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ON NON-DEVELOPABLE RULED SURFACES IN
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Abstract. In this paper, we classify ruled surfaces in Lorentz-Minkowski
3-spaces satisfying some algebraic equations in terms of the second Gaussian
curvature, the mean curvature and the Gaussian curvature.

1. INTRODUCTION

The inner geometry of the second fundamental form has been a popular research
topic for ages. It is readily seen that the second fundamental form of a surface is
non-degenerate if and only if a surface is non-developable.

On a non-developable surface M , we can consider the Gaussian curvature KII

of the second fundamental form which is regarded as a new Riemannian metric.
Therefore, KII can be defined formally and it is the curvature of the Riemannian
or pseudo-Riemannian manifold (M, II). Using classical notation, we denote the
component functions of the second fundamental form by e, f and g. Thus we define
the second Gaussian curvature by (cf. [2])
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It is well known that a minimal surface has vanishing second Gaussian curvature
but that a surface with vanishing second Gaussian curvature need not be minimal.

For the study of the second Gaussian curvature, D. Koutroufiotis ([10]) has
shown that a closed ovaloid is a sphere if KII = cK for some constant c or if
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KII =
√

K, where K is the Gaussian curvature. Th. Koufogiorgos and T. Hasanis
([9]) proved that the sphere is the only closed ovaloid satisfying KII = H , where
H is the mean curvature. Also, W. Kühnel ([11]) studied surfaces of revolution
satisfying KII = H . One of the natural generalizations of surfaces of revolution
is the helicoidal surfaces. In [1] C. Baikoussis and Th. Koufogiorgos proved that
the helicoidal surfaces satisfying KII = H are locally characterized by constancy
of the ratio of the principal curvatures. On the other hand, D. E. Blair and Th.
Koufogiorgos ([2]) investigated a non-developable ruled surface in a Euclidean 3-
space R

3 satisfying the condition

(1.2) aKII + bH = constant, 2a + b �= 0,

along each ruling. Also, they proved that a ruled surface with vanishing second
Gaussian curvature is a helicoid.

Recently, the second author ([16]) studied a non-developable ruled surface in a
Euclidean 3-space R

3 satisfying the conditions

(1.3) aH + bK = constant, a �= 0,

(1.4) aKII + bK = constant, a �= 0,

along each ruling.
In particular, if it satisfies the condition (1.3), then a surface is called a linear
Weingarten surface (see [12]).

On the other hand, in [7] the present authors investigated a non-developable
ruled surface in a Lorentz-Minkowski 3-space satisfying the conditions (1.2), (1.3)
and (1.4).

In this article, we will study a non-developable ruled surface in a Lorentz-
Minkowski 3-space L

3 satisfying the conditions

(1.5) aH2 + 2bHKII + cK2
II = constant, a �= 4(b − c), c �= 0,

(1.6) aK2 + 2bKKII + cK2
II = constant, c �= 0,

(1.7) aH2 + 2bHK + cK2 = constant, a �= 0.

If a surface satisfies the equations (1.5), (1.6) and (1.7), then a surface is said
to be a HKII-quadric surface, KKII-quadric surface and HK-quadric surface,
respectively.
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2. PRELIMINARIES

Let L
3 be a Lorentz-Minkowski 3-space with the scalar product of index 1 given

by 〈·, ·〉 = −dx2
1+dx2

2+dx2
3, where (x1, x2, x3) is a standard rectangular coordinate

system of L
3. A vector x of L

3 is said to be space-like if 〈x, x〉 > 0 or x = 0,
time-like if 〈x, x〉 < 0 and light-like or null if 〈x, x〉 = 0 and x �= 0. A time-like
or light-like vector in L

3 is said to be causal. Now, we define a ruled surface M
in a Lorentz-Minkowski 3-space L

3. Let J1 be an open interval in the real line R.
Let α = α(s) be a curve in L

3 defined on J1 and β = β(s) a transversal vector
field along α. For an open interval J2 of R we have the parametrization for M

x = x(s, t) = α(s) + tβ(s), s ∈ J1, t ∈ J2.

