PLANAR GRAPHS THAT HAVE NO SHORT CYCLES WITH A CHORD ARE 3-CHOOSABLE

Wei-Fan Wang

Abstract

In this paper we prove that every planar graph G is 3-choosable if it contains no cycle of length at most 10 with a chord. This generalizes a result obtained by Borodin [J. Graph Theory 21(1996) 183-186] and Sanders and Zhao [Graphs Combin. 11(1995) 91-94], which says that every planar graph G without k-cycles for all $4 \leq k \leq 9$ is 3 -colorable.

1. Introduction

We only consider simple graphs in this paper unless otherwise stated. A plane graph is a particular drawing of a planar graph in the Euclidean plane. For a plane graph G, we denote its vertex set, edge set, face set, and minimum degree by $V(G), E(G), F(G)$, and $\delta(G)$, respectively. Let $d_{G}(x)$ (for short, $d(x)$) denote the degree of a vertex or a face x of G. We use $b(f)$ to denote the boundary of a face f, and write $f=\left[u_{1} u_{2} \cdots u_{n}\right]$ if $u_{1}, u_{2}, \ldots, u_{n}$ are its boundary vertices in a cyclic order. A vertex (or face) of degree k is called a k-vertex (or k-face). We say that two cycles or faces of a plane graph are adjacent if they share at least one common (boundary) edge. For a face $f \in F(G)$, let $F_{k}(f)$ denote the set of k-faces adjacent to $f, V_{i}(f)$ the set of i-vertices incident to f, and $V_{3}^{j}(f)$ the set of 3-vertices in $V_{3}(f)$ each of which is incident to at least one j-face. Let $V_{3}^{\prime}(f)=V_{3}(f) \backslash\left(V_{3}^{3}(f) \cup V_{3}^{4}(f) \cup V_{3}^{5}(f)\right)$. For a graph G and a cycle $C \subseteq G$, an edge $x y$ is called a chord of C if $x y \in E(G) \backslash E(C)$ but $x, y \in V(C) . C$ is a chordal-k-cycle if C is of length k and has a chord in G. Let $c^{*}(G)$ denote the maximum integer k such that G contains no chordal-l-cycles for all $l \leq k$. It is easy to see that $3 \leq c^{*}(G) \leq|V(G)|$ if G is a simple graph, and $c^{*}(G)<|V(G)|$ if $\delta(G) \geq 3$.

Received November 2, 2004, accepted January 25, 2006.
Communicated by Xuding Zhu.
2000 Mathematics Subject Classification: 05C15.
Key words and phrases: Planar graph, Chromatic number, Cycle.
Research supported partially by NNSF(No. 10471131) and ZJNSF(No. M103094, No. Y604167).

A coloring of a graph G is a mapping ϕ from $V(G)$ to the set of colors $\{1,2, \ldots, k\}$ such that $\phi(x) \neq \phi(y)$ for every edge $x y$ of G. The chromatic number $\chi(G)$ is the smallest integer k such that G has a proper coloring into the set $\{1,2, \ldots, k\}$. We say that L is an assignment for the graph G if it assigns a list $L(v)$ of possible colors to each vertex v of G. If G has a proper coloring ϕ such that $\phi(v) \in L(v)$ for all vertices v, then we say that G is L-colorable or ϕ is an L-coloring of G. The graph G is k-choosable if it is L-colorable for every assignment L satisfying $|L(v)|=k$ for all vertices v. The choice number or list chromatic number $\chi_{\ell}(G)$ of G is the smallest k such that G is k-choosable.

The concept of list coloring was introduced by Vizing [12] and independently by Erdoss, Rubin and Taylor [5]. All 2-choosable graphs are completely characterized in [5]. Thomassen [9] proved that every planar graph is 5-choosable, whereas Voigt [13] presented an example of a planar graph which is not 4-choosable. Thomassen [10, 11] showed that every planar graph of girth greater than or equal to 5 is 3 choosable. Voigt [14] further constructed a non-3-choosable planar graph of girth 4. Alon and Tarsi [1] proved that every planar bipartite graph is 3-choosable. Other results on list coloring planar graphs are referred to [15-17]. In this paper, we investigate the 3 -choosability of planar graphs G when $c^{*}(G)$ is sufficiently large.

