ON THE MULTIPLIERS OF THE INTERSECTION OF WEIGHTED FUNCTION SPACES

Serap Öztop

Abstract

In this paper we are interested in the problem of multipliers for the intersection of weighted $L^{p}(G)$-spaces. We prove theorem by the different characterization of multipliers, which include the results of Murthy and Unni(1973) as particular case.

1. Introduction

Let $\left(A,\|\cdot\|_{A}\right)$ be a Banach algebra, a Banach space $\left(V,\|\cdot\|_{V}\right)$ is called a Banach A-module, if V is a module in the algebraic sense satisfying $\|a v\|_{V} \leq\|a\|_{A}\|v\|_{V}$ for all $a \in A$ and $v \in V$. A Banach A-module is called essential if the closed linear span of $A V$ coincides vith V. If the Banach algebra $\left(A,\|\cdot\|_{A}\right)$ contains a bounded approximate identity, i.e., a bounded net $\left(e_{\alpha}\right)_{\alpha \in I}$ such that $\lim _{\alpha}\left\|e_{\alpha} a-a\right\|_{A}=0$ for all $a \in A$ then a Banach A-module V is an essential one, by Cohen's factorization theorem, if and only if $\lim _{\alpha}\left\|e_{\alpha} v-v\right\|_{V}=0$ for all $v \in V$ (Doran-Wichmann, [3]), (Hewitt-Ross, [7]).

Let V and W be a Banach A-module then $H o m_{A}(V, W)$ denotes the Banach space of all continuous A-module homomorphisms from V to W with the operator norm. The elements of $\operatorname{Hom}_{A}(V, W)$ are traditionally called multipliers from V to W.

Let $V \otimes_{\pi} W$ denote the projective tensor product of V and W as Banach space for the norm $\|v \times w\|=\inf \left\{\sum_{i=1}^{\infty}\left\|v_{i}\right\|_{V}\left\|w_{i}\right\|_{W} \mid v \times w=\sum_{i=1}^{\infty} v_{i} \otimes w_{i}\right\}$. (DunfordSchwartz, [4]), (Grothendieck, [6]), (Bonsall-Duncan, [1]), (Schatten, [14]), (Rieffel, [13]). Then the Banach algebra of all bounded operators from V to W^{*}, the dual of W, denoted by $B\left(V, W^{*}\right)$ identifies with the dual space $V \otimes_{\pi} W$ and naturally, if A is a subalgebra of $B\left(V, W^{*}\right)$, then

[^0]\[

$$
\begin{equation*}
\operatorname{Hom}_{A}(V, W) \cong\left(V \otimes_{\pi} W / A\right)^{*}=\left(V \otimes_{A} W\right)^{*} . \tag{1.1}
\end{equation*}
$$

\]

Let G be a locally compact abelian group with Haar measure $d x$ and ω be a non negative continuous function on $G, L_{\omega}^{p}(G)=\left\{f \mid f \omega \in L^{p}(G)\right\}$ denote the Banach space under the natural norm $\|f\|=\|f \omega\|_{p, \omega}, 1 \leq p \leq \infty$. Then its dual space is $L_{\omega^{-1}}^{p^{\prime}}(G)$ where $\frac{1}{p}+\frac{1}{p^{\prime}}=1,1 \leq p<\infty$. Moreover if $1<p<\infty, L_{\omega}^{p}(G)$ is a reflexive Banach space. $C_{\infty, \omega}(G)$ denotes a Banach subspace of $L_{\omega}^{\infty}(G)$ such that $f \omega \in C_{0}(G)$, the space of all continuous, complex valued functions on G which vanish at infinity. $C_{C}(G)$ is the space of all continuous functions on G with compact support.

Let $1<p_{1}, p_{2}<\infty, S\left(p_{1}, p_{2}, \omega\right)$ be the set of all (classes of) measurable, complex valued functions g which can be written as

$$
g=g_{1}+g_{2} w i t h\left(g_{1}, g_{2}\right) \in L_{\omega}^{p_{1}}(G) \times L_{\omega}^{p_{2}}(G)
$$

We define a norm on $S\left(p_{1}, p_{2}, \omega\right)$ by

$$
\|g\|_{S}=\inf \left\{\left\|g_{1}\right\|_{p_{1}, \omega}+\left\|g_{2}\right\|_{p_{2}, \omega}\right\}
$$

where the infimum is taken over all such decompositions of $g . S\left(p_{1}, p_{2}, \omega\right)$ is a Banach space under this norm.