The curve α = α(s) is called a base curve and β = β(s) a director curve. In
particular, the ruled surface M is said to be cylindrical if the director curve β is
constant and non-cylindrical otherwise. First of all, we consider that the base curve
α is space-like or time-like. In this case, the director curve β can be naturally
chosen so that it is orthogonal to α. Furthermore, we have ruled surfaces of five
different kinds according to the character of the base curve α and the director curve
β as follows: If the base curve α is space-like or time-like, then the ruled surface
M is said to be of type M+ or type M−, respectively. Also, the ruled surface of
type M+ can be divided into three types. In the case that β is space-like, it is said
to be of type M1

+ or M2
+ if β′ is non-null or light-like, respectively. When β is

time-like, β′ must be space-like by causal character. In this case, M is said to be of
type M3

+. On the other hand, for the ruled surface of type M−, it is also said to be
of type M1− or M2− if β′ is non-null or light-like, respectively. Note that in the case
of type M− the director curve β is always space-like. The ruled surface of type
M1

+ or M2
+ (resp. M3

+, M1− or M2−) is clearly space-like (resp. time-like). But, if
the base curve α is a light-like curve and the vector field β along α is a light-like
vector field, then the ruled surface M is called a null scroll (cf. [6]). Throughout
the paper, we assume the ruled surface M under consideration is connected unless
stated otherwise.

On the other hand, many geometers have been interested in studying submani-
folds of Euclidean and pseudo-Euclidean space in terms of the so-called finite type
immersion ([3]). Also, such a notion can be extended to smooth maps on subman-
ifolds, namely the Gauss map ([4]). In this regard, the authors defined pointwise
finite type Gauss map ([6]). In particular, the Gauss map G on a submanifold M

of a pseudo-Euclidean space E
m
s of index s is said to be of pointwise 1-type if

∆G = fG for some smooth function f on M where ∆ denotes the Laplace opera-
tor defined on M . The authors showed that minimal non-cylindrical ruled surfaces
in a Lorentz-Minkowski 3-space have pointwise 1-type Gauss map ([6]). Based on
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this fact, the authors proved the following theorem which will be useful to prove
our theorems in this paper.

Theorem 2.1 ([6]). Let M be a non-cylindrical ruled surface with space-like
or time-like base curve in a Lorentz-Minkowski 3-space. Then, the Gauss map is of
pointwise 1-type if and only if M is an open part of one of the following spaces: the
space-like or time-like helicoid of the 1st, the 2nd and the 3rd kind, the space-like
or time-like conjugate of Enneper’s surface of the 2nd kind.

3. MAIN RESULTS

In this section we study ruled HKII-quadric surface, KKII -quadric surface
and HK-quadric surface M in a Lorentz-Minkowski 3-space L

3. Thus the ruled
surface M under consideration must have the non-degenerate second fundamental
form which automatically implies that M is non-developable.

Theorem 3.1. Let M be a non-developable ruled surface with non-null base
curve in a Lorentz-Minkowski 3-space. Then, M is a HKII-quadric surface if and
only if M is an open part of one of the following surfaces :

(1) the helicoid of the 1st kind as space-like or time-like surface,
(2) the helicoid of the 2nd kind as space-like or time-like surface,
(3) the helicoid of the 3rd kind as space-like or time-like surface,
(4) the conjugate of Enneper’s surfaces of the 2nd kind as space-like or time-like

surface.

Proof. We consider two cases separately.

Case 1. Let M be a non-developable ruled surface of the three types M1
+, M3

+

or M1−. Then the parametrization for M is given by

x = x(s, t) = α(s) + tβ(s)

such that 〈β, β〉 = ε1(= ±1), 〈β′, β′〉 = ε2(= ±1) and 〈α′, β′〉 = 0. In this case
α is the striction curve of x, and the parameter is the arc-length on the (pseudo-
)spherical curve β. And we have the natural frame {xs, xt} given by xs = α′ + tβ′

and xt = β. Then, the first fundamental form of the surface is given by E =
〈α′, α′〉 + ε2t

2, F = 〈α′, β〉 and G = ε1. For later use, we define the smooth
functions Q, J and D as follows:

