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EXISTENCE AND ASYMPTOTIC STABILITY OF SOLUTIONS
TO A FUNCTIONAL-INTEGRAL EQUATION

Zeqing Liu and Shin Min Kang

Abstract. Using the Darbo’s fixed-point theorem associated with the measure
of noncompactness due to Banaś, we establish the existence and asymptotic
stability of solutions for a functional-integral equation. An example which
shows the importance of our result is also included.

1. INTRODUCTION

It is well known that integral equations have many useful applications in de-
scribing numerous events and problems of the real world, and the theory of integral
equations is rapidly developing with the help of several tools of functional analysis,
topology and fixed point theory. For details, we refer to [1-18] and the references
therein.

The purpose of this paper is to consider the existence of solutions for the fol-
lowing functional-integral equation

(1.1) x(t) = f(t, x(t)) + g(t, x(t))
∫ t

0
u(t, s, x(s))ds, ∀t ∈ [0,∞),

where f, g and u are given continuous functions while x is an unknown function.
Recently, Banaś and Rzepka [11, 13] studied the behavior of solutions for equation
(1.1) with either f ≡ 0 or g ≡ 1.

By applying Darbo’s fixed-point theorem associated with the measure of non-
compactness due to Banaś, we obtain a sufficient condition for the existence and
asymptotic stability of solutions for equation (1.1). The result presented in this
paper extends proper corresponding results of Banaś’ and Rzepka [11, 13].
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2. PRELIMINARIES

In this section, we give a collection of auxiliary facts which will be needed
further on. Let R = (−∞,∞) and R+ = [0, +∞). Assume that (E, || · ||) is an
infinite dimensional Banach space with zero element θ and B(θ, r) stands for the
closed ball centered at θ and with radius r. Let B(E) denote the family of all
nonempty bounded subsets of E and µ be a measure of noncompactness on B(E).
The famous fixed-point theorem due to Darbo [16] states as follows:

Theorem 2.1. Let D be a nonempty bounded closed convex subset of the space
E and let f : D → D be a continuous mapping such that µ(fA) ≤ kµ(A) for
each nonempty subset A of D, where k ∈ [0, 1) is a constant and µ is a measure
of noncompactness on B(E). Then f has at least one fixed point in D.

Assume that BC(R+) denotes the Banach space of all bounded and continuous
functions x : R+ → R equipped with the standard norm

||x|| = sup{|x(t)| : t ∈ R+}, x ∈ BC(R+).

For any nonempty bounded subset X of BC(R+), x ∈ X, T > 0 and ε ≥ 0,

define

wT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ] with |t − s| ≤ ε},
wT (X, ε) = sup{wT (x, ε) : x ∈ X}, wT

0 (X) = limε→0 wT (X, ε),

w0(X) = limT→∞ wT
0 (X), X(t) = {x(t) : x ∈ X},

diam X(T ) = sup{|x(t)− y(t)| : x, y ∈ X} and

µ(X) = ω0(X) + lim supt→∞ diam X(t).

It follows from Banaś [3] that the function µ(X) is a sublinear measure of non-
compactness in the space BC(R+). A solution x = x(t) of equation (1.1) is said
to be asymptotically stable on the interval R+ of for any ε > 0 there exist T > 0
and r > 0 such that x ∈ B(θ, r) and

|x(t)− y(t)| ≤ ε, ∀t > T,

where y = y(t) ∈ B(θ, r) is a arbitrary solution of equation (1.1).

3. MAIN RESULT

Now we make the following assumptions.
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(a) f, g : R+ × R → R are continuous and f(·, 0), g(·, 0) ∈ BC(R+);
(b) there exist a constant k ∈ [0, 1) and a continuous function m : R+ → R+

satisfying

|f(t, x)− f(t, y)| ≤ k|x − y| and |g(t, x)− g(t, y)| ≤ m(t)|x− y|,
∀t ≥ 0 and x, y ∈ R;

(c) u : R+ × R+ × R → R is a continuous function and there exist continuous
functions a, b : R+ → R+ satisfying

|u(t, s, x)| ≤ a(t)b(s), ∀t, s ∈ R+ and x ∈ R,

lim
t→∞a(t)

∫ t

0
b(s)ds = lim

t→∞m(t)a(t)
∫ t

0
b(s)ds = 0;

(d) there exists a constant q ∈ [0, 1) such that

m(t)a(t)
∫ t

0
b(s)ds ≤ q, ∀t ∈ R+ and k + q < 1.

