TAIWANESE JOURNAL OF MATHEMATICS Vol. 11, No. 1, pp. 179-186, March 2007 This paper is available online at http://www.math.nthu.edu.tw/tjm/

# PLANAR GRAPHS THAT HAVE NO SHORT CYCLES WITH A CHORD ARE 3-CHOOSABLE

Wei-Fan Wang

Abstract. In this paper we prove that every planar graph G is 3-choosable if it contains no cycle of length at most 10 with a chord. This generalizes a result obtained by Borodin [J. Graph Theory 21(1996) 183-186] and Sanders and Zhao [Graphs Combin. 11(1995) 91-94], which says that every planar graph G without k-cycles for all  $4 \le k \le 9$  is 3-colorable.

### 1. INTRODUCTION

We only consider simple graphs in this paper unless otherwise stated. A plane graph is a particular drawing of a planar graph in the Euclidean plane. For a plane graph G, we denote its vertex set, edge set, face set, and minimum degree by V(G), E(G), F(G), and  $\delta(G)$ , respectively. Let  $d_G(x)$  (for short, d(x)) denote the degree of a vertex or a face x of G. We use b(f) to denote the boundary of a face f, and write  $f = [u_1 u_2 \cdots u_n]$  if  $u_1, u_2, \dots, u_n$  are its boundary vertices in a cyclic order. A vertex (or face) of degree k is called a k-vertex (or k-face). We say that two cycles or faces of a plane graph are *adjacent* if they share at least one common (boundary) edge. For a face  $f \in F(G)$ , let  $F_k(f)$  denote the set of k-faces adjacent to f,  $V_i(f)$  the set of i-vertices incident to f, and  $V_3^{\mathcal{I}}(f)$  the set of 3-vertices in  $V_3(f)$  each of which is incident to at least one *j*-face. Let  $V'_3(f) = V_3(f) \setminus (V_3^3(f) \cup V_3^4(f) \cup V_3^5(f))$ . For a graph G and a cycle  $C \subseteq G$ , an edge xy is called a chord of C if  $xy \in E(G) \setminus E(C)$  but  $x, y \in V(C)$ . C is a chordal-k-cycle if C is of length k and has a chord in G. Let  $c^*(G)$  denote the maximum integer k such that G contains no chordal-l-cycles for all  $l \leq k$ . It is easy to see that  $3 \le c^*(G) \le |V(G)|$  if G is a simple graph, and  $c^*(G) < |V(G)|$ if  $\delta(G) > 3$ .

Received November 2, 2004, accepted January 25, 2006.

Communicated by Xuding Zhu.

<sup>2000</sup> Mathematics Subject Classification: 05C15.

Key words and phrases: Planar graph, Chromatic number, Cycle.

Research supported partially by NNSF(No. 10471131) and ZJNSF(No. M103094, No. Y604167).

Wei-Fan Wang

A coloring of a graph G is a mapping  $\phi$  from V(G) to the set of colors  $\{1, 2, \ldots, k\}$  such that  $\phi(x) \neq \phi(y)$  for every edge xy of G. The chromatic number  $\chi(G)$  is the smallest integer k such that G has a proper coloring into the set  $\{1, 2, \ldots, k\}$ . We say that L is an assignment for the graph G if it assigns a list L(v) of possible colors to each vertex v of G. If G has a proper coloring  $\phi$  such that  $\phi(v) \in L(v)$  for all vertices v, then we say that G is L-colorable or  $\phi$  is an L-coloring of G. The graph G is k-choosable if it is L-colorable for every assignment L satisfying |L(v)| = k for all vertices v. The choice number or list chromatic number  $\chi_{\ell}(G)$  of G is the smallest k such that G is k-choosable.