Q = 〈α′, β × β′〉 �= 0, J = 〈β′′, β′ × β〉, D =
√

|EG− F 2|.
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In terms of the orthonormal basis {β, β′, β × β′} we obtain

(3.1) α′ = ε1Fβ − ε1ε2Qβ × β′,

(3.2) β′′ = ε1ε2(−β + Jβ × β′),

(3.3) α′ × β = ε2Qβ′,

which imply EG−F 2 = −ε2Q
2 + ε1ε2t

2. And, the unit normal vector N is given
by N = 1

D (ε2Qβ′ − tβ × β′). Then, the components e, f and g of the second
fundamental form are expressed as

e =
1
D

(ε1Q(F − QJ) − Q′t + Jt2), f =
Q

D
�= 0, g = 0.

Therefore, using the data described above and (1.1), we obtain

(3.4)
KII =

1
f4

(
fft(fs − 1

2
et) − f2(−1

2
ett + fst)

)

=
1

2Q2D3

(
Jt4 + ε1Q(F − 2QJ)t2 + 2ε1Q

2Q′t + Q3(F + QJ)
)
.

Furthermore, the mean curvature H is given by

(3.5)
H =

1
2

Eg − 2Ff + Ge

|EG− F 2|
=

1
2D3

(
ε1Jt2 − ε1Q

′t − Q(F + QJ)
)
.

First of all, we suppose that Q2 − ε1t
2 > 0. We now differentiate KII and H with

respect to t, the results are

(3.6)
(KII)t =

1
2Q2D5

(−ε1Jt5 + Q(F + 2QJ)t3 + 4Q2Q′t2

+ε1Q
3(5F − QJ)t + 2ε1Q

4Q′) ,

(3.7) Ht =
1

2D5

(
Jt3 − 2Q′t2 − ε1Q(3F + QJ)t − ε1Q

2Q′) .

Now, suppose that a non-developable ruled surface is HKII-quadric surface. Then
we have by (1.5)

(3.8) aHHt + b(HtKII + H(KII)t) + cKII(KII)t = 0.
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From (3.4)-(3.8) we have

(3.9) aQ4A1 + bQ2A2 + cA3 = 0,

where we put

(3.10)

A1 = ε1J
2t5−3ε1JQ′t4+(4QJF−2Q2J2+2ε1Q

′2)t3

+(2Q2Q′J+5QQ′F )t2+(Q2Q′2+4ε1Q
3JF +ε1Q

4J2

+3ε1Q
2F 2)t+ε1Q

3Q′(F +QJ),

A2 =−Q′Jt6+(7ε1Q
2Q′J−ε13QQ′F )t4

+(8Q3JF−4Q2F 2−8ε1Q
2Q′2)t3

+(−3Q4Q′J−18Q3Q′F )t2

+(−8ε1Q
5JF−8ε1Q

4F 2−4Q4Q′2)t−3ε1Q
5Q′(QJ+F ),

A3 =−ε1J
2t9+4Q2J2t7+2Q2Q′Jt6

+(4ε1Q
3JF−6ε1Q

4J2+ε1Q
2F 2)t5

+ε1(6Q3Q′F−2Q4Q′J)t4

+(4Q6J2−8Q5JF +6Q4F 2+8ε1Q
4Q′2)t3

+(16Q5Q′F−2Q6Q′J)t2

+(4Q6Q′2−ε1Q
8J2+4ε1Q

7JF +5ε1Q
6F 2)t

+2ε1Q
7Q′(F +QJ).

From (3.10) we can obtain that the coefficient of the highest order t9 of the equation
(3.9) is

cJ2 = 0.

Therefore, one finds J = 0 since c �= 0, which implies (3.10) becomes

(3.11)

A1 =2ε1Q
′2t3 + 5QQ′Ft2 + (Q2Q′2 + 3ε1Q

2F 2)t + ε1Q
3Q′F,

A2 = − 3ε1QQ′Ft4 + (−8ε1Q
2Q′2 − 4Q2F 2)t3 − 18Q3Q′Ft2

+ (−8ε1Q
4F 2 − 4Q4Q′2)t − 3ε1Q

5Q′F,

A3 =ε1Q
2F 2t5 + 6ε1Q

3Q′Ft4 + (6Q4F 2 + 8ε1Q
4Q′2)t3

+ 16Q5Q′Ft2 + (4Q6Q′2 + 5ε1Q
6F 2)t + 2ε1Q

7Q′F.