2. Tructural Properties

The following lemma is an easy observation from the definition of $c^{*}(G)$.
Lemma 1. Let G be a 2-connected plane graph with $\delta(G) \geq 3$. If f and f^{\prime} are two adjacent faces, then $d(f)+d\left(f^{\prime}\right) \geq c^{*}(G)+3$.

A plane graph G is normal if it contains no vertex and face of degree less than 3. It was known [2, 7] that every normal plane graph contains an edge $x y$ such that $d(x)+d(y) \leq 13$.

Lemma 2. If G is a plane graph with $c^{*}(G) \geq 11$, then $\delta(G) \leq 2$.
Proof. Suppose to the contrary that $\delta(G) \geq 3$. Then G^{*}, the dual of G, contains no face of degree less than 3. Since G is simple, G^{*} further contains no vertex of degree less than 3. Thus, G^{*} is a normal plane graph. By the previous result, G^{*} contains an edge $x y$ such that $d_{G^{*}}(x)+d_{G^{*}}(y) \leq 13$. Let f_{x} and f_{y} denote the faces of G that correspond to x and y in G^{*}, respectively. Therefore, f_{x} is adjacent to f_{y} in G and $d_{G}\left(f_{x}\right)+d_{G}\left(f_{y}\right) \leq 13$. However, this contradicts Lemma 1 , which asserts that $d_{G}\left(f_{x}\right)+d_{G}\left(f_{y}\right) \geq c^{*}(G)+3 \geq 14$. This proves Lemma 2.

Lemma 2 is best possible in the sense that there exist plane graphs G having a cycle of length at most 11 with a chord such that $\delta(G) \geq 3$. Let H denote the
graph obtained from the dodecahedron by sawing all its corners off. It is easy to see that H is a 3 -regular plane graph containing cycles of length eleven with a chord.

For a fixed integer $N \geq 4$, it is easy to observe that if a graph G contains no k-cycles for all $4 \leq k \leq N$, then G contains no any cycle of length at most $N+1$ with a chord. This fact together Lemma 2 imply the following consequence.

Corollary 3. If G is a plane graph without k-cycles for all $4 \leq k \leq 10$, then $\delta(G) \leq 2$.

Lemma 4. If G is a plane graph with $\delta(G) \geq 3$ and $c^{*}(G)=10$, then G contains a cycle of length ten such that each of its vertices is of degree 3 in G.

Proof. Suppose that the lemma is false. Let G be a connected counterexample. If G is not 2-connected, choose an end-block B of G that contains exactly one cut vertex u of G. Then B is 2-connected, $c^{*}(B)=10, d_{B}(u) \geq 2$, and $d_{B}(x) \geq 3$ for all $x \in V(B) \backslash\{u\}$. Assume that u lies on the boundary of the infinite face of B, and let $v \neq u$ be a vertex of B lying on the infinite face. Take eleven copies $B_{1}, B_{2}, \cdots, B_{11}$ of B, and let u_{i} and v_{i} be the copies of u and v in B_{i}, respectively. Let H denote the graph constructed from $B_{1}, B_{2}, \cdots, B_{11}$ by identifying v_{11} with u_{1}, and v_{i} with u_{i+1} for $i=1,2, \cdots, 10$. It is easy to see that H is a 2 -connected plane graph with $\delta(H) \geq 3$ and $c^{*}(H)=10$ which contains no cycle of length ten with each vertex being of degree 3 in H. Hence H also is a counterexample to the lemma.

