hi
βα.

From these formulas, we obtain

(2.8) dωα = −
∑
β

ωαβ ∧ ωβ, ωαβ + ωβα = 0,

(2.9) dωαβ = −
∑

γ

ωαγ ∧ ωγβ + Ωαβ, Ωαβ =
1
2

∑
γ,σ

Rαβγσ ωγ ∧ ωσ ,

Rαβγσ = Rγσαβ, Rαβγσ = −Rαβσγ = −Rβαγσ,(2.10)
Rαβγσ + Rασβγ + Rαγσβ = 0.

(2.11) dωij = −
∑

k

ωik ∧ ωkj + Ωij, Ωij =
1
2

∑
α,β

Rijαβ ωα ∧ ωβ .

(2.12) Rijαβ =Rαβij, Rijαβ =−Rijβα =−Rjiαβ , Riαβγ + Riγαβ + Riβγα = 0.

The Riemannian connection of X is defined by (ωαβ). The form (ωij) defines
a connection in the normal bundle of X . We call

(2.13) II =
∑

i

IIi ei =
∑

i

< d2x, ei > ei =
∑
i,α,β

hi
αβ ωα ωβ ei

the second fundamental form of the immersed submanifold X . Sometimes we shall
denote the second fundamental form by

(2.14) IIi =< d2x, ei >=
∑
α,β

hi
αβωα ωβ =< II, ei >
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or simply its components hi
αβ. The length of the second fundamental form II of

X is defined by

(2.15) |II |2 =
∑

i

|IIi|2 =
∑

i

∑
α,β

(
hi

αβ

)2
.

The mean curvature vector
−→
H is defined by

(2.16)
−→
H =

1
p

∑
i

(trace(IIi)) ei =
1
p

∑
i

(∑
α

hi
αα

)
ei,

and its length H , that is,

(2.17) H =
1
p

{∑
i

(trace(IIi))
2

}1/2

=
1
p



∑

i

(∑
α

hi
αα

)2



1/2

is called the mean curvature of X .

Let Xp ⊂ Y q ⊂ N (p ≤ q < n) be two submanifolds. If we choose the frame

(2.18) (e1, · · · , ep, ep+1, · · · , eq, eq+1, · · · , en)

such that e1, · · · , ep ∈ T (Xp) and e1, · · · , eq ∈ T (Y q), then we have the mean
curvature vector

−→
HX of Xp, the mean curvature vector

−→
HY of Y q, respectively,

are

(2.19)

−→
HX =

1
p

q∑
i=p+1

(
p∑

α=1

hi
αα

)
ei +

1
p

n∑
j=q+1

(
p∑

α=1

hj
αα

)
ej

=
−→
HGeo(X) +

−→
HNor(Y ),

(2.20)

−→
HY =

1
q

n∑
j=q+1


 q∑

ρ=1

hj
ρρ


 ej

=
1
q

n∑
j=q+1


 p∑

ρ=1

hj
ρρ


 ej +

1
q

n∑
=q+1


 q∑

ρ=p+1

hj
ρρ


 ej

=
p

q

−→
HNor(Y ) +

1
q

n∑
j=q+1


 q∑

ρ=p+1

hj
ρρ


 ej.

Therefore
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(2.21)
−→
HNor(Y ) =

1
p


q

−→
HY −

n∑
j=q+1


 q∑

ρ=p+1

hj
ρρ


 ej


 .

If p = n − 2, q = n − 1 then we have

(2.22)
−→
HX =

1
n − 2

n−2∑
α=1

hn−1
αα en−1 +

1
n − 2

n−2∑
α=1

hn
αα en.