Similarly, if $D\left(p_{1}, p_{2}, \omega\right)$ denotes the set of all (classes of) measurable, complex valued functions defined on G which are in $L_{\omega}^{p_{1}}(G) \cap L_{\omega}^{p_{2}}(G)$, we introduce a norm by

$$
\|f\|_{D}=\max \left(\|f\|_{p_{1}, \omega},\|f\|_{p_{2}, \omega}\right)
$$

Then $D\left(p_{1}, p_{2}, \omega\right)$ is also a Banach under this norm.
If ω is a weight function, i.e., a continuous function satisfying $\omega(x) \geq 1$, $\omega(x+y) \leq \omega(x) \omega(y)$ for all $x, y \in G$. Then the space $L_{\omega}^{1}(G)$ is a Banach algebra with respect to convolution. It is called a Beurling algebra (Reiter, [12]). It follows that $L_{\omega}^{p}(G)$ is an essential Banach $L_{\omega}^{1}(G)$-module.

It is not hard to prove that $D\left(p_{1}, p_{2}, \omega\right)$ and $S\left(p_{1}, p_{2}, \omega\right)$ are reflexive Banach $L_{\omega}^{1}(G)$-modules and the following duality relations hold:

$$
\begin{gathered}
D\left(p_{1}, p_{2}, \omega\right)^{*} \cong S\left(p_{1}^{\prime}, p_{2}^{\prime}, \omega^{-1}\right) \\
D\left(p_{1}, p_{2}, \omega^{-1}\right)^{*} \cong S\left(p_{1}^{\prime}, p_{2}^{\prime}, \omega\right)
\end{gathered}
$$

where $\frac{1}{p_{i}}+\frac{1}{p_{i}^{\prime}}=1,(i=1,2)$, (Murthy-Unni, [11]), (Liu-Wang, [9]), (Liu-Rooij [10]).

So, if the relation (1.1) applied to the $L_{\omega}^{p}(G)$ becomes

$$
\operatorname{Hom}_{L_{\omega}^{1}(G)}\left(L_{\omega}^{p}(G), L_{\omega^{-1}}^{q^{\prime}}(G)\right) \cong\left(L_{\omega}^{p}(G) \otimes_{L_{\omega}^{1}(G)} L_{\omega}^{q}(G)\right)^{*}
$$

for $1 \leq p \leq \infty$ and $1 \leq q<\infty$.
We remark that the relation (1.1) does not immediately apply to the case of $\operatorname{Hom}_{L_{\omega}^{1}(G)}\left(L_{\omega}^{p}(G), L_{\omega}^{1}(G)\right)$, since $L_{\omega}^{1}(G)$ is not a dual space. (Gaudry, [5]) showed that $\operatorname{Hom}_{L_{\omega}^{1}(G)}\left(L_{\omega}^{1}(G), L_{\omega}^{1}(G)\right) \cong M(\omega)$,the space of Radon measure μ on G for which $\|\mu\|_{\omega}<\infty$. However, when $p=q=\infty$, using the similar approach of (Larsen, [8]), we get the following proposition. We shall denote by $L_{\omega^{-1}}^{\infty, w}(G)$ the space $L_{\omega^{-1}}^{\infty}(G)$ considered with the weak* topology induced by elements of $L_{\omega}^{1}(G)$.

Proposition 1.1. Let G be a locally compact abelian group and suppose $T: L_{\omega^{-1}}^{\infty, w}(G) \rightarrow L_{\omega^{-1}}^{\infty, w}(G)$ is a linear transformation. Then the following are equivalent
(1) $T \in M\left(L_{\omega^{-1}}^{\infty, w}(G), L_{\omega^{-1}}^{\infty, w}(G)\right)$,
(2) There exists a unique $\mu \in M(\omega)$ such that $T f=\mu * f$ for each $f \in L_{\omega^{-1}}^{\infty, w}(G)$.

It is well known that if G is non-compact and $p>q$ then $M\left(L^{p}, L^{q}\right)=\{0\}$, for the weighted L^{p} spaces we can assume hereafter that $p_{i}>1$ and $q_{i}>1,(i=1,2)$ with $p_{i} \leq q_{i}$.