Thus we may now assume that G is 2-connected and hence all its facial walks are cycles. Using Euler's formula $|V(G)|-|E(G)|+|F(G)|=2$ and the relations $\sum_{v \in V(G)} d(v)=\sum_{f \in F(G)} d(f)=2|E(G)|$, we can derive the following identity.

$$
\begin{equation*}
\sum_{v \in V(G)}(d(v)-6)+\sum_{f \in F(G)}(2 d(f)-6)=-12 . \tag{1}
\end{equation*}
$$

Let w denote a weight function defined on $V(G) \cup F(G)$ by $w(v)=d(v)-6$ if $v \in V(G)$ and $w(f)=2 d(f)-6$ if $f \in F(G)$. We shall discharge the face weight $w(x)$ to its incident vertices while keeping the total sum fixed so that the new weight $w^{\prime}(x)$ is nonnegative for all $x \in V(G) \cup F(G)$. Hence

$$
0 \leq \sum_{x \in V(G) \cup F(G)} w^{\prime}(x)=\sum_{x \in V(G) \cup F(G)} w(x)=-12 .
$$

This is an obvious contradiction.
For a face f, let $m_{3}(f)=\left|F_{3}(f)\right|, n_{i}(f)=\left|V_{i}(f)\right|, n_{3}^{j}(f)=\left|V_{3}^{j}(f)\right|$, and $n_{3}^{\prime}(f)=\left|V_{3}^{\prime}(f)\right|$. Let $\alpha(f)=2 d(f)-6-\frac{3}{2} n_{3}^{3}(f)-\frac{5}{4} n_{3}^{4}(f)-\frac{11}{10} n_{3}^{5}(f)$, and
$\beta(f)=a(f) /\left(n_{3}^{\prime}(f)+n_{4}(f)+n_{5}(f)\right)$. With the aid of these notations, we define a discharging rule as follows.
(R) Every face f of degree at least 4 sends $\frac{3}{2}$ to each 3 -vertex in $V_{3}^{3}(f), \frac{5}{4}$ to each 3-vertex in $V_{3}^{4}(f)$, $\frac{11}{10}$ to each 3-vertex in $V_{3}^{5}(f)$, and $\beta(f)$ to each vertex in $V_{3}^{\prime}(f) \cup V_{4}(f) \cup V_{5}(f)$ provided $n_{3}^{\prime}(f)+n_{4}(f)+n_{5}(f)>0$.

Let $w^{\prime}(x)$ denote the new weight function for $x \in V(G) \cup F(G)$ once the discharging process is complete according to the rule (R). It remains to prove that $w^{\prime}(x) \geq 0$ for all $x \in V(G) \cup F(G)$.

Claim. Suppose that f is a face of degree at least 4. Then
(1) $\alpha(f) \geq 0$.
(2) $\beta(f) \geq \beta_{0}$, where $\beta_{0}=\frac{3}{2}$ if $d(f) \geq 12 ; \beta_{0}=1$ if $d(f)=11 ; \beta_{0}=\frac{w(f)}{d(f)}$ if $4 \leq d(f) \leq 9$; and $\beta_{0}=1$ if $d(f)=10$ with the following exceptions:
(2.1) $\beta(f)=\frac{1}{2}$ if $n_{3}^{3}(f)=n_{3}(f)=9$ and $n_{4}(f)+n_{5}(f)=1$;
(2.2) $\beta(f)=\frac{3}{4}$ if $n_{3}^{3}(f)=8, n_{3}^{4}(f)=1$ and $n_{4}(f)+n_{5}(f)=1$;

$$
\begin{equation*}
\beta(f)=\frac{9}{10} \text { if } n_{3}^{3}(f)=8, n_{3}^{5}(f)=1 \text { and } n_{4}(f)+n_{5}(f)=1 \tag{2.3}
\end{equation*}
$$

Remarks. For $1 \leq i \leq 3$, suppose that f_{i} is a 10 -face satisfying Condition (2.i). Then f_{i} is incident to the unique vertex v of degree more than 3 . And if $d(v)=4$, then f_{i} is adjacent to some $(i+2)$-face f^{*} such that $v \in b\left(f_{i}\right) \cap b\left(f^{*}\right)$. However, v is not incident to any 3 -face other than f^{*}.

Proof of the Claim. Let $T(f)=\frac{3}{2} n_{3}^{3}(f)+\frac{5}{4} n_{3}^{4}(f)+\frac{11}{10} n_{3}^{5}(f)+\beta_{0}\left(n_{3}^{\prime}(f)+\right.$ $\left.n_{4}(f)+n_{5}(f)\right)$. It suffices to check that $T(f) \leq w(f)$.