It follows that
−→
HNor(Y ) only depends on Y (normal bundle of X). Where−→

HGeo(X) is defined as the geodesic curvature vector at x ∈ Y (related to X) and−→
HNor(Y ) the normal curvature vector at x ∈ Y (relative to X). Their lengths, i.e.,
|−→HGeo(X)| = κg(X), |−→HNor(Y )| = κn(Y ) are called, respectively, the geodesic
curvature of X at x ∈ X (relative to Y ), normal curvature of Y at x ∈ X .
It is obviously (by (2.21)) that the normal curvature is determined by the mean
curvature HY and the trace of the second fundamental forms (hj

αβ) of X (α, β =
1, · · · , p; j = q+1, · · · , n) and it is an (extrinsic) invariant. Therefore the geodesic
curvature is also an (extrinsic) invariant . These hj

αβ (j = p + 1, · · · , q) are called
the geodesic curvature components at x ∈ Y (relative to X) and those hj

αβ (j =
q + 1, · · · , n) are called the normal curvature components at x ∈ Y (relative to
X). It is obvious that two submanifolds Y and Y ′ of the same dimension which
are tangent at submanifold X have the same normal curvature (relative to X .)

The above result actually is the classic Meusnier’s theorem when X ≡ Γ is a
smooth curve containing in a surface Y ≡ Σ ⊂ R3. That is, let κ be the curvature
at x ∈ Γ, T and N be, respectively, the tangent and the normal of Γ, and κg and κn

be, respectively, the geodesic curvature and the normal curvature of Σ at x along T .
Let n be the normal of Σ and µ = n ∧ T , then we have the following Meusnier’s
formula

(2.23) κN = κgµ + κnn.

Let V and W be vector subspaces of dimensional p and q, respectively. Let
vp+1, . . . , vn be an orthonormal basis of N (V ) and wq+1, . . . , wn an orthonormal
basis of N (W ), that is,

(2.24)
N (V ) = span{vp+1, · · · , vn};
N (W ) = span{wq+1, · · · , wn},

the normal spaces to V , W , respectively. The angle between subspaces V and W
is defined by

(2.25) ∆(V, W ) =‖ vp+1 ∧ · · · ∧ vn ∧ wq+1 ∧ · · · ∧ wn ‖,
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where

(2.26) ‖x1 ∧ · · · ∧ xk‖2 = |det(< xi, xs >)|.

If V , W are both (n − 1)-dimensional then ∆(V, W ) = | sin θ|, where θ is the
angle between normals of V and W . It is obvious that

0 ≤ ∆(V, W ) ≤ 1,

with

(2.27)
∆(V, W ) = 0 if and only if V ∩ W 
= {0},
∆(V, W ) = 1 if and only if V ⊥ W.

Also if g is an isometry of En, then ∆(gV, gW ) = ∆(V, W ).
Let G be a Lie group (a smooth submanifold which is also a group in such a

way that the group operations are smooth) acting on a left coset space G/H by left
multiplication, where H is a closed subgroup of G. We assume that G/H has an
invariant Riemannian metric. Let M p, N q be submanifolds in G/H , of dimensions
p, q, respectively.

Let us list indices that we will use very often through the rest of this paper in
the following table:

(2.28)

1 ≤ A, B, C ≤ n; 1 ≤ α, β ≤ p + q − n; p + q − n + 1 ≤ i, j ≤ n;

p + q − n + 1 ≤ a, b ≤ p; 1 ≤ e, f ≤ p; p + 1 ≤ λ, µ ≤ n;

p + q − n + 1 ≤ h, l ≤ q; 1 ≤ u, v ≤ q; q + 1 ≤ ρ, σ ≤ n.

Let xeA be orthonormal frames, so that x ∈ Mp and e1, · · · , ep are tangent to
Mp at x. Similarly, let x′e′A be frames, such that x′ ∈ gN q and e′1, · · · , e′q are
tangent to gN q at x′. Suppose g be generic, so that Mp ∩ gN q is of dimension
p + q − n. We restrict the above families of frames by the condition

(2.29) x = x′, eα = e′α.

Geometrically the latter means that x ∈ Mp∩gN q and eα are tangent to Mp∩gN q

at x. The two submanifolds M p and N q at x have a scalar invariant, which is also
called the “angle” between M p and N q, i.e.,

(2.30) ∆2 = |det(eλ, e′ρ)| = |det(ea, e
′
h)|.

In the case of that Mp and N q are both hypersurfaces (p = q = n − 1) it is the
absolute value of the cosine of the angle between their normal vectors.
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The second fundamental forms are all symmetric bilinear functions on TxM ×
TxM for all x in M . That is, the second fundamental form of M at x ∈ M is a
symmetric bilinear mapping

(2.31) hM
x : Mx × Mx −→ M⊥

x ,

where Mx is the tangent bundle of M and M⊥
x is the normal bundle of M at x.