Theorem 3.1. Under assumptions (a)-(d), equation (1.1) has at least one
solution x = x(t) which belongs to the space BC(R+) and is asymptotically
stable on the interval R+.

Proof. First of all let us fix a function x ∈ BC(R+) and define

(3.1) (Fx)(t) = f(t, x(t)) + g(t, x(t))
∫ t

0
u(t, s, x(s))ds, ∀t ∈ I.

In light of (3.1) and assumptions (a)-(d), we infer that Fx is continuous on R+ and
that

(3.2)

|(Fx)(t)|
≤ |f(t, x(t))− f(t, 0)|+ |f(t, 0)|+ |g(t, x(t))

−g(t, 0)|
∫ t

0
|u(t, s, x(s))|ds + |g(t, 0)|

∫ t

0
|u(t, s, x(s))|ds

≤ k|x(t)|+|f(t, 0)|+m(t)|x(t)|a(t)
∫ t

0
b(s)ds+|g(t, 0)|a(t)

∫ t

0
b(s)ds

≤ (k + q)|x(t)|+ |f(t, 0)|+ |g(t, 0)|a(t)
∫ t

0
b(s)ds

≤ (k + q)|x(t)|+ A
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for any t ∈ R+, where A = sup{|f(t, 0)|+ |g(t, 0)|a(t)
∫ t

0
b(s)ds : t ∈ R+} < ∞.

Thus Fx is bounded on R+. It follows that the operator F transforms the space
BC(R+) into itself. Notice that (3.2) implies that

||Fx|| ≤ (k + q)||x||+ A.

This means that the operator F maps the ball B(θ, r) into itself, where

(3.3) r =
A

1 − k − q
.

Now we claim that F is continuous on the ball B(θ, r). For any ε > 0 and
x, y ∈ B(θ, r) with ||x − y|| ≤ ε and t ∈ R+, in terms of (3.1) and assumptions
(b)-(d), we infer that

(3.4)

|(Fx)(t) − (Fy)(t)|
≤ |f(t, x(t))− f(t, y(t))|

+
∣∣∣∣g(t, x(t))

∫ t

0
u(t, s, x(s))ds− g(t, x(t))

∫ t

0
u(t, s, y(s))ds

∣∣∣∣
+

∣∣∣∣g(t, x(t))
∫ t

0
u(t, s, y(s))ds− g(t, y(t))

∫ t

0
u(t, s, y(s))ds

∣∣∣∣
≤ k|x(t) − y(t)| + |g(t, x(t))|

∫ t

0
|u(t, s, x(s))− u(t, s, y(s))|ds

+|g(t, x(t))− g(t, y(t))|
∫ t

0
|u(t, s, u(s))|ds

≤ k||x−y||+[m(t)|x(t)|+|g(t, 0)|]
∫ t

0
|u(t, s, x(s))−u(t, s, y(s))|ds

+m(t)|x(t)− y(t)|a(t)
∫ t

0
b(s)ds

≤ (k + q)ε + [rm(t) + |g(t, 0)|]
∫ t

0
|u(t, s, x(s))− u(t, s, y(s))|ds.

On the other hand, assumptions (a)-(c) ensure that there exists a positive number T
satisfying

(3.5) {rm(t)+sup{|g(t, 0)| : t ∈ R+}}a(t)
∫ t

0
b(s)ds < (1−k−q)

ε

2
, ∀t ≥ T.

Suppose that t ≥ T. It follows from (3.4) and (3.5) that

(3.6) |(Fx)t − (Fy)(t)| ≤ (k + q)ε + 2[rm(t) + |g(t, 0)|]a(t)
∫ t

0
b(s)ds < ε.
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Suppose that t < T . Put

w(ε) = sup{|u(t, s, x)−u(t, s, y)| : t, s ∈ [0, T ] and x, y ∈ [t, r] with |x−y| ≤ ε}.

It follows from the uniform continuity of the function u = t(t, s, x) on the set
[0, T ]× [0, T ]× [−r, r] that limε→0 w(ε) = 0. In view of (3.4), we deduce that

(3.7) |(Fx)(t)− (Fy)(t)| ≤ (k + q)ε + Tw(ε) sup{m(t) + |g(t, v)| : t ∈ [0, T ]}.