If $d(f) \geq 12$, then $\beta_{0}=\frac{3}{2}$ and $T(f)=\frac{3}{2} n_{3}^{3}(f)+\frac{5}{4} n_{3}^{4}(f)+\frac{11}{10} n_{3}^{5}(f)+\frac{3}{2}\left(n_{3}^{\prime}(f)+\right.$ $\left.n_{4}(f)+n_{5}(f)\right) \leq \frac{3}{2}\left(n_{3}(f)+n_{4}(f)+n_{5}(f)\right) \leq \frac{3}{2} d(f) \leq 2 d(f)-6=w(f)$.

Suppose that $d(f)=11$, then $w(f)=16$ and $\beta_{0}=1$. If $n_{3}(f) \leq 10$, then $T(f) \leq \frac{3}{2} n_{3}(f)+n_{4}(f)+n_{5}(f) \leq \frac{3}{2} n_{3}(f)+\left(11-n_{3}(f)\right)=11+\frac{1}{2} n_{3}(f) \leq$ $11+5=16$. Assume that $n_{3}(f)=11$. It is easy to derive that $m_{3}(f) \leq 5$. If $m_{3}(f) \leq 4$, then $n_{3}^{3}(f) \leq 8$, and hence $T(f) \leq 8 \cdot \frac{3}{2}+3 \cdot \frac{5}{4}=15 \frac{3}{4}$. If $m_{3}(f)=5$, then some 3 -vertex in $b(f)$ is not incident to any face of degree less than 6 by Lemma 1. This implies that $n_{3}^{3}(f)=10$ and $n_{3}^{\prime}(f)=1$, hence $T(f)=10 \cdot \frac{3}{2}+1=16$.

Suppose that $d(f)=9$. Then $\beta_{0}=(2 \cdot 9-6) / 9=\frac{4}{3}$. By Lemma 1, f is not adjacent to any 3 -face. Thus, $n_{3}^{3}(f)=0$, and $T(f) \leq \frac{5}{4} n_{3}^{4}(f)+\frac{11}{10} n_{3}^{5}(f)+$ $\frac{4}{3}\left(n_{3}^{\prime}(f)+n_{4}(f)+n_{5}(f)\right) \leq \frac{4}{3} d(f)=12=w(f)$.

Suppose that $d(f)=8$. Then $w(f)=10$ and $\beta_{0}=\frac{5}{4}$. It follows from Lemma 1 that f is not adjacent to any face of degree less than 5. Thus, $n_{3}^{3}(f)=n_{3}^{4}(f)=0$, and $T(f) \leq \frac{11}{10} n_{3}^{5}(f)+\frac{5}{4}\left(n_{3}^{\prime}(f)+n_{4}(f)+n_{5}(f)\right) \leq \frac{5}{4} d(f)=10$.

Suppose that $4 \leq d(f) \leq 7$. Then $\beta_{0}=w(f) / d(f)$. Lemma 1 asserts that f is not adjacent to any face of degree less than 6 . Thus, $n_{3}^{3}(f)=n_{3}^{4}(f)=n_{3}^{5}(f)=0$, and $T(f) \leq \beta_{0}\left(n_{3}^{\prime}(f)+n_{4}(f)+n_{5}(f)\right) \leq \frac{w(f)}{d(f)} \cdot d(f)=w(f)$.

Finally, suppose that $d(f)=10$. So, $w(f)=14$. Since G contains no a 10-cycle with each boundary vertex being of degree 3 , we know $n_{3}(f) \leq 9$. If $n_{3}(f) \leq 8$, then $T(f) \leq 8 \cdot \frac{3}{2}+2 \cdot 1=14$. Assume that $n_{3}(f)=9$. It follows that $n_{4}(f)+n_{5}(f) \leq 1$. If $n_{4}(f)+n_{5}(f)=0$, then $T(f) \leq 9 \cdot \frac{3}{2}=13.5$. So suppose that $n_{4}(f)+n_{5}(f)=1$. If $n_{3}^{3}(f) \leq 7$, then $T(f) \leq 7 \cdot \frac{3}{2}+2 \cdot \frac{5}{4}+1=14$. Assume that $n_{3}^{3}(f)=8$. If $n_{3}^{4}(f)=1$, then Case (2.2) holds and $T(f)=8 \cdot \frac{3}{2}+\frac{5}{4}+\frac{3}{4}=14$. If $n_{3}^{5}(f)=1$, then Case (2.3) holds and $T(f)=8 \cdot \frac{3}{2}+\frac{11}{10}+\frac{9}{10}=14$. If $n_{3}^{3}(f)=9$, then Case (2.1) holds and $T(f)=9 \cdot \frac{3}{2}+\frac{1}{2}=14$. This proves the Claim.