The concept of list coloring was introduced by Vizing [12] and independently by Erdös, Rubin and Taylor [5]. All 2-choosable graphs are completely characterized in [5]. Thomassen [9] proved that every planar graph is 5-choosable, whereas Voigt [13] presented an example of a planar graph which is not 4-choosable. Thomassen [10, 11] showed that every planar graph of girth greater than or equal to 5 is 3-choosable. Voigt [14] further constructed a non-3-choosable planar graph of girth 4. Alon and Tarsi [1] proved that every planar bipartite graph is 3-choosable. Other results on list coloring planar graphs are referred to [15-17]. In this paper, we investigate the 3-choosability of planar graphs G when  $c^*(G)$  is sufficiently large.

## 2. TRUCTURAL PROPERTIES

The following lemma is an easy observation from the definition of  $c^*(G)$ .

**Lemma 1.** Let G be a 2-connected plane graph with  $\delta(G) \ge 3$ . If f and f' are two adjacent faces, then  $d(f) + d(f') \ge c^*(G) + 3$ .

A plane graph G is *normal* if it contains no vertex and face of degree less than 3. It was known [2, 7] that every normal plane graph contains an edge xy such that  $d(x) + d(y) \le 13$ .

**Lemma 2.** If G is a plane graph with  $c^*(G) \ge 11$ , then  $\delta(G) \le 2$ .

*Proof.* Suppose to the contrary that  $\delta(G) \geq 3$ . Then  $G^*$ , the dual of G, contains no face of degree less than 3. Since G is simple,  $G^*$  further contains no vertex of degree less than 3. Thus,  $G^*$  is a normal plane graph. By the previous result,  $G^*$ contains an edge xy such that  $d_{G^*}(x) + d_{G^*}(y) \leq 13$ . Let  $f_x$  and  $f_y$  denote the faces of G that correspond to x and y in  $G^*$ , respectively. Therefore,  $f_x$  is adjacent to  $f_y$  in G and  $d_G(f_x) + d_G(f_y) \leq 13$ . However, this contradicts Lemma 1, which asserts that  $d_G(f_x) + d_G(f_y) \geq c^*(G) + 3 \geq 14$ . This proves Lemma 2.

Lemma 2 is best possible in the sense that there exist plane graphs G having a cycle of length at most 11 with a chord such that  $\delta(G) \ge 3$ . Let H denote the

180

graph obtained from the dodecahedron by sawing all its corners off. It is easy to see that H is a 3-regular plane graph containing cycles of length eleven with a chord.

For a fixed integer  $N \ge 4$ , it is easy to observe that if a graph G contains no k-cycles for all  $4 \le k \le N$ , then G contains no any cycle of length at most N + 1 with a chord. This fact together Lemma 2 imply the following consequence.

**Corollary 3.** If G is a plane graph without k-cycles for all  $4 \le k \le 10$ , then  $\delta(G) \le 2$ .

**Lemma 4.** If G is a plane graph with  $\delta(G) \ge 3$  and  $c^*(G) = 10$ , then G contains a cycle of length ten such that each of its vertices is of degree 3 in G.

*Proof.* Suppose that the lemma is false. Let G be a connected counterexample. If G is not 2-connected, choose an end-block B of G that contains exactly one cut vertex u of G. Then B is 2-connected,  $c^*(B) = 10$ ,  $d_B(u) \ge 2$ , and  $d_B(x) \ge 3$  for all  $x \in V(B) \setminus \{u\}$ . Assume that u lies on the boundary of the infinite face of B, and let  $v \ne u$  be a vertex of B lying on the infinite face. Take eleven copies  $B_1, B_2, \dots, B_{11}$  of B, and let  $u_i$  and  $v_i$  be the copies of u and v in  $B_i$ , respectively. Let H denote the graph constructed from  $B_1, B_2, \dots, B_{11}$  by identifying  $v_{11}$  with  $u_1$ , and  $v_i$  with  $u_{i+1}$  for  $i = 1, 2, \dots, 10$ . It is easy to see that H is a 2-connected plane graph with  $\delta(H) \ge 3$  and  $c^*(H) = 10$  which contains no cycle of length ten with each vertex being of degree 3 in H. Hence H also is a counterexample to the lemma.