In section 2, the function space $\Lambda_{S}^{D}(G)$ is defined as in (Rieffel, [13]) and the basic properties are studied. In section 3 and 4 the multipliers spaces $\operatorname{Hom}_{L_{\omega}^{1}(G)}\left(L_{\omega}^{p_{1}}\right.$ $\left.(G) \cap L_{\omega}^{p_{2}}(G), L_{\omega}^{q_{1}}(G) \cap L_{\omega}^{q_{2}}(G)\right)$ and $\operatorname{Hom}_{L_{\omega}^{1}(G)}\left(L_{\omega}^{1}(G), \Lambda_{S}^{D}(G)\right)$ are also considered.

2. The Space $\Lambda_{S}^{D}(G)$ and Some Properties

Throughout this section we will assume that G is a locally compact abelian group and ω is a symmetric weight function on G.

Proposition 2.1. If $1<p, q^{\prime}<\infty, \frac{1}{p}+\frac{1}{q^{\prime}}=\frac{1}{r}+1$ and $\frac{1}{p}+\frac{1}{q^{\prime}} \geq 1$ then $L_{\omega}^{p}(G) * L_{\omega^{-1}}^{q^{\prime}}(G) \subset L_{\omega^{-1}}^{r}(G)$

Proposition 2.2. If $1<p_{i}, q_{i}^{\prime}<\infty, \frac{1}{p_{i}}+\frac{1}{q_{i}^{\prime}}=\frac{1}{r_{i}}+1$ and $\frac{1}{p_{i}}+\frac{1}{q_{i}^{\prime}} \geq 1(i=1,2)$ then $f * g \in S\left(r_{1}, r_{2}, \omega^{-1}\right)$ for any $f \in D\left(p_{1}, p_{2}, \omega\right), g \in S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)$ and

$$
\|f * g\|_{S} \leq\|f\|_{D}\|g\|_{S}
$$

Proof. For each $f \in D\left(p_{1}, p_{2}, \omega\right)$ and $g \in S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right), g=g_{1}+g_{2}$, where $g_{1} \in L_{\omega_{1}^{-1}}^{q_{1}^{\prime}}(G), g_{2} \in L_{\omega^{-1}}^{q_{2}^{\prime}}(G)$, from Proposition 2.1, $f * g_{1} \in L_{\omega^{-1}}^{r_{1}}(G)$, $f * g_{2} \in L_{\omega^{-1}}^{r_{2}}(G)$ and so,

$$
\|f * g\|_{S} \leq\|f\|_{D}\|g\|_{S}
$$

In view of Proposition 2.2 we can define a bilinear map b from $D\left(p_{1}, p_{2}, \omega\right) \times$ $S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)$ into $S\left(r_{1}, r_{2}, \omega^{-1}\right),\left(p_{i} \neq q_{i}\right)$ or $S\left(\infty, \infty, \omega^{-1}\right),\left(p_{i}=q_{i}\right)$ by

$$
b(f, g)=f^{\sim} * g \quad f \in D\left(p_{1}, p_{2}, \omega\right), g \in S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)
$$

where $f^{\sim}(x)=f(-x)$. It is easy to see $\|b\| \leq 1$. The b lifts to a linear map B from $D\left(p_{1}, p_{2}, \omega\right) \otimes_{\gamma} S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)$ into $S\left(r_{1}, r_{2}, \omega^{-1}\right)$ or $S\left(\infty, \infty, \omega^{-1}\right)$ and $\|B\| \leq 1$ by Theorem 6 in (Bonsall-Duncan, [1]).

Definition 2.2. The range of B,with the quotient norm, will be denoted by $\Lambda_{S}^{D}(G)$.

Thus $\Lambda_{S}^{D}(G)$ is a Banach space of functions on G which can be viewed as a subspace of $S\left(r_{1}, r_{2}, \omega^{-1}\right)$ or $S\left(\infty, \infty, \omega^{-1}\right)$ and every element h of $\Lambda_{S}^{D}(G)$ has at least one expansion of the form

$$
h=\sum_{i=1}^{\infty} f_{i}^{\sim} * g_{i},
$$

where $f_{i} \in D\left(p_{1}, p_{2}, \omega\right), g_{i} \in S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)$, and $\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{D}\left\|g_{i}\right\|_{S}<\infty$,
with the expansion converging in the norm of $S\left(r_{1}, r_{2}, \omega^{-1}\right)$ or $S\left(\infty, \infty, \omega^{-1}\right)$. Furthermore the norm on $\Lambda_{S}^{D}(G)$ will be denoted by $\|\cdot\|_{\Lambda_{S}^{D}}$.