By (3.11) the coefficient of the highest order t5 of the equation (3.9) is

cQ2F 2 = 0,
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which implies F = 0. Therefore, (3.11) implies

(3.12)

A1 =2ε1Q
′2t3 + Q2Q′2t,

A2 = − 8ε1Q
2Q′2t3 − 4Q4Q′2t,

A3 =8ε1Q
4Q′2t3 + 4Q6Q′2t.

From (3.9) and (3.12) we have

Q′2(a − 4b + 4c) = 0.

Thus, we show that J = F = Q′ = 0 when a �= 4(b − c). In this case the surface
is minimal by (3.5). Since EG − F2 = ε1ε2t

2 − ε2Q
2 and Q2 − ε1t

2 > 0, the
surface is space-like or time-like when ε2 = −1 or ε2 = 1, respectively.

But, (ε1, ε2) = (−1,−1) is impossible because of the causal character. Let
(ε1, ε2) = (−1, 1). Then M is of the type M3

+. Thus the surface is a helicoid of
the 3rd kind according to Theorem 2.1. If (ε1, ε2) = (1,±1), then M is of the type
M1

+ or M1−. Hence the surface is a helicoid of the 1st kind or 2nd kind according
to Theorem 2.1.

Next, we suppose that Q2 − ε1t
2 < 0. In this case, we have

(3.13)
(KII)t =

1
2Q2D5

(
ε1Jt5 − Q(F + 2QJ)t3 − 4Q2Q′t2

+ε1Q
3(−5F + QJ)t − 2ε1Q

4Q′) ,

(3.14) Ht =
1

2D5

(−Jt3 + 2Q′t2 − ε1Q(3F + QJ)t + ε1Q
2Q′) .

Thus, by the similar discussion as above we can also obtain J = F = 0 and
Q′ = 0 when a �= 4(b − c). Therefore, the surface is minimal. Since EG − F 2 =
−ε2(Q2 − ε1t

2) and Q2 − ε1t
2 < 0. Consequently, M is space-like or time-like

according to ε2 = 1 or ε2 = −1, respectively.
In this case, ε1 = 1. Therefore, M is of type M1

+ or M1− depending on ε2 = ±1.
Thus, the surface is a helicoid of the 1st kind and the 2nd kind according to Theorem
2.1.

Case 2. Let M be a non-developable ruled surface of type M2
+ or M2−. Then,

the surface M is parametrized by

x(s, t) = α(s) + tβ(s)

such that 〈β, β〉 = 1, 〈α′, β〉 = 0, 〈β′, β′〉 = 0 and 〈α′, α′〉 = ε1(= ±1). We have
put the non-zero smooth functions q and S as follows :

q = ||xs||2 = ε〈xs, xs〉 = ε(ε1 + 2St), S = 〈α′, β′〉,
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where ε denotes the sign of xs. We note that β×β′ = β′. Then, the components of
the induced pseudo-Riemannian metric on M are obtained by E = εq, F = 0 and
G = 1. For the moving frame {α′, β, α′ × β} we can calculate

(3.15) β′ = ε1S(α′ − α′ × β), α′′ = −Sβ − ε1Rα′ × β,

where R = 〈α′′, α′ × β〉. Furthermore, using (3.15) we have

〈β′′, α′ × β〉 = S ′ + ε1SR, 〈α′, β′′〉 = S ′ + ε1SR.

The unit normal vector N is given by

N =
1√
q
(α′ × β − tβ′),

from which the coefficients of the second fundamental form are given by

e =
1√
q
(R + (S ′ + 2ε1SR)t), f =

S√
q
, g = 0.

On the other hand, the mean curvature H and the second Gaussian curvature KII

are obtained respectively by

(3.16) H =
1

2q
3
2

(R + (S ′ + 2ε1SR)t),

(3.17) KII =
ε1S

′

2Sq
3
2

.