Thus we may now assume that G is 2-connected and hence all its facial walks are cycles. Using Euler's formula |V(G)| - |E(G)| + |F(G)| = 2 and the relations  $\sum_{v \in V(G)} d(v) = \sum_{f \in F(G)} d(f) = 2|E(G)|$ , we can derive the following identity.

(1) 
$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2d(f) - 6) = -12.$$

Let w denote a weight function defined on  $V(G) \cup F(G)$  by w(v) = d(v) - 6if  $v \in V(G)$  and w(f) = 2d(f) - 6 if  $f \in F(G)$ . We shall discharge the face weight w(x) to its incident vertices while keeping the total sum fixed so that the new weight w'(x) is nonnegative for all  $x \in V(G) \cup F(G)$ . Hence

$$0 \le \sum_{x \in V(G) \cup F(G)} w'(x) = \sum_{x \in V(G) \cup F(G)} w(x) = -12.$$

This is an obvious contradiction.

For a face f, let  $m_3(f) = |F_3(f)|$ ,  $n_i(f) = |V_i(f)|$ ,  $n_3^2(f) = |V_3^j(f)|$ , and  $n_3'(f) = |V_3'(f)|$ . Let  $\alpha(f) = 2d(f) - 6 - \frac{3}{2}n_3^3(f) - \frac{5}{4}n_3^4(f) - \frac{11}{10}n_3^5(f)$ , and

 $\beta(f) = a(f)/(n'_3(f) + n_4(f) + n_5(f))$ . With the aid of these notations, we define a discharging rule as follows.

(**R**) Every face f of degree at least 4 sends  $\frac{3}{2}$  to each 3-vertex in  $V_3^3(f)$ ,  $\frac{5}{4}$  to each 3-vertex in  $V_3^4(f)$ ,  $\frac{11}{10}$  to each 3-vertex in  $V_3^5(f)$ , and  $\beta(f)$  to each vertex in  $V_3'(f) \cup V_4(f) \cup V_5(f)$  provided  $n'_3(f) + n_4(f) + n_5(f) > 0$ .

Let w'(x) denote the new weight function for  $x \in V(G) \cup F(G)$  once the discharging process is complete according to the rule (R). It remains to prove that  $w'(x) \ge 0$  for all  $x \in V(G) \cup F(G)$ .

**Claim.** Suppose that f is a face of degree at least 4. Then

(1)  $\alpha(f) \ge 0.$ 

(2)  $\beta(f) \ge \beta_0$ , where  $\beta_0 = \frac{3}{2}$  if  $d(f) \ge 12$ ;  $\beta_0 = 1$  if d(f) = 11;  $\beta_0 = \frac{w(f)}{d(f)}$  if  $4 \le d(f) \le 9$ ; and  $\beta_0 = 1$  if d(f) = 10 with the following exceptions:

- (2.1)  $\beta(f) = \frac{1}{2}$  if  $n_3^3(f) = n_3(f) = 9$  and  $n_4(f) + n_5(f) = 1$ ;
- (2.2)  $\beta(f) = \frac{3}{4}$  if  $n_3^3(f) = 8$ ,  $n_3^4(f) = 1$  and  $n_4(f) + n_5(f) = 1$ ;
- (2.3)  $\beta(f) = \frac{9}{10}$  if  $n_3^3(f) = 8$ ,  $n_3^5(f) = 1$  and  $n_4(f) + n_5(f) = 1$ .

**Remarks.** For  $1 \le i \le 3$ , suppose that  $f_i$  is a 10-face satisfying Condition (2.i). Then  $f_i$  is incident to the unique vertex v of degree more than 3. And if d(v) = 4, then  $f_i$  is adjacent to some (i + 2)-face  $f^*$  such that  $v \in b(f_i) \cap b(f^*)$ . However, v is not incident to any 3-face other than  $f^*$ .

Proof of the Claim. Let  $T(f) = \frac{3}{2}n_3^3(f) + \frac{5}{4}n_3^4(f) + \frac{11}{10}n_3^5(f) + \beta_0(n'_3(f) + n_4(f) + n_5(f))$ . It suffices to check that  $T(f) \le w(f)$ .