From (3.6) and (3.7), we get immediately that the operator F is continuous on the
ball B(θ, r).

Now let X be a nonempty subset of B(θ, r). We assert that

(3.8) µ(FX) ≤ (k + q)µ(X).

Indeed, by virtue of assumptions (b)-(d), we conclude that for any x, y ∈ X and
t ∈ R+,

|(Fx)(t) − (Fy)(t)|

≤ k|x(t) − y(t)| + [|g(t, x(t))− g(t, 0)|+ |g(t, 0)|]
∫ t

0
|u(t, s, x(s))

−u(t, s, y(s))|ds + |g(t, x(t))− g(t, y(t))|
∫ t

0
|u(t, s, y(s))|ds

≤ (k + q)|x(t)− y(t)| + 2(rm(t) + |g(t, 0)|)a(t)
∫ t

0
b(s)ds,

which gives that

(3.9)
diam(FX)(t) ≤ (k + q)diam X(t)+ 2(rm(t)

+|g(t, 0)|)a(t)
∫ t

0

b(s)ds, ∀t ∈ R+,

It follow from (3.9) and assumptions (a) and (c) that

(3.10) lim sup
t→∞

diam(FX)(t) ≤ (k + q) lim sup
t→∞

diam X(t).

For any T > 0, ε > 0, x ∈ X and t, p ∈ [0, T ] with |t − p| ≤ ε, by assumptions
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(b)-(d) and (3.1), we arrive at

|(Fx)(t)− (Fx)(p)|

≤ |f(t, x(t))− f(p, x(p))|+ |g(t, x(t))− g(p, x(p))|
∫ t

0
|u(t, s, x(s))|ds

+|g(p, x(p))|
∣∣∣∣
∫ t

0
u(t, s, x(s))ds−

∫ p

0
u(p, s, x(s))ds

∣∣∣∣
≤ |f(t, x(t))− f(t, x(p))|+ |f(t, x(p))− f(p, x(p))|

+[|g(t, x(t))− g(t, x(p))|+ |g(t, x(p))− g(p, x(p))|]a(t)
∫ t

0
b(s)ds

+[|g(p, x(p))− g(p, 0)|+ |g(p, v)|]
[∣∣∣∣

∫ t

p
u(t, s, x(s))ds

∣∣∣∣
+

∫ p

0
|u(t, s, x(s))− u(p, s, x(s))|ds

]

≤ k|x(t) − x(p)|+ wT
r (f, ε) + [m(t)|x(t)− x(p)|+ wT

r (g, ε)]a(t)
∫ t

0
b(s)ds

+[m(p)|x(p)|+ |g(p, 0)|][a(t)|t− p| sup{b(s) : s ∈ [0, T ]}+ TwT
r (u, ε)]

≤ (k + q)wT (x, ε) + wT
r (f, ε) + wT

r (g, ε)a(t)
∫ t

0
b(s)ds

+[rm(p) + |g(p, 0)|][εa(t) sup{b(s) : s ∈ [0, T ]}+ TwT
r (u, ε)],

where

wT
r (f, ε)=sup{|f(t, x)−f(p, x)| : t, p ∈ [0, T ] with |t−p|≤ε and x ∈ [−r, r]},

wT
r (g, ε)=sup{|g(t, x)−g(p, x)| : t, p ∈ [0, T ] with |t−p|≤ε and x ∈ [−r, r]},

wT
r (u, ε)=sup{|u(t, s, x)−u(p, s, x)| : t, p, s∈ [0, T ] with |t−p|

≤ε and x ∈ [−r, r]}.

That is,

(3.11)

wT (Fx, ε) ≤(k + q)wT (x, ε)+wT
r (f, ε)+wT

r (g, ε)a(t)
∫ t

0
b(s)ds

+[rm(p)+ |g(p, 0)|][εa(t)sup{b(s) : s ∈ [0, T ]}

+TwT
r (u, ε)]
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Note that assumptions (a) and (c) guarantee that the functions f = f(t, x), g =
g(t, x) are uniformly continuous on the set [0, T ]× [−r, r], and the function u =
u(t, s, x) is uniformly continuous on the set [0, T ]× [0, T ]× [−r, r]. It follows that

(3.12) lim
ε→0

wT
r (f, ε) = lim

ε→0
wT

r (g, ε) = lim
ε→0

wT
r (u, ε) = 0.