Proposition 2.3. $D\left(p_{1}, p_{2}, \omega\right)$ and $S\left(p_{1}, p_{2}, \omega\right)$ are an essential Banach $L_{\omega}^{1}(G)$ modules.

Proposition 2.4. $\Lambda_{S}^{D}(G)$ is an essential Banach $L_{\omega}^{1}(G)$-module.
Proof. It is easy to prove that $\Lambda_{S}^{D}(G)$ is a Banach $L_{\omega}^{1}(G)-\operatorname{module}$.Let $\left(e_{\alpha}\right)_{\alpha \in I}$ be an approximate identity bounded in $L_{\omega}^{1}(G)$ it is also an approximate identity in $D\left(p_{1}, p_{2}, \omega\right)$ from Proposition 2.3. Assume that $\left\|e_{\alpha}\right\|_{1, \omega} \leq K$ for all $\alpha \in I$. Let $h \in \Lambda_{S}^{D}(G)$ be given; we get

$$
h=\sum_{i=1}^{\infty} f_{i}^{\sim} * g_{i}, f_{i} \in D\left(p_{1}, p_{2}, \omega\right), g_{i} \in S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)
$$

where $\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{D}\left\|g_{i}\right\|_{S}<\infty$. Hence we have

$$
\left\|h-e_{\alpha} * h\right\|_{\Lambda_{S}^{D}(G)}=\left\|\sum_{i=1}^{\infty}\left(f_{i}^{\sim}-e_{\alpha} * f_{i}^{\sim}\right) * g_{i}\right\|_{\Lambda_{S}^{D}(G)} \leq \sum_{i=1}^{\infty}\left\|f_{i}^{\sim}-e_{\alpha} * f_{i}^{\sim}\right\|_{D}\left\|g_{i}\right\|_{S}
$$

and also we obtain

$$
\lim _{\alpha \in I}\left\|h-e_{\alpha} * h\right\|_{\Lambda_{S}^{D}(G)}=0 .
$$

Consequently, by Corollary 15.3 in (Doran-Wichmann, [3]), we get

$$
\left(\Lambda_{S}^{D}(G)\right)_{e}=\Lambda_{S}^{D}(G) .
$$

3. Multipliers from $D\left(p_{1}, p_{2}, \omega\right)$ To $D\left(q_{1}, q_{2}, \omega\right)$

In this section, we will extend Theorem 2 in (Murthy-Unni, [11]) as a multipliers of from $D\left(p_{1}, p_{2}, \omega\right)$ to $D\left(q_{1}, q_{2}, \omega\right)$ by using the method in (Rieffel, [13]). Let us mention that we assume $\omega_{1}=\omega_{2}$ to simplify our proof and let us recall that (Murthy-Unni, [11]) defines the space $\tau\left(p_{1}, \omega_{1}, p_{2}, \omega_{2}\right)$ to be the set of all functions u which can be written in the form

$$
u=\sum_{j=1}^{\infty} f_{j} * g_{j}
$$

where $f_{j} \in C_{c}(G) \subset D\left(p_{1}, \omega_{1}, p_{2}, \omega_{2}\right)$ and $g_{j} \in S\left(p_{1}^{\prime}, \omega_{1}^{-1}, p_{2}^{\prime}, \omega_{2}^{-1}\right)$ with $\sum_{j=1}^{\infty}\left\|f_{j}\right\|_{D}$ $\left\|g_{j}\right\|_{S}<\infty$ and they prove that the space of multipliers $M\left(D\left(p_{1}, \omega_{1}, p_{2}, \omega_{2}\right)\right)$ is isometrically isomorphic to $\tau\left(p_{1}, \omega_{1}, p_{2}, \omega_{2}\right)^{*}$, the conjugate space of $\tau\left(p_{1}, \omega_{1}, p_{2}, \omega_{2}\right)$.

Since following (Rieffel, [13]) we get a general theorem. We start by recalling the following definition.