If  $d(f) \ge 12$ , then  $\beta_0 = \frac{3}{2}$  and  $T(f) = \frac{3}{2}n_3^3(f) + \frac{5}{4}n_3^4(f) + \frac{11}{10}n_3^5(f) + \frac{3}{2}(n_3'(f) + n_4(f) + n_5(f)) \le \frac{3}{2}d(f) \le 2d(f) - 6 = w(f).$ 

Suppose that d(f) = 11, then w(f) = 16 and  $\beta_0 = 1$ . If  $n_3(f) \le 10$ , then  $T(f) \le \frac{3}{2}n_3(f) + n_4(f) + n_5(f) \le \frac{3}{2}n_3(f) + (11 - n_3(f)) = 11 + \frac{1}{2}n_3(f) \le 11 + 5 = 16$ . Assume that  $n_3(f) = 11$ . It is easy to derive that  $m_3(f) \le 5$ . If  $m_3(f) \le 4$ , then  $n_3^3(f) \le 8$ , and hence  $T(f) \le 8 \cdot \frac{3}{2} + 3 \cdot \frac{5}{4} = 15\frac{3}{4}$ . If  $m_3(f) = 5$ , then some 3-vertex in b(f) is not incident to any face of degree less than 6 by Lemma 1. This implies that  $n_3^3(f) = 10$  and  $n_3'(f) = 1$ , hence  $T(f) = 10 \cdot \frac{3}{2} + 1 = 16$ .

Suppose that d(f) = 9. Then  $\beta_0 = (2 \cdot 9 - 6)/9 = \frac{4}{3}$ . By Lemma 1, f is not adjacent to any 3-face. Thus,  $n_3^3(f) = 0$ , and  $T(f) \le \frac{5}{4}n_3^4(f) + \frac{11}{10}n_3^5(f) + \frac{4}{3}(n'_3(f) + n_4(f) + n_5(f)) \le \frac{4}{3}d(f) = 12 = w(f)$ .

Suppose that d(f) = 8. Then w(f) = 10 and  $\beta_0 = \frac{5}{4}$ . It follows from Lemma 1 that f is not adjacent to any face of degree less than 5. Thus,  $n_3^3(f) = n_3^4(f) = 0$ , and  $T(f) \leq \frac{11}{10}n_3^5(f) + \frac{5}{4}(n'_3(f) + n_4(f) + n_5(f)) \leq \frac{5}{4}d(f) = 10$ .

Suppose that  $4 \le d(f) \le 7$ . Then  $\beta_0 = w(f)/d(f)$ . Lemma 1 asserts that f is not adjacent to any face of degree less than 6. Thus,  $n_3^3(f) = n_3^4(f) = n_3^5(f) = 0$ , and  $T(f) \le \beta_0(n'_3(f) + n_4(f) + n_5(f)) \le \frac{w(f)}{d(f)} \cdot d(f) = w(f)$ .

Finally, suppose that d(f) = 10. So, w(f) = 14. Since *G* contains no a 10-cycle with each boundary vertex being of degree 3, we know  $n_3(f) \le 9$ . If  $n_3(f) \le 8$ , then  $T(f) \le 8 \cdot \frac{3}{2} + 2 \cdot 1 = 14$ . Assume that  $n_3(f) = 9$ . It follows that  $n_4(f) + n_5(f) \le 1$ . If  $n_4(f) + n_5(f) = 0$ , then  $T(f) \le 9 \cdot \frac{3}{2} = 13.5$ . So suppose that  $n_4(f) + n_5(f) = 1$ . If  $n_3^3(f) \le 7$ , then  $T(f) \le 7 \cdot \frac{3}{2} + 2 \cdot \frac{5}{4} + 1 = 14$ . Assume that  $n_3^3(f) = 8$ . If  $n_3^3(f) = 1$ , then Case (2.2) holds and  $T(f) = 8 \cdot \frac{3}{2} + \frac{5}{4} + \frac{3}{4} = 14$ . If  $n_3^5(f) = 1$ , then Case (2.3) holds and  $T(f) = 8 \cdot \frac{3}{2} + \frac{11}{10} + \frac{9}{10} = 14$ . If  $n_3^3(f) = 9$ , then Case (2.1) holds and  $T(f) = 9 \cdot \frac{3}{2} + \frac{1}{2} = 14$ . This proves the Claim.