If e1, · · · , en is orthonormal basis of N such that e1, · · · , ep is a basis of Mx and
ep+1, · · · , en is a basis of M⊥

x , then the components of hM
x in this basis are the

numbers
(
hM

x

)i
αβ

=< hM
x (eα, eβ), ei >, 1 ≤ α, β ≤ p, p + 1 ≤ i ≤ n.

3. THE EULER-MEUSNIER FORMULAS

Let G be the isometry group acting on the n-dimensional Riemannian space N.
Let M p, N q be a pair of submanifolds N, where p + q − n ≥ 0 so that generically
Mp ∩ gN q is always a submanifold of dimension p + q − n for almost all g ∈ G.
Our goal is to express the second fundamental forms of the intersection of p+q−n
dimensional manifold M p+q−n

g = Mp∩gN q in terms of those of Mp and gN q and
the “angle” between M p and gN q.

We choose orthonormal frames {eA} and {e′B} such that:

(1) eα = e′α;
(2) e1, · · · , ep+q−n ∈ T (Mp ∩ gN q);
(3) e1, · · · , ep ∈ T (Mp);
(4) e1, · · · , ep+q−n, e′p+q−n+1, · · · , e′q ∈ T (gN q);
(5) ep+1, · · · , en ∈ N (Mp), the normal bundle of Mp;
(6) e′q+1, · · · , e′n ∈ N (gN q), the normal bundle of gN q;
(7) span{ep+1, · · · , en, e′q+1, · · · , e′n} = span{ep+q−n+1 , · · · , ep, e

′
p+q−n+1, · · · ,

e′q} = N (Mp ∩ gN q), the normal bundle of Mp ∩ gN q.

For the families of frames xeA and xe′A, let

(3.1) ωA = (dx, eA), ω′
A = (dx′, e′A),

(3.2) ωAB = (deA, eB), ω′
AB = (de′A, e′B),

so that

(3.3) ωAB + ωBA = 0, ω′
AB + ω′

BA = 0.

When restricted to M p, N q we have, respectively,

(3.4) ωλ = 0, ω′
ρ = 0.
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And restricted to M p+q−n
g , we have

(3.5) ωαλ =
∑
β

hλ
αβωβ , ω′

αρ =
∑
β

h
′ρ
αβωβ ,

where

(3.6) hλ
αβ = hλ

βα, h
′ρ
αβ = h

′ρ
βα,

The second fundamental forms IIg of Mp+q−n
g = Mp ∩ gN q

(3.7) IIg =
∑

i

II
g
i ei =

∑
i

< d2x, ei > ei =
∑
i,α,β

hi
αβωαωβei,

related to frames {eA}, {e′A} are, respectively

(3.8)

IIg =
∑

a

IIa ea +
∑

λ

IIλ eλ;

IIg =
∑

h

II ′h e′h +
∑

ρ

II ′ρ e′ρ,

where

(3.9)

IIa = (d2x, ea)=
∑
α,β

ha
αβ ωα ωβ ; IIλ=(d2x, eλ) =

∑
α,β

hλ
αβ ωα ωβ;

II ′h = (d2x, e′h)=
∑
α,β

h
′h
αβ ωα ωβ; II ′ρ = (d2x, e′ρ)=

∑
α,β

h
′ρ
αβ ωα ωβ.

The submanifolds M p and gN q have a scalar invariant, which is the ”angle”
between M p and gN q,

(3.10) ∆2 = |det(ea, e
′
ρ)| = |det(aρa)| = |det(eλ, e′h)| = |det(bλh)|,

aρa and bλh are the angle elements between M p and N q.
For a pair of hypersurfaces (p = q = n − 1) it is clearly the absolute value of

the sine of the angle between their normal vectors.

We are now in the position to prove our theorems.