Definition 3.1. Let K be the closed linear subspace of $D\left(p_{1}, p_{2}, \omega\right) \otimes_{L_{\omega}^{1}}$ $S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)$ which is spanned by all elements of the form

$$
(\varphi * f) \otimes g-f \otimes\left(\varphi^{\sim} * g\right)
$$

where $f \in D\left(p_{1}, p_{2}, \omega\right), g \in S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)$ and $\varphi \in L_{\omega}^{1}(G)$. Then the Banach $L_{\omega}^{1}(G)$-module tensor product $D\left(p_{1}, p_{2}, \omega\right) \otimes_{L_{\omega}^{1}} S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)$ is defined to be the quotient Banach space

$$
D\left(p_{1}, p_{2}, \omega\right) \otimes_{L_{\omega}^{1}} S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)=D\left(p_{1}, p_{2}, \omega\right) \otimes_{\gamma} S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right) / K
$$

Lemma 3.2. Let G be locally a compact abelian group and $1<p_{i}, q_{i}^{\prime}<\infty$, $\frac{1}{p_{i}}+\frac{1}{q_{i}^{\prime}} \geq 1,(i=1,2)$. Given any $\varphi \in C_{c}(G)$ define T_{φ} by $T_{\varphi}(f)=f * \varphi$. Then $T_{\varphi} \in \operatorname{Hom}_{L_{\omega}^{1}}\left(D\left(p_{1}, p_{2}, \omega\right), D\left(q_{1}, q_{2}, \omega\right)\right)$ and the inequality

$$
\left\|T_{\varphi}\right\| \leq\|\varphi\|_{1, \omega}^{\frac{p_{1}}{q_{1}}}\|\varphi\|_{p_{1}^{\prime}, \omega}^{1-\frac{p_{1}}{q_{1}}}
$$

or the inequality

$$
\left\|T_{\varphi}\right\| \leq\|\varphi\|_{1, \omega}^{\frac{p_{2}}{q_{2}}}\|\varphi\|_{p_{2}^{\prime}, \omega}^{1-\frac{p_{2}}{q_{2}}}
$$

is satisfied.
Proof. Since $C_{c}(G) \subset L_{\omega}^{p}(G)$ for all p and ω, using the Proposition 2.1, Proposition 2.2 and Riesz-Thorin's interpolation theorem, it is obtained.

Definition 3.3. Let G be a locally compact abelian group. If every element of $\operatorname{Hom}_{L_{\omega}^{1}}\left(D\left(p_{1}, p_{2}, \omega\right), D\left(q_{1}, q_{2}, \omega\right)\right)$ can be approximated in the ultraweak operator topology by operators of the form $T_{\varphi}, \varphi \in C_{c}(G)$ then G is called to satisfy property $P_{q_{1}, q_{2}, \omega}^{p_{1}, p_{2}, \omega}$.

Theorem 3.4. Let G be a locally compact abelian group. If $1<p_{i}^{\prime}, q_{i}<\infty$, $\frac{1}{p_{i}}+\frac{1}{q_{i}^{\prime}}=\frac{1}{r_{i}}+1$ and $\frac{1}{p_{i}}+\frac{1}{q_{i}^{\prime}} \geq 1(i=1,2)$ then G satisfies property $P_{q_{1}, q_{2}, \omega}^{p_{1}, p_{2}, \omega}$ if and only if the kernel of B is K and the space $D\left(p_{1}, p_{2}, \omega\right) \otimes_{L_{\omega}^{1}} S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)$ is isometrically isomorphic to the space $\Lambda_{S}^{D}(G)$.

Proof. Suppose that G satisfies property $P_{q_{1}, q_{2}, \omega}^{p_{1,}, p_{2},}$. It is easy to see that $K \subset$ $\operatorname{Ker} B$. To show that $\operatorname{Ker} B \subset K$ it is suffices to show $K^{\perp} \subset(\operatorname{Ker} B)^{\perp}$. Let $F \in K^{\perp}$ be given. From the isometric isomorphism

$$
K^{\perp} \cong\left(D\left(p_{1}, p_{2}, \omega\right) \otimes_{L_{\omega}^{1}} S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)\right)^{*} \cong \operatorname{Hom}_{L_{\omega}^{1}}\left(D\left(p_{1}, p_{2}, \omega\right), D\left(q_{1}, q_{2}, \omega\right)\right)
$$

there is a multiplier $T \in \operatorname{Hom}_{L_{\omega}^{1}}\left(D\left(p_{1}, p_{2}, \omega\right), D\left(q_{1}, q_{2}, \omega\right)\right)$ corresponding F such that

$$
\begin{equation*}
<t, F>=\sum_{i=1}^{\infty}<g_{i}, T f_{i}> \tag{3.1}
\end{equation*}
$$

where $t \in \operatorname{Ker} B, t=\sum_{i=1}^{\infty} f_{i} \otimes g_{i}$ and $\sum_{i=1}^{\infty}\left\|f_{i}\right\|_{D}\left\|g_{i}\right\|_{S}<\infty$. We wish to show that $\sum_{i=1}^{\infty}<g_{i}, T f_{i}>=0$, since G satisfies property $P_{q_{1}, q_{2}, \omega}^{p_{1}, p_{2}, \omega}$ there is a net $\left(\varphi_{j}\right)$, of
elements $C_{c}(G)$ such that the operators $T_{\varphi_{j}}$ defined in Lemma 3.2 converge T in the ultraweak operator topology.