Differentiating KII and H with respect to t, we have

(3.18) (KII)t =
−3

2q
5
2

εε1S
′,

(3.19) Ht =
1

2q
5
2

(εε1S
′ − εSR − εS(S ′ + 2ε1SR)t).

We suppose that a non-developable ruled surface is HKII-quadric surface. Then,
by (3.8), (3.16), (3.17), (3.18) and (3.19) we have

(3.20) aSB1 + bB2 + cB3 = 0,

where we put

(3.21)

B1 = − εS(S ′ + 2ε1SR)2t2 + (S ′ + 2ε1SR)(εε1S
′ − 2εSR)t

+ εε1S
′R − εSR2,

B2 = − 4εε1SS ′(S ′ + 2ε1SR)t− 4εε1SS ′R + εS ′2,

B3 = − 3εS ′2.
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By (3.20) and (3.21) we have

S ′ = −2ε1SR, R2(a − 4b + 4c) = 0,

since a �= 0. Thus, we have S ′ = 0 and R = 0 when a �= 4(b − c). Consequently,
the surface M is minimal by (3.16), that is, it is a conjugate of Enneper’s surface
of the 2nd kind as space-like or time-like surface according to Theorem 2.1. This
completes the proof.

Remark. In Theorem 3.1, if a = 4(b − c), then, J = F = 0 with arbitrary
Q′ in Case 1 and S ′ = −2ε1SR with arbitrary R in Case 2 imply the equation
KII = −2H .
In Case 1, we have

α′ = −ε1ε2Qβ × β′,

β′′ = −ε1ε2β,

because of J = F = 0.

(1). (ε1, ε2) = (1, 1). Without loss of generality, we may assume β(0) =
(0, 0, 1). Then we have

β(s) = (d1 sin s, d2 sin s, cos s + d3 sin s)

for some constants d1, d2, d3 satisfying −d2
1 + d2

2 + d2
3 = 1. Since 〈β, β〉 = 1, we

have −d2
1 + d2

2 = 1 and d3 = 0. From this we can obtain

β(s) = (d1 sin s,±
√

1 + d2
1 sin s, cos s),

for some constant d1. Therefore, we have

α(s) = (∓
√

1 + d2
1,−d1, 0)f(s) + E,

where f(s) =
∫

Q(s)ds and E = (e1, e2, e3) is constant vector. Thus, the surface
M has the parametrization of the form

(3.22)
x(s, t) =(∓

√
1 + d2

1f(s) + td1 sin s + e1,

− d1f(s) ± t
√

1 + d2
1 sin s + e2, t cos s + e3),

where d1 is constant, f(s) =
∫

Q(s)ds and (e1, e2, e3) is constant vector.
If d1 = 0, then the surface M is a conoid of the 3rd kind (See [7]).
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(2). (ε1, ε2) = (1,−1). Without loss of generality, we may assume β(0) =
(0, 0, 1). Then we have

β(s) = (d1 sinh s,±
√

d2
1 − 1 sinh s, cosh s),

where d1 ≤ −1 or d1 ≥ 1. Therefore, we have

α(s) = (∓
√

d2
1 − 1, d1, 0)f(s) + E,

where f(s) =
∫

Q(s)ds and E = (e1, e2, e3) is constant vector. Thus, the parametriza-
tion for the surface M is given by

(3.23)
x(s, t) =(∓

√
d2

1 − 1f(s) + td1 sinh s + e1,

d1f(s)± t
√

d2
1 − 1 sinh s + e2, t cosh s + e3),

where d1 ≤ −1 or d1 ≥ 1, f(s) =
∫

Q(s)ds and (e1, e2, e3) is constant vector.
If d1 = ±1, then the surface M is a conoid of the 1st kind (See [7]).

(3). (ε1, ε2) = (−1, 1). We may assume β(0) = (1, 0, 0). Then we have

β(s) = (cosh s, d2 sinh s,±
√

1 − d2
2 sinh s),

where −1 ≤ d2 ≤ 1. Therefore, we have

α(s) = (0,±
√

1− d2
2,−d2)f(s) + E,

where f(s) =
∫

Q(s)ds and E = (e1, e2, e3) is constant vector. Thus, the surface
M is parametrized by

(3.24)
x(s, t) =(t cosh s + e1,±

√
1− d2

2f(s) + td2 sinh s + e2,

− d2f(s) ± t
√

1− d2
2 sinh s + e3),

where −1 ≤ d2 ≤ 1, f(s) =
∫

Q(s)ds and (e1, e2, e3) is constant vector.
If d2 = 0 or d2 = ±1, then the surface M is a conoid of the 2nd kind (See [7]).