Theorem 1. Let Mp, N q be, respectively, a pair of submanifolds of dimensions
p, q in an n-dimensional Riemannian space N with p + q − n ≥ 0. Let h λ

αβ, h
′ρ
αβ

be the second fundamental forms of M p, N q, respectively. Let ∆ be the angle
between Mp and gN q, for g ∈ G, the group of isometry of N. Let II g be the
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second fundamental form of the intersection submanifold M p+q−n
g = Mp ∩ gN q.

Then we have

(3.11)
∆2 IIg =

∑
λ,α,β

(
hλ

αβ −
∑
σ

aλσ h
′σ
αβ

)
ωα ωβ eλ

+ds
∑

ρ,α,β

(
h

′ρ
αβ −∑µ bρµ hµ

αβ

)
ωα ωβ e′ρ,

where aλσ and bρµ are angle elements between M p and N q.

Proof. We wish to express (d2x, ea) as a linear combination of IIλ and II ′ρ.
Therefore we set

(3.12) e′ρ =
∑

a

aρaea +
∑
λ

aρλeλ

so that

(3.13) aρa = (e′ρ, ea), aρλ = (e′ρ, eλ).

Under our hypothesis ∆ = |det(aρa)| 
= 0. let (bbσ) be the inverse matrix of (aρa),
so that

(3.14)
∑
σ

bbσaσa = δba,
∑

a

aρabaσ = δρσ .

Then we have

(3.15) ea =
∑

ρ

baρe
′
ρ +

∑
λ

baλeλ,

where

(3.16) baλ = −
∑

ρ

baρaρλ.

The condition (e′ρ, e′σ) = δρσ is expressed by

(3.17)
∑

a

aρaaσa +
∑

λ

aρλaσλ = δρσ .

Therefore we have

(3.18) IIa = (d2x, ea) =
∑
α,β

ha
αβωαωβ =

∑
ρ

baρII ′ρ +
∑

λ

baλIIλ.
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By the same way, We wish to express (d2x, e′h) as a linear combination of IIλ

and II ′ρ. Therefore we set

(3.19) eλ =
∑

h

bλhe′h +
∑
σ

bλσe′σ,

so that

(3.20) bλh = (eλ, e′h), bλσ = (eλ, e′σ).

Under our hypothesis ∆ = |det(bλh)| 
= 0. let (alµ) be the inverse matrix of (bλh),
so that

(3.21)
∑
λ

ahλbλl = δhl,
∑
h

bλhahµ = δλµ.

Then we have

(3.22) e′h =
∑

λ

ahλeλ +
∑
σ

ahσe′σ,

where

(3.23) ahσ = −
∑
λ

ahλbλσ.

The condition (eλ, eµ) = δλµ is expressed by

(3.24)
∑

l

bλlbµl +
∑
σ

bλσbµσ = δλµ.

Therefore we have

(3.25) II ′h = (d2x, e′h) =
∑
α,β

h
′h
αβωαωβ =

∑
σ

ahσII ′σ +
∑
λ

ahλIIλ.

To express the second fundamental forms of Mp+q−n
g as a linear combination

of IIλ and II ′ρ, we set

(3.26) IIg =
∑
λ,α,β

Xλ
αβ ωα ωβ eλ +

∑
ρ,α,β

Y ρ
αβ ωα ωβ e′ρ,

where Xλ
αβ and Y

′ρ
αβ are to be determined.
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Therefore, by (3.12) we have

(3.27)

IIg =
∑
λ,α,β

Xλ
αβωαωβeλ+

∑
ρ,α,β

Y ρ
αβωαωβ

(∑
a

aρaea +
∑

λ

aρλeλ

)

=
∑
a,α,β

(∑
ρ

aρaY
ρ
αβ

)
ωαωβea+

∑
λ,α,β

(
Xλ

αβ +
∑

ρ

aρλY
ρ
αβ

)
ωαωβeλ.

From (3.9), and (3.27) we have{
ha

αβ =
∑

ρ aρa Y
ρ
αβ ;

hλ
αβ = Xλ

αβ +
∑

ρ aρλ Y ρ
αβ.