$$
\begin{equation*}
\lim _{j} \sum_{i=1}^{\infty}<g_{i}, T_{\varphi_{j}} f_{i}>=\sum_{i=1}^{\infty}<g_{i}, T f_{i}> \tag{3.2}
\end{equation*}
$$

Thus to prove it suffices to show that

$$
\begin{equation*}
\sum_{i=1}^{\infty}<g_{i}, f_{i} * \varphi_{j}>=0 \tag{3.3}
\end{equation*}
$$

for each j. On the other hand, we have

$$
\begin{equation*}
\sum_{i=1}^{\infty}<g_{i}, f_{i} * \varphi_{j}>=<\sum_{i=1}^{\infty} f_{i}^{\sim} * g_{i}, \varphi_{j}>=0 \tag{3.4}
\end{equation*}
$$

Hence from (3.2) and (3.4) we get $F \in(\operatorname{Ker} B)^{\perp}$ and also using the following

$$
B^{-} \text {isomorphism such that } B^{-} \circ \Phi=B
$$

$$
\begin{gathered}
\left(D\left(p_{1}, p_{2}, \omega\right) \otimes_{L_{\omega}^{1}} S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)\right) \rightarrow^{B} \Lambda_{S}^{D}(G) \rightarrow^{i} S\left(r_{1}, r_{2}, \omega^{-1}\right) \\
\Phi \underset{\nearrow}{ } B^{-} \\
\left(D\left(p_{1}, p_{2}, \omega\right) \otimes_{\gamma} S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)\right) / \operatorname{Ker} B
\end{gathered}
$$

we have $\left(D\left(p_{1}, p_{2}, \omega\right) \otimes_{L_{\omega}^{1}} S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)\right) \cong \Lambda_{S}^{D}(G)$.
Suppose conversely that $\operatorname{Ker} B=K$. We will show that the set $N=\left\{T_{\varphi} \mid\right.$ $\left.\varphi \in C_{C}(G)\right\}$ is everywhere dense in $\operatorname{Hom}_{L_{\omega}^{1}}\left(D\left(p_{1}, p_{2}, \omega\right), D\left(q_{1}, q_{2}, \omega\right)\right)$ in the ultraweak operator topology. It is sufficient to show that the set of the linear functionals which corresponds to the operators T_{φ}, denoted by M, is everywhere dense in $\left(D\left(p_{1}, p_{2}, \omega\right) \otimes_{L_{\omega}^{1}} S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)\right)^{*}$ in the weak ${ }^{*}$ topology.

But to show this it is sufficient to prove that $M^{\perp}=\operatorname{Ker} B$. Since $\left(D\left(p_{1}, p_{2}, \omega\right)\right.$ $\left.\otimes_{L_{\omega}^{1}} S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)\right)^{*} \cong(\operatorname{Ker} B)^{\perp}$ then $<t, F>=0$ for all $t \in \operatorname{Ker} B$ and $F \in M$. Thus $T \in M^{\perp}$. That means $\operatorname{Ker} B \subset M^{\perp}$. Conversely for every $t \in M^{\perp}$ and $F \in M$ we have $<t, F>=0$. Using (3.4) and Hann-Banach theorem we find that $\sum_{i=1}^{\infty} f_{i}^{\sim} * g_{i}=0$. Therefore $M^{\perp} \subset \operatorname{Ker} B$. This completes the proof.