The statement (1) in the Claim implies that $w^{\prime}(f) \geq 0$ for all $f \in F(G)$ with $d(f) \geq 4$. If $d(f)=3$, then $w^{\prime}(f)=w(f)=0$.

Let $v \in V(G)$. Thus $d(v) \geq 3$ by $\delta(G) \geq 3$. If $d(v) \geq 6$, then $w^{\prime}(v)=w(v)=$ $d(v)-6 \geq 0$. Assume that $d(v)=5$, then $w(v)=-1$. By Lemma $1, v$ is incident to at most two 3-faces. Since each of the faces of degree at least 4 that are incident to v sends at least $\frac{1}{2}$ to v by the Claim, and hence $w^{\prime}(v) \geq-1+3 \cdot \frac{1}{2}=\frac{1}{2}$. Assume that $d(v)=3$, then $w(v)=-3$. Let f_{1}, f_{2}, f_{3} be the incident faces of v that satisfies $d\left(f_{1}\right) \leq d\left(f_{2}\right) \leq d\left(f_{3}\right)$. If $d\left(f_{1}\right)=3$, then $d\left(f_{i}\right) \geq 10$ by Lemma 1 and $\tau\left(f_{i} \rightarrow v\right)=\frac{3}{2}$ by (R) for $i=2,3$, thus $w^{\prime}(v) \geq-3+2 \cdot \frac{3}{2}=0$. If $d\left(f_{1}\right)=4$, then $\tau\left(f_{1} \rightarrow v\right) \geq \frac{1}{2}$ by the Claim. Since $d\left(f_{i}\right) \geq 9$ by Lemma 1 and $\tau\left(f_{i} \rightarrow v\right)=\frac{5}{4}$ by (R) for $i=2,3$, we have $w^{\prime}(v) \geq-3+\frac{1}{2}+2 \cdot \frac{5}{4}=0$. If $d\left(f_{1}\right)=5$, then $\tau\left(f_{1} \rightarrow v\right) \geq \frac{4}{5}$ by the Claim. Since $d\left(f_{i}\right) \geq 8$ by Lemma 1 and $\tau\left(f_{i} \rightarrow v\right) \geq \frac{11}{10}$ by (R) for $i=2,3$, we deduce $w^{\prime}(v) \geq-3+\frac{4}{5}+2 \cdot \frac{11}{10}=0$. Now assume $d\left(f_{i}\right) \geq 6$ for all $i=1,2,3$. It is easy to note that f_{i} doesn't satisfy (2.1), (2.2), and (2.3) and thus $\tau\left(f_{i} \rightarrow v\right) \geq 1$ by the Claim. It turns out that $w^{\prime}(v) \geq-3+3 \cdot 1=0$.

Suppose that $d(v)=4$ and so $w(v)=-2$. Let $f_{1}, f_{2}, f_{3}, f_{4}$ denote the incident faces of v in clockwise direction with $d\left(f_{1}\right)=\min _{1 \leq i \leq 4}\left\{d\left(f_{i}\right)\right\}$. If $d\left(f_{1}\right) \geq 4$, then each of the faces f_{i} 's sends at least $\frac{1}{2}$ to v by the Claim and therefore $w^{\prime}(v) \geq$ $-2+4 \cdot \frac{1}{2}=0$. So suppose that $d\left(f_{1}\right)=3$. By Lemma $1, d\left(f_{2}\right), d\left(f_{4}\right) \geq 10$. If $d\left(f_{3}\right)=3$, then it is easy to check that f_{i} for $i=2,4$ does not satisfy (2.1)(2.3) whenever $d\left(f_{i}\right)=10$. By the Claim, $\tau\left(f_{i} \rightarrow v\right) \geq 1$, and consequently $w^{\prime}(v) \geq-2+1+1=0$.