(3.27)

Similarly, by (3.9), (3.26) and (3.27) we have

(3.29)

IIg =
∑
λ,α,β

Xλ
αβ ωα ωβ

(∑
h

bλh e′h+
∑
σ

bλσeσ

)
+
∑
σ,α,β

Y σ
αβ ωα ωβ e′σ

=
∑
h,α,β

(∑
λ

bλh Xλ
αβ

)
ωα ωβ e′h+

∑
σ,α,β

(
Y σ

αβ+
∑

λ

bλσ Xλ
αβ

)
ωα ωβ e′σ,

and 


h′h
αβ =

∑
λ

bλh Xλ
αβ;

h′σ
αβ = Y σ

αβ +
∑
λ

bλσ Xλ
αβ.

(3.30)

Combining (3.28) and (3.30) together gives


hλ
αβ = Xλ

αβ +
∑

ρ

aλρ Y ρ
αβ ;

h
′ρ
αβ = Y ρ

αβ +
∑

λ

bρλ Xλ
αβ,

(3.31)

or (
hλ

αβ

h
′ρ
αβ

)
=
(

(Iλλ) (aλρ)
(bρλ) (Iρρ)

)(
Xλ

αβ

Y ρ
αβ

)
.(3.32)

Finally, the equations (3.32) lead to

(3.33)

(
Xλ

αβ

Y ρ
αβ

)
=
(

(Iλλ) (aλρ)
(bρλ) (Iρρ)

)−1
(

hλ
αβ

h
′ρ
αβ

)

=
1

∆2

(
(Iλλ) (−aλρ)

(−bρλ) (Iρρ)

)(
hλ

αβ

h
′ρ
αβ

)
,
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where ∆2 = det
(

(Iλλ) (aλρ)
(bρλ) (Iρρ)

)
.

That is

(3.34)

∆2 Xλ
αβ = hλ

αβ −
∑
σ

aλσ h
′σ
αβ ,

∆2 Y
ρ
αβ = h

′ρ
αβ −

∑
µ

bρµ h
µ
αβ .

Inserting (3.34) into (3.26) we complete the proof of our Theorem 1.
Let M , N be two hypersurfaces in the Euclidean space Rn. We choose the

frames {eA} and {e′A} such that e1 = e1, · · · , en−2 = e′n−2 are tangent to Σg =
M∩gN and en, e′n are, respectively, the normal vector of M , N . The angle between
M and N is ∆ = | sinφ| and aλσ = bρµ = cos φ. Then we have the following

Theorem 2. Let M , N be two hypersurfaces of class C 2 in the Euclidean
space Rn and let hn

ij , h
′n
ij be the normal curvatures of M , N , respectively. Then

we have

(3.35) sin2 φ IIΣg =


∑

i,j

hn
ij−cos φ

∑
i,j

h
′n
ij


 en+


∑

i,j

h
′n
ij −cos φ

∑
i,j

hn
ij


 e′n,

where cosφ = (en, e′n).
By taking the normal of (3.35) we have the following generalized Euler formula

Theorem 3. Let M , N be two hypersurfaces of class C 2 in Rn and let hn
ij ,

h
′n
ij be the normal curvatures of M , N , respectively. Then we have

(3.36) sin2 φ
∣∣IIΣg

∣∣2 =


∑

i,j

hn
ij




2

+


∑

i,j

h
′n
ij




2

−2 cosφ


∑

i,j

hn
ij




∑

i,j

h
′n
ij


,

where cosφ = (en, e′n).
If M , N ⊂ R3 are two smooth surfaces, we choose the frames {e1, e2, e3} and

{e′1, e′2, e′3} such that e1 = e′1, the tangent of the curve Γg = M ∩ gN , for rigid
motion g ∈ G, and e3, e′3 are, respectively the normal of M , N . Let κM

n and κN
n

be, respectively the normal curvatures of M and N . Then we immediately obtain
(also see [19])

Theorem 4. Let M , N be two smooth surfaces in R3 and let κM
n , κN

n be the
normal curvatures of M , N , respectively. Then we have

(3.37) sin2 φ IIΓg =
(
κM

n − κN
n cosφ

)
e3 +

(
κN

n − κM
n cos φ

)
e′3,
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where cos φ = (e3, e
′
3).

Note
∣∣IIΓg

∣∣ = κ, the curvature of Γg. Then by taking the norm of (3.37) we
immediately obtain the known classical Euler formula (1.2).
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