Corollary 3.5 Let G be a locally compact abelian group and $1<p_{i}, q_{i}^{\prime}<\infty$, $\frac{1}{p_{i}}+\frac{1}{q_{i}^{\prime}}=\frac{1}{r_{i}}+1, \frac{1}{p_{i}}+\frac{1}{q_{i}^{\prime}} \geq 1,(i=1,2)$. If G satisfies property $P_{q_{1}, q_{2}, \omega}^{p_{1}, p_{2}, \omega}$ then we have the identification

$$
\operatorname{Hom}_{L_{\omega}^{1}}\left(D\left(p_{1}, p_{2}, \omega\right), D\left(q_{1}, q_{2}, \omega\right)\right) \cong \Lambda_{S}^{D}(G)^{*}
$$

4. Multipliers from $L_{\omega}^{1}(G)$ To $\Lambda_{S}^{D}(G)$

Proposition 4.1. Let G be a locally compact abelian group. $\operatorname{Hom}_{L_{\omega}^{1}}\left(L_{\omega}^{1}(G)\right.$, $\left.\Lambda_{S}^{D}(G)\right)$ is an essential Banach module over $L_{\omega}^{1}(G)$.

Proof. It is easy to see that $\left(\operatorname{Hom}_{L_{\omega}^{1}}\left(L_{\omega}^{1}(G), \Lambda_{S}^{D}(G)\right)\right.$ is a $L_{\omega}^{1}(G)$-Banach module, defined by $(f T)(g)=T(f * g)$, for all $f \in L_{\omega}^{1}(G)$ and $T \in\left(\operatorname{Hom}_{L_{\omega}^{1}}\left(L_{\omega}^{1}\right.\right.$ $\left.(G), \Lambda_{S}^{D}(G)\right)$. On the other hand take $\left(e_{\alpha}\right)_{\alpha \in I}$ bounded approximate identity in $L_{\omega}^{1}(G)$. For every $T \in\left(\operatorname{Hom}_{L_{\omega}^{1}}\left(L_{\omega}^{1}(G), \Lambda_{S}^{D}(G)\right)\right.$ we obtain

$$
\begin{aligned}
\left\|e_{\alpha} T-T\right\| & =\sup _{\|f\|_{1 . \omega}=1}\left\|\left(e_{\alpha} T-T\right)(f)\right\|_{\Lambda_{S}^{D}(G)} \\
& =\sup _{\|f\|_{1 . \omega}=1}\left\|T\left(e_{\alpha} * f\right)-T(f)\right\|_{\Lambda_{S}^{D}(G)} \leq \sup _{\|f\|_{1 . \omega}=1}\|T\|\left\|e_{\alpha} * f-f\right\|_{1, \omega}
\end{aligned}
$$

This completes the proof by Corollary 15. 3 in (Doran-Wichmann, [3]).
Theorem 4.2. Let G be a locally compact abelian group. The space $\operatorname{Hom}_{L_{\omega}^{1}}$ $\left(L_{\omega}^{1}(G), \Lambda_{S}^{D}(G)\right)$ is isometrically isomorphic to the space $\Lambda_{S}^{D}(G)$.

Proof. It is the consequence of the Theorem 3.3. in (Datry-Muraz, [2]).
Remark 1. (1) If $p_{1}=p_{2}=p$ and $q_{1}=q_{2}=q$, we get $\frac{1}{p}+\frac{1}{q^{\prime}} \geq 1$ and $\frac{1}{p}+\frac{1}{q^{\prime}}=\frac{1}{r}+1$, then it is obtained Theorem 1 in (Murthy-Unni, [11]):

$$
\begin{aligned}
& \operatorname{Hom}_{L_{\omega}^{1}}\left(L_{\omega}^{p}(G), L_{\omega}^{q}(G)\right) \cong\left(L_{\omega}^{p}(G) \otimes_{L_{\omega}^{1}} L_{\omega^{-1}}^{q^{\prime}}(G)\right)^{*} \cong\left(\Lambda_{q^{\prime}}^{p}(G)\right)^{*} \\
& =\left\{t=\sum_{i=1}^{\infty} f_{i}^{\sim} * g_{i} \mid \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{p, \omega}\left\|g_{i}\right\|_{q^{\prime}, \omega^{-1}}<\infty, f_{i} \in L_{\omega}^{p}(G), g_{i} \in L_{\omega^{-1}}^{q^{\prime}}(G)\right\}^{*}
\end{aligned}
$$