Now assume $d\left(f_{3}\right) \geq 4$. First we see $\tau\left(f_{3} \rightarrow v\right) \geq \frac{1}{2}$ by the Claim. If either $d\left(f_{2}\right) \geq 11$, or $d\left(f_{2}\right)=10$ and f_{2} does not satisfy (2.1)-(2.3), then $w^{\prime}(v) \geq$ $-2+2 \cdot \frac{1}{2}+1=0$. Otherwise, the above Remarks implies that f_{2} does not satisfy (2.2) and (2.3) because the 4 -vertex v is incident to the 3 -face f_{1}. Thus we may assume that $d\left(f_{2}\right)=10$ and f_{2} satisfies (2.1). Then $n_{3}^{3}\left(f_{2}\right)=n_{3}\left(f_{2}\right)=9$ and $n_{4}\left(f_{2}\right)=1$. Let $f_{2}=\left[x_{1} x_{2} \ldots x_{10}\right]$ such that $v=x_{1}, x_{1} x_{2} \in b\left(f_{1}\right) \cap b\left(f_{2}\right)$,
and $x_{10} x_{1} \in b\left(f_{3}\right) \cap b\left(f_{2}\right)$. There exists a 3-face $f^{*}=\left[x_{9} u x_{10}\right]$ adjacent to f_{3}. By Lemma $1, d\left(f_{3}\right) \geq 10$. If $d\left(f_{3}\right) \geq 11$, then we similarly have $w^{\prime}(v) \geq 0$. If $d\left(f_{3}\right)=10, f_{3}$ does not satisfy (2.1)-(2.3) since the unique 4-vertex v is not on the common boundary of f_{3} and some face of degree at most 5 . We also derive that $w^{\prime}(v) \geq 0$.

3. 3-Choosability

In this section, we are ready to prove our main result. Every subgraph H of a planar graph G with $c^{*}(G) \geq 10$ is also a planar graph with $c^{*}(H) \geq 10$. Every subgraph of a list k-colorable graph is also list k-colorable. These straightforward facts are essential in carrying out the induction in the following proof.

Theorem 5. Every plane graph G with $c^{*}(G) \geq 10$ is 3-choosable.
Proof. We use induction on the vertex number $|V(G)|$. If $|V(G)| \leq 4$, the theorem is trivially true. Let G be a planar graph with $c^{*}(G) \geq 10$ and $|V(G)| \geq 5$. Let L denote an assignment for G such that $|L(v)|=3$ for all $v \in V(G)$. If $\delta(G) \leq 2$, let u be a vertex of minimum degree in G. By the induction hypothesis, $G-u$ is L-colorable. Obviously, we can extend any L-coloring of $G-u$ into an L-coloring of G. If $\delta(G) \geq 3$, then $c^{*}(G)=10$ by Lemma 2. Further, G contains a 10-cycle C such that each of its vertices is of degree 3 in G by Lemma 4. Since $c^{*}(G)=10, C$ is chordless in G. Thus, for every $x \in V(C)$, there exists a vertex $\bar{x} \in V(G) \backslash V(C)$ adjacent to x in G. By the induction hypothesis, $G-V(C)$ has an L-coloring ϕ. We define an assignment $L^{\prime}(x)=L(x) \backslash\{\phi(\bar{x})\}$ for every $x \in V(C)$. It is easy to see that $\left|L^{\prime}(x)\right| \geq|L(x)|-1=3-1=2$. Thus C is L^{\prime}-colorable. Consequently, G is 3 -choosable. This proves Theorem 5.