(4). (ε1, ε2) = (−1,−1) is impossible because of the causal character.

For specific functions f(s) and appropriate intervals of s and t in (3.22), (3.23)
and (3.24), we have the graphs shown in Figures 1, 2 and 3, respectively.
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Fig. 1.

Fig. 2.

Fig. 3.

Theorem 3.2. Let M be a non-developable ruled surface with non-null base
curve in a Lorentz-Minkowski 3-space. Then, M is a HK-quadric surface if and
only if M is an open part of one of the following surfaces:
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(1) the helicoid of the 1st kind as space-like or time-like surface,
(2) the helicoid of the 2nd kind as space-like or time-like surface,
(3) the helicoid of the 3rd kind as space-like or time-like surface,
(4) the conjugate of Enneper’s surfaces of the 2nd kind as space-like or time-like

surface.

Proof. In order to prove the theorem, we split it into two cases.

Case 1. As is described in Theorem 3.1 we assume that the non-developable
ruled surface M of the three types M1

+, M3
+ or M1− is parametrized by

x = x(s, t) = α(s) + tβ(s)

such that 〈β, β〉 = ε1(= ±1), 〈β′, β′〉 = ε2(= ±1) and 〈α′, β′〉 = 0. Using the
same notations given in Theorem 3.1 the Gaussian curvature K is given by

(3.25) K = 〈N, N 〉 eg − f2

EG− F 2
=

Q2

D4
.

Differentiating K with respect to t we obtain

(3.26) Kt =
4ε1Q

2t

D6
.

Suppose that the surface M is HK-quadric. Then the equation (1.6) implies

(3.27) aHHt + b(HtK + HKt) + cKKt = 0.

First of all, we assume that Q2−ε1t
2 > 0. Then, by substituting (3.5), (3.7), (3.25)

and (3.26) into (3.27) it follows that

(3.28) a2A2
5D

4 + (8acA5A6 − 4b2A2
4)D

2 + 16c2A2
6 = 0,

where we put

(3.29)

A4 = 5Q2Jt3−6Q2Q′t2−(7ε1Q
3F +5ε1Q

4J)t−ε1Q
4Q′,

A5 = ε1J
2t5−3ε1Q

′Jt4+(2ε1Q
′2−4QJF−2Q2J2)t3+3ε1Q

2F 2

+(2Q2Q′J+5QQ′F )t2+(Q2Q′2+4ε1Q
3JF +ε1Q

4J2)t

+ε1Q
3Q′(QJ+F ),

A6 = 4ε1Q
4t.

From (3.29) we obtain that the coefficient of the highest order of the equation (3.28)
is

a2J4 = 0.
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This equation implies J = 0 since a �= 0 and (3.29) becomes

(3.30)

A4 = −6Q2Q′t2 − 7ε1Q
3Ft − ε1Q

4Q′,

A5 = 2ε1Q
′2t3 + 5QQ′Ft2 + (Q2Q′2 + 3ε1Q

2F 2)t + ε1Q
3Q′F,

A6 = 4ε1Q
4t.

By (3.28) and (3.30) we have Q′ = 0, which implies F = 0. Thus, the mean cur-
vature H is identically zero.

Next, we suppose that Q2 − ε1t
2 < 0. In this case, by using (3.14) and (3.26)

we can also show that the surface M is minimal. Consequently, by the proof of
Theorem 3.1 the surface M is an open part of one of the helicoid of the 1st kind,
2nd kind and 3rd kind as space-like or time-like surface.

Case 2. Let M be a non-developable ruled surface of type M2
+ or M2−. In

this case, the curve α is space-like or time-like and β space-like but β ′ is light-like.
We also use the notations given in Theorem 3.1. On the other hand, the Gaussian
curvature K is obtained by

(3.31) K =
S2

q2
,

and the differentiation of K with respect to t is given by

(3.32) Kt = −4εS3

q3
.