(2) If $p_{1}=p_{2}=p$ and $q_{1} \neq q_{2}$, we have a new multipliers space such that

$$
\begin{aligned}
& \operatorname{Hom}_{L_{\omega}^{1}}\left(L_{\omega}^{p}(G), L_{\omega}^{q_{1}}(G) \cap L_{\omega}^{q_{2}}(G)\right) \cong\left(L_{\omega}^{p}(G) \otimes_{L_{\omega}^{1}} S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)\right)^{*} \cong\left(\Lambda_{S}^{p}(G)\right)^{*} \\
& =\left\{t=\sum_{i=1}^{\infty} f_{i}^{\sim} * g_{i} \mid \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{p, \omega}\left\|g_{i}\right\|_{S}<\infty, f_{i} \in L_{\omega}^{p}(G), g_{i} \in S\left(q_{1}^{\prime}, q_{2}^{\prime}, \omega^{-1}\right)\right\}^{*}
\end{aligned}
$$

(3) If $p_{1} \neq p_{2}, q_{1}=q_{2}=q$ we get the folowing new multipliers space such that

$$
\begin{aligned}
& \operatorname{Hom}_{L_{\omega}^{1}}\left(L_{\omega}^{p_{1}}(G) \cap L_{\omega}^{p_{2}}(G), L_{\omega}^{q}(G)\right) \cong\left(L_{\omega}^{p_{1}}(G) \cap L_{\omega}^{p_{2}}(G) \otimes_{L_{\omega}^{1}} L_{\omega^{-1}}^{q^{\prime}}(G)\right)^{*} \cong\left(\Lambda_{q^{\prime}}^{D}(G)\right)^{*} \\
& =\left\{t=\sum_{i=1}^{\infty} f_{i}^{\sim} * g_{i} \mid \sum_{i=1}^{\infty}\left\|f_{i}\right\|_{D}\left\|g_{i}\right\|_{q^{\prime}, \omega^{-1}}<\infty, f_{i} \in D\left(p_{1}, p_{2}, \omega\right), g_{i} \in L_{\omega^{-1}}^{q^{\prime}}(G)\right\}^{*}
\end{aligned}
$$

Note that in Remarks 1, 2 and 3, the norm of t is the infimum of the expression for all representations of t
(4) If $\omega=1$, it is obtained the classical case of $L^{p}(G)$-spaces.

Acknowledgment

The author would like to thank to the referee for the significant suggestions.

References

1. F. F. Bonsall and J. Duncan, Complete Normed Algebras. Berlin, Heidelberg, Newyork: Springer-Verlag, 1973.
2. C. Datry and G. Muraz, Multiplier Problems, Proceedings of the third Asian Mathematical Conference, Diliman-Philippines, 2000.
3. R. S. Doran and J. Wichmann, Approximate Identities and Factorazation in Banach Modules, Lecture notes in Mathematics, 768. Springer-Verlag, 1979.
4. N. Dunford and J. T. Schwartz, Linear Operators, I, Interscience Publisher, 1958.
5. Gaudry G. I. Multipliers of Weighted Lebesque and Measure Spaces. Proc. London Math. Soc., 19(3) (1969), 327-340.
6. A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, American Mathematical Society, Providence, Rhode Island, 1955.
7. E. Hewitt, K. A. Ross, Abstract Harmonic Analysis I, Springer-Verlag, 1963.
8. R. Larsen, An Introduction to Theory of Multipliers, New York, Springer-Verlag, 1970.
9. T. S. Liu and J. K. Wang, Sums and Intersections of Lebesque Spaces, Math. Scand, 23 (1968), 241-251.
10. T. S. Liu and A. V. Rooij, Mathematiche Nachrichten Band, 42 (1969), 1-3.
11. G. N. K. Murthy and K. R.Unni, Multipliers on Weighted Spaces. Functional Analysis and its Applications, International conference. Lecture Notes in Mathematics 399, Springer-Verlag, 1973.
12. H. Reiter, Classical Harmonic Analysis and Locally Compact Groups+, Oxford at the Clarendon Press. 1968.
13. M. A. Rieffel, Multipliers and Tensor Product of L^{p}-spaces of Locally Compact Groups, Studia Mathematica, T, XXXIII (1969), 71-82.
14. R. Schatten, Theory of Cross-Spaces, Annals of Mathematics studies, 26 (1950).

Serap Öztop

Department of Mathematics,
Faculty of Sciences,
Istanbul University,
34459 Vezneciler,
Istanbul, Turkey
E-mail: serapoztop@hotmail.com oztops@istanbul.edu.tr

[^0]: Received October 8, 2004, revised June 25, 2005.
 Communicated by Sen-Yen Shaw.
 2000 Mathematics Subject Classification: Primary 43A22.
 Key words and phrases: Multipliers, Tensor Product, Weighted Spaces.