Steinberg ([6], p. 42) conjectured that every planar graph without 4- and 5-cycles is 3-colorable. This conjecture still remains open. Borodin [3], and independently Sanders and Zhao [8], proved that every planar graph without k-cycles for all $4 \leq k \leq 9$ is 3 -colorable. Actually their result is an immediate corollary of our Theorem 5. The best known partial result on Steinberg's conjecture was obtained recently by Borodin et al.[4], where 9 is replaced by 7 .

Remarks. Steinberg's conjecture cannot be extended to the chordal-cycle-free situation. Namely, a planar graph G without chordal- k-cycles for $4 \leq k \leq 5$ may not be 3-colorable. To construct such an example, let \bar{H} be the plane graph obtained by adding the edges $x_{1} x_{3}, x_{2} x_{6}, x_{5} x_{7}$ to a 8 -cycle $x_{1} x_{2} \cdots x_{8} x_{1}$. Take a copy H^{\prime} of \bar{H} and let x_{i}^{\prime} be the copy of x_{i} in H^{\prime} for all $i=1,2, \cdots, 8$. Define the graph $\bar{G}=\bar{H} \cup H^{\prime} \cup\left\{x_{4} x_{4}^{\prime}, x_{8} x_{8}^{\prime}, x_{4} x_{8}^{\prime}, x_{8} x_{4}^{\prime}\right\}$. The graphs \bar{H} and \bar{G} are depicted in Fig. 1
and Fig. 2, respectively. Then \bar{G} is a 2-connected planar graph with four 3-cycles, one 4 -cycle, twelve 5 -cycles, and without chordal-4-cycles and chordal- 5 -cycles. It is easy to show that $\chi_{\ell}(\bar{G})=\chi(\bar{G})=4$.

Fig. 1. The graph \bar{H}

Fig. 2. The graph \bar{G}

Let γ denote the least integer k such that every planar graph G with $c^{*}(G) \geq k$ is 3-choosable. The graph \bar{G} and Theorem 5 show that $6 \leq \gamma \leq 10$. We would like to propose the following conjecture which implies Steinberg's conjecture if established.

Conjecture 6. $\gamma=6$.

Acknowledgment

The author would like to thank the referee for his/her valuable suggestions to improve this work.

References

1. N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica, 12 (1992), 125-134.
2. O. V. Borodin, A generalization of Kotzig's theorem and prescribed edge coloring of planar graphs, Math. Notes Acad. Sci. USSR, 48 (1990), 1186-1190.
3. O. V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory, 21 (1996), 183-186.
4. O. V. Borodin, A. N. Glebov, A. Raspaud and M. R. Salavatipour, Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B, 93 (2005), 303-311.
5. P. Erdös, A. L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer., 26 (1979), 125-157.
6. T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley Interscience, New York, 1995.
7. D. P. Sanders, On light edges and triangles in projective planar graphs, J. Graph Theory, 21 (1996), 335-342.
8. D. P. Sanders and Y. Zhao, A note on the three color problem, Graphs Combin., 11 (1995), 91-94.
9. C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B, 62 (1994), 180-181.
10. C. Thomassen, 3-list coloring planar graphs of girth 5, J. Combin. Theory Ser. B, 64 (1995), 101-107.
11. C. Thomassen, A short list coloring proof of Grötzsch's throrem, J. Combin. Theory Ser. B, 88 (2003), 189-192.
12. V. G. Vizing, Coloring the vertices of a graph in prescribed colors, Metody Diskret. Anal., 19 (1976), 3-10. (in Russian)
13. M. Voigt, List colourings of planar graphs, Discrete Math., 120 (1993), 215-219.
14. M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math., 146 (1995), 325-328.
15. W. Wang and K. Lih, The 4-choosability of planar graphs without 6-cycles, Australas. J. Combin., 24 (2001), 157-164.
16. W. Wang and K. Lih, Choosability and edge choosability of planar graphs without five cycles, Appl. Math. Lett. 15 (2002), 561-565.
17. W. Wang and K. Lih, Choosability and edge choosability of planar graphs without intersecting triangles, SIAM J. Discrete Math., 15 (2002), 538-545.

Wei-Fan Wang
Department of Mathematics, Zhejiang Normal University, Zhejiang, Jinhua 321004, China E-mail: wwf@zjnu.cn