Using assumptions (a)-(d), (3.11) and (3.12), we conclude that

(3.13) wT
0 (FX) ≤ (k + q)wT

0 (X) and w0(FX) ≤ (k + q)w0(X).

It is clear that (3.10) and (3.13) yield that (3.8) holds. It follows from Theorem 2.1
that F has at least one fixed point x = x(t) ∈ B(θ, r). That is, equation (1.1) has
at least one solution x = x(t) ∈ B(θ, r).

Finally, we show that the solution x = x(t) of equation (1.1) is asymptotically
stable on the interval R+. Let ε be an arbitrary positive number and let r be defined
by (3.3). It follows assumptions (a)-(c) that there exists T > 0 such that

(3.14) [rm(t) + |g(t, 0)|]a(t)
∫ t

0
b(s)ds ≤ 1 − k − q

2
ε, ∀t ≥ T.

For solutions x = x(t) and y = y(t) of equation (1.1) in B(θ, r), by (3.1) and
assumptions (b)-(d), we deduce that

(3.15)

|x(t) − y(t)|
= |(Fx)(t) − (Fy)(t)|
≤ |f(t, x(t))− f(t, y(t))|

+[|g(t, x(t))−g(t, v)|+|g(t, v)|]
∫ t

0
|u(t, s, x(s))−u(t, s, y(s))|ds

+|g(t, x(t))− g(t, y(t))|
∫ t

0
|u(t, s, y(s))|ds

≤ k|x(t) − y(t)| + 2[m(t)|x(t)|+ |g(t, 0)|]a(t)
∫ t

0

b(s)ds

+m(t)|x(t)− y(t)|a(t)
∫ t

0
b(s)ds

≤ (k + q)|x(t)− y(t)|+ 2[rm(t) + |g(t, 0)|]a(t)
∫ t

0

b(s)ds

for any t ∈ R+. Using (3.14) and (3.15), we derive that

|x(t)− y(t)| ≤ 2
1 − k − q

[rm(t) + |g(t, 0)|]a(t)
∫ t

0
b(x)ds ≤ ε, ∀t ≥ T.
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That is, the solution x = x(t) of equation (1.1) is asymptotically stable on the
interval R+. This completes the proof.

Remark 3.1. If f(t, x) = 0 for any t ∈ R+ and x ∈ R, then Theorem 3.1
reduces to Theorem 2 of Banaś’ and Rzepka [11]. If g(t, x) = 1 for any t ∈ R+

and x ∈ R, then Theorem 3.1 reduces to Theorem 2 of Banaś and Rzepka [13].

Remark 3.2. The asymptotic stability of the equation x = x(t) of the equation
(1.1) can be obtained as a consequence of the fact that all solutions of that equation
belong to the so-called kernel of the measure of noncompactnrss µ (cf. [4, 11] and
[13]).

Example 3.1. Consider the following nonlinear functional-integral equation:

(3.16)

x(t) =
t

1 + t2
sin[t2 − x(t)] + cos

[√
3t4 + 1 − 2(t + 1) + x(t)

]

×
∫ t

0

x(s)
1 + x2(s)

ln
[
1 +

2(1 + 2s)|x(s)|
3(1 + t)(1 + 2t)2

]
ds, ∀t ∈ R+.

Put

f(t, x) =
x

1 + t2
sin(t2 − x), g(t, x) =

cos
[√

3t4 + 1 − 2(t + 1) + x
]

1 +
√

t
,

∀t ∈ R+, x ∈ R,

u(t, s, x) = (1 +
√

t)
x

1 + x2
ln

[
1 +

(1 + 2s)|x|
3(1 + t)(1 + 2t)2

]
, ∀t, s ∈ R+, x ∈ R,

k =
1
2
, q =

1
3
, m(t) =

1
1 +

√
t
, ∀t ∈ R+,

a(t) =
1 +

√
t

3(1 + t)(1 + 2t)2
, b(t) = 1 + 2t, ∀t ∈ R+.

It is easy to verify that assumptions (a)-(d) are fulfilled. Consequently Theorem 3.1
ensures that equation (3.16) has at least one solution x = x(t) which belongs to the
space BC(R+) and is asymptotically stable on the interval R+. However Theorem
2 in [11] and [13] are not applicable.
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