The statement (1) in the Claim implies that  $w'(f) \ge 0$  for all  $f \in F(G)$  with  $d(f) \ge 4$ . If d(f) = 3, then w'(f) = w(f) = 0.

Let  $v \in V(G)$ . Thus  $d(v) \geq 3$  by  $\delta(G) \geq 3$ . If  $d(v) \geq 6$ , then  $w'(v) = w(v) = d(v) - 6 \geq 0$ . Assume that d(v) = 5, then w(v) = -1. By Lemma 1, v is incident to at most two 3-faces. Since each of the faces of degree at least 4 that are incident to v sends at least  $\frac{1}{2}$  to v by the Claim, and hence  $w'(v) \geq -1 + 3 \cdot \frac{1}{2} = \frac{1}{2}$ . Assume that d(v) = 3, then w(v) = -3. Let  $f_1, f_2, f_3$  be the incident faces of v that satisfies  $d(f_1) \leq d(f_2) \leq d(f_3)$ . If  $d(f_1) = 3$ , then  $d(f_i) \geq 10$  by Lemma 1 and  $\tau(f_i \to v) = \frac{3}{2}$  by (R) for i = 2, 3, thus  $w'(v) \geq -3 + 2 \cdot \frac{3}{2} = 0$ . If  $d(f_1) = 4$ , then  $\tau(f_1 \to v) \geq \frac{1}{2}$  by the Claim. Since  $d(f_i) \geq 9$  by Lemma 1 and  $\tau(f_i \to v) = \frac{5}{4}$  by (R) for i = 2, 3, we have  $w'(v) \geq -3 + \frac{1}{2} + 2 \cdot \frac{5}{4} = 0$ . If  $d(f_1) = 5$ , then  $\tau(f_1 \to v) \geq \frac{4}{5}$  by the Claim. Since  $d(f_i) \geq 8$  by Lemma 1 and  $\tau(f_i \to v) \geq \frac{11}{10}$  by (R) for i = 2, 3, we deduce  $w'(v) \geq -3 + \frac{4}{5} + 2 \cdot \frac{11}{10} = 0$ . Now assume  $d(f_i) \geq 6$  for all i = 1, 2, 3. It is easy to note that  $f_i$  doesn't satisfy (2.1), (2.2), and (2.3) and thus  $\tau(f_i \to v) \geq 1$  by the Claim. It turns out that  $w'(v) \geq -3 + 3 \cdot 1 = 0$ .

Suppose that d(v) = 4 and so w(v) = -2. Let  $f_1, f_2, f_3, f_4$  denote the incident faces of v in clockwise direction with  $d(f_1) = \min_{1 \le i \le 4} \{d(f_i)\}$ . If  $d(f_1) \ge 4$ , then each of the faces  $f_i$ 's sends at least  $\frac{1}{2}$  to v by the Claim and therefore  $w'(v) \ge -2 + 4 \cdot \frac{1}{2} = 0$ . So suppose that  $d(f_1) = 3$ . By Lemma 1,  $d(f_2), d(f_4) \ge 10$ . If  $d(f_3) = 3$ , then it is easy to check that  $f_i$  for i = 2, 4 does not satisfy (2.1)-(2.3) whenever  $d(f_i) = 10$ . By the Claim,  $\tau(f_i \to v) \ge 1$ , and consequently  $w'(v) \ge -2 + 1 + 1 = 0$ .