Suppose that the surface M is HK-quadric. Then by (3.16), (3.19), (3.27), (3.31)
and (3.32) we get

(3.33) a2q4B2
5 + 8acB5B6 − 4b2qB2

4 + 16c2B2
6 = 0,

where

(3.34)

B4 = (S ′ + 2ε1SR)(4S4 − εS3)t + εε1S
2S ′ − εS3R − 4ε1S

3S ′,

B5 = −εS(S ′ + 2ε1SR)2t2 + (S ′ + 2ε1SR)(εε1S
′ − 2εSR)t

+ εε1S
′R − εSR2,

B6 = −4εS5.

By (3.33) and (3.34) we show that S′ = 0, R = 0 and c = 0. (3.16) implies that
the mean curvature H is identically zero. Consequently, by the proof of Theorem
3.1 the surface M is a conjugate of Enneper’s surface of the 2nd kind as space-like
or time-like surface. This completes the proof.



210 Young Ho Kim and Dae Won Yoon

Combining the results of Theorems 3.1, 3.2 and Theorems in [6, 7], we have

Theorem 3.3. Let M be a non-developable ruled surface with non-null base
curve in a Lorentz-Minkowski 3-space. Then, the following are equivalent :

(1) M has pointwise 1-type Gauss map.
(2) M satisfies the equation aK II + bH = costant, a, b ∈ R−{0}, 2a− b �= 0,

along each ruling.
(3) M satisfies the equation aH + bK = costant, a �= 0, b ∈ R, along each

ruling.
(4) M satisfies the equation aH 2 + 2bHKII + cK2

II = constant, a �= 4(b − c),
along each ruling.

(5) M satisfies the equation aH 2 +2bHK+cK2 = constant, a �= 0, along each
ruling.

Theorem 3.4. Let α(s) + tβ(s) be a non-developable ruled surface with non-
null base curve in a Lorentz-Minkowski 3-space. Then, M is a KK II-quadric
surface if and only if M is an open part of one of the following surfaces Then, we
have the following:

1. Non-cylindrical ruled surfaces such that β ′(s) is non-null are parts of one of
the following surfaces:

(1) the helicoid of the 1st kind as space-like or time-like surface,

(2) the helicoid of the 2nd kind as space-like or time-like surface,

(3) the helicoid of the 3rd kind as space-like or time-like surface.

2. Non-cylindrical ruled surfaces such that β ′(s) is null have vanishing second
Gaussian curvature.

Proof. In order to prove the theorem, we also split it into two cases.

Case 1. As is described in Theorem 3.1 we assume that the ruled surface M
of the three types M1

+, M3
+ or M1− is assumed to be parametrized by

x = x(s, t) = α(s) + tβ(s)

such that 〈β, β〉 = ε1(= ±1), 〈β′, β′〉 = ε2(= ±1) and 〈α′, β′〉 = 0. Likewise by
Theorem 3.1 and 3.2 the second Gaussian curvature KII and the Gaussian curvature
K are given by (3.4) and (3.25), respectively. Suppose that the surface M is KKII-
quadric. First, we suppose that Q2 − ε1t

2 > 0. Then, from (1.7) we have

(3.35) aKKt + b(KtKII + K(KII)t) + cKII(KII)t = 0,
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from which we get by (3.4), (3.6), (3.25) and (3.26)

(3.36) c2A2
9D

4 + 8acA7A9D
2 + 16a2Q8A2

7 − 4b2Q8A2
8D

2 = 0,

where

(3.37)

A7 = 4ε1Q
4t,

A8 = 3ε1Jt5 + (5QF − 6Q2J)t3 + 12Q2Q′t2

+ (9ε1Q
3F + 3ε1Q

4J)t + 2ε1Q
4Q′,

A9 = −ε1J
2t9 + 4Q2J2t7 + 2Q2Q′Jt6

+ (4ε1Q
3JF − 6ε1Q

4J2 + ε1Q
2F 2)t5

+ (6ε1Q
3Q′F − 2ε1Q

4Q′J)t4

+ (6Q4F 2 − 8Q5JF + 4Q6J2 + 8ε1Q
4Q′2)t3

+ (16Q5Q′F − 2Q6Q′J)t2

+ (4Q6Q′2 + 5ε1Q
6F 2 + 4ε1Q

7JF − ε1Q
8J2)t

+ 2ε1Q
7Q′(F + QJ).