Now assume  $d(f_3) \ge 4$ . First we see  $\tau(f_3 \to v) \ge \frac{1}{2}$  by the Claim. If either  $d(f_2) \ge 11$ , or  $d(f_2) = 10$  and  $f_2$  does not satisfy (2.1)-(2.3), then  $w'(v) \ge -2 + 2 \cdot \frac{1}{2} + 1 = 0$ . Otherwise, the above Remarks implies that  $f_2$  does not satisfy (2.2) and (2.3) because the 4-vertex v is incident to the 3-face  $f_1$ . Thus we may assume that  $d(f_2) = 10$  and  $f_2$  satisfies (2.1). Then  $n_3^3(f_2) = n_3(f_2) = 9$  and  $n_4(f_2) = 1$ . Let  $f_2 = [x_1x_2...x_{10}]$  such that  $v = x_1, x_1x_2 \in b(f_1) \cap b(f_2)$ , Wei-Fan Wang

and  $x_{10}x_1 \in b(f_3) \cap b(f_2)$ . There exists a 3-face  $f^* = [x_9ux_{10}]$  adjacent to  $f_3$ . By Lemma 1,  $d(f_3) \ge 10$ . If  $d(f_3) \ge 11$ , then we similarly have  $w'(v) \ge 0$ . If  $d(f_3) = 10$ ,  $f_3$  does not satisfy (2.1)-(2.3) since the unique 4-vertex v is not on the common boundary of  $f_3$  and some face of degree at most 5. We also derive that  $w'(v) \ge 0$ .

## 3. 3-Choosability

In this section, we are ready to prove our main result. Every subgraph H of a planar graph G with  $c^*(G) \ge 10$  is also a planar graph with  $c^*(H) \ge 10$ . Every subgraph of a list k-colorable graph is also list k-colorable. These straightforward facts are essential in carrying out the induction in the following proof.

## **Theorem 5.** Every plane graph G with $c^*(G) \ge 10$ is 3-choosable.

*Proof.* We use induction on the vertex number |V(G)|. If  $|V(G)| \le 4$ , the theorem is trivially true. Let G be a planar graph with  $c^*(G) \ge 10$  and  $|V(G)| \ge 5$ . Let L denote an assignment for G such that |L(v)| = 3 for all  $v \in V(G)$ . If  $\delta(G) \le 2$ , let u be a vertex of minimum degree in G. By the induction hypothesis, G - u is L-colorable. Obviously, we can extend any L-coloring of G - u into an L-coloring of G. If  $\delta(G) \ge 3$ , then  $c^*(G) = 10$  by Lemma 2. Further, G contains a 10-cycle C such that each of its vertices is of degree 3 in G by Lemma 4. Since  $c^*(G) = 10$ , C is chordless in G. Thus, for every  $x \in V(C)$ , there exists a vertex  $\overline{x} \in V(G) \setminus V(C)$  adjacent to x in G. By the induction hypothesis, G - V(C) has an L-coloring  $\phi$ . We define an assignment  $L'(x) = L(x) \setminus \{\phi(\overline{x})\}$  for every  $x \in V(C)$ . It is easy to see that  $|L'(x)| \ge |L(x)| - 1 = 3 - 1 = 2$ . Thus C is L'-colorable. Consequently, G is 3-choosable. This proves Theorem 5.

Steinberg ([6], p. 42) conjectured that every planar graph without 4- and 5-cycles is 3-colorable. This conjecture still remains open. Borodin [3], and independently Sanders and Zhao [8], proved that every planar graph without k-cycles for all  $4 \le k \le 9$  is 3-colorable. Actually their result is an immediate corollary of our Theorem 5. The best known partial result on Steinberg's conjecture was obtained recently by Borodin et al.[4], where 9 is replaced by 7.