Similarly to Case 1 of Theorem 3.1 we can obtain J = 0, F = 0, Q′ = 0 and
a = 0. Therefore the mean curvature H is identically zero by the help of (3.5).
Thus, the surface M is minimal.

Next, we suppose that Q2 − ε1t
2 < 0. In this case, we can also show that M

is minimal. Consequently, the surface M is an open part of one of the helicoids of
the 1st kind, 2nd kind and 3rd kind as space-like or time-like surfaces depending
on Case 1 of Theorem 3.1.

Case 2. Let M be a non-developable ruled surface of type M2
+ or M2−. In

this case, the curve α is space-like or time-like and β space-like but β ′ is light-like.
Suppose that the surface M is KKII-quadric. Then we have by (3.35)

(3.38) c2q2B2
9 + (8acSB7B9 − 4b2S2B2

8 )q + 16a2S2B2
7 = 0,

where

(3.39)

B7 = − 4εS5,

B8 = − 7εε1S
2S ′,

B9 = − 3εS ′2,

which imply S ′ = 0 and a = 0. Thus, from (3.17) the second Gaussian curvature
KII is identically zero. This completes the proof.
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Combining the results of Theorems 3.4 and Theorems in [7], we have

Theorem 3.5. Let M be a ruled surface with non-null base curve in a Lorentz-
Minkowski 3-space with non-degenerate second fundamental form. Then, the fol-
lowing are equivalent:

(1) M satisfies the equation aK II + bK = constant, a �= 0, along each ruling.
(2) M satisfies the equation aK 2 + 2bKKII + cK2

II = constant, c �= 0, along
each ruling.

Finally, we investigate the relations between the second Gaussian curvature, the
Gaussian curvature and the mean curvature of null scrolls in L

3.

Theorem 3.5. Let M be a null scroll in a Lorentz-Minkowski 3-space. Then,
M satisfies the equations K = H 2, KII = H−1.

Proof. Let α = α(s) be a light-like curve in L
3 and β = β(s) be a light-like

vector field along α. Then, the null scroll M is parametrized by

x = x(s, t) = α(s) + tβ(s)

such that 〈α′, α′〉 = 0, 〈β, β〉 = 0 and 〈α′, β〉 = 1. Furthermore, without loss of
generality, we may choose α as a null geodesic of M . We then have 〈α′(s), β′(s)〉 =
0 for all s. The induced Lorentz metric on M is given by E = 〈β′, β′〉t2, F = 1,
G = 0 and the unit normal vector N is obtained by

N = α′ × β + tβ′ × β.

Thus, the component functions of the second fundamental form are given by

e = 〈α′′ + tβ′′, N 〉, f = 〈β′, α′ × β〉 = Q, g = 0,

which imply H = Q and K = Q2.
If 〈β′, β′〉 = 0, then β′ is either the zero vector or a null vector. If β′ is the

zero vector, the surface is flat because of f = Q = 0. Therefore, β′ is a null vector
and there is a non-zero smooth function ρ such that β = ρβ ′. It is a contradiction
by the properties of α and β.

Since it is described in Section 2, β ′ cannot be a time-like vector and thus we
can choose the parameter s in such a way that 〈β′, β′〉 = 1. Let {α′, β, β′} be a
null frame in L

3. Then, the vector β′′ can be expressed by

β′′ = −α′ + 〈α′, β′′〉β,

from which
ett = 2〈β′′, Nt〉 = 2〈β′′, β′ × β〉 = 2Q.
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Therefore, using (1.1) and the above equations the second Gaussian curvature KII

is given by

KII =
1

2Q2
ett =

1
Q

.

Thus, it easily follows that KII = 1
H holds everywhere on a null scroll. This

completes the proof.
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