**Remarks.** Steinberg's conjecture cannot be extended to the chordal-cycle-free situation. Namely, a planar graph G without chordal-k-cycles for  $4 \le k \le 5$  may not be 3-colorable. To construct such an example, let  $\overline{H}$  be the plane graph obtained by adding the edges  $x_1x_3, x_2x_6, x_5x_7$  to a 8-cycle  $x_1x_2 \cdots x_8x_1$ . Take a copy H' of  $\overline{H}$  and let  $x'_i$  be the copy of  $x_i$  in H' for all  $i = 1, 2, \cdots, 8$ . Define the graph  $\overline{G} = \overline{H} \cup H' \cup \{x_4x'_4, x_8x'_8, x_4x'_8, x_8x'_4\}$ . The graphs  $\overline{H}$  and  $\overline{G}$  are depicted in Fig. 1

and Fig. 2, respectively. Then  $\overline{G}$  is a 2-connected planar graph with four 3-cycles, one 4-cycle, twelve 5-cycles, and without chordal-4-cycles and chordal-5-cycles. It is easy to show that  $\chi_{\ell}(\overline{G}) = \chi(\overline{G}) = 4$ .



Let  $\gamma$  denote the least integer k such that every planar graph G with  $c^*(G) \ge k$  is 3-choosable. The graph  $\overline{G}$  and Theorem 5 show that  $6 \le \gamma \le 10$ . We would like to propose the following conjecture which implies Steinberg's conjecture if established.

**Conjecture 6.**  $\gamma = 6$ .

## ACKNOWLEDGMENT

The author would like to thank the referee for his/her valuable suggestions to improve this work.

### REFERENCES

- 1. N. Alon and M. Tarsi, Colorings and orientations of graphs, *Combinatorica*, **12** (1992), 125-134.
- 2. O. V. Borodin, A generalization of Kotzig's theorem and prescribed edge coloring of planar graphs, *Math. Notes Acad. Sci. USSR*, **48** (1990), 1186-1190.
- 3. O. V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, *J. Graph Theory*, **21** (1996), 183-186.
- 4. O. V. Borodin, A. N. Glebov, A. Raspaud and M. R. Salavatipour, Planar graphs without cycles of length from 4 to 7 are 3-colorable, *J. Combin. Theory Ser. B*, **93** (2005), 303-311.
- 5. P. Erdös, A. L. Rubin and H. Taylor, Choosability in graphs, *Congr. Numer.*, 26 (1979), 125-157.
- T. R. Jensen and B. Toft, *Graph Coloring Problems*, Wiley Interscience, New York, 1995.
- 7. D. P. Sanders, On light edges and triangles in projective planar graphs, J. Graph Theory, **21** (1996), 335-342.

#### Wei-Fan Wang

- 8. D. P. Sanders and Y. Zhao, A note on the three color problem, *Graphs Combin.*, **11** (1995), 91-94.
- 9. C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B, 62 (1994), 180-181.
- 10. C. Thomassen, 3-list coloring planar graphs of girth 5, *J. Combin. Theory Ser. B*, **64** (1995), 101-107.
- 11. C. Thomassen, A short list coloring proof of Grötzsch's throrem, J. Combin. Theory Ser. B, 88 (2003), 189-192.
- 12. V. G. Vizing, Coloring the vertices of a graph in prescribed colors, *Metody Diskret*. *Anal.*, **19** (1976), 3-10. (in Russian)
- 13. M. Voigt, List colourings of planar graphs, Discrete Math., 120 (1993), 215-219.
- 14. M. Voigt, A not 3-choosable planar graph without 3-cycles, *Discrete Math.*, **146** (1995), 325-328.
- 15. W. Wang and K. Lih, The 4-choosability of planar graphs without 6-cycles, *Australas*. *J. Combin.*, **24** (2001), 157-164.
- 16. W. Wang and K. Lih, Choosability and edge choosability of planar graphs without five cycles, *Appl. Math. Lett.* **15** (2002), 561-565.
- 17. W. Wang and K. Lih, Choosability and edge choosability of planar graphs without intersecting triangles, *SIAM J. Discrete Math.*, **15** (2002), 538-545.

Wei-Fan Wang Department of Mathematics, Zhejiang Normal University, Zhejiang, Jinhua 321004, China E-mail: wwf@zjnu.cn