TAIWANESE JOURNAL OF MATHEMATICS Vol. 11, No. 1, pp. 135-142, March 2007 This paper is available online at http://www.math.nthu.edu.tw/tjm/

EXISTENCE OF INVARIANT SUBSPACE FOR CERTAIN COMMUTATIVE BANACH ALGEBRAS OF OPERATORS

Gilbert L. Muraz* and Milagros P. Navarro**

Abstract. The main result presented in this paper is the existence of a nontrivial subspace of an A-module Banach space X hyperinvariant for the commutative algebra A. From this result we can deduce the 1952 theorem of J. Wermer [8] and some other classical results on the existence of a nontrivial invariant subspace.

Résumé. Le résultat principal de ce papier est l'existence d'un sous-espace nontrivial d'un A-module de Banach X, hyperinvariant pour l'algèbre commutative A. Ce résultat inclut le théorème de J. Wermer [8] de 1952, ainsi que d'autres résultats classiques sur l'existence de sous-espace invariant nontrivial.

1. INTRODUCTION

The *invariant subspace problem* is stated below:

Given a normed vector space X and a bounded linear operator T on X ($T \in \mathcal{L}(X)$), does there exist a nontrivial subspace $M \subset X$ such that $TM \subset M$?

Since Beurling's paper in 1949 [2] "On 2 problems concerning linear transformation on a Hilbert space", there have been several hundred papers on the subject of existence of a nontrivial invariant subspace for a given operator. Most papers attempt to solve the problem in the positive direction. It took more than 30 years before the question was settled negatively when X is a Banach space. Separately, C. Read (1984) [6] and P. Enflo (1987) [5] (which had been going around already

Received August 23, 2005, accepted October 26, 2005.

Communicated by Sen-Yen Shaw.

²⁰⁰⁰ Mathematics Subject Classification: 47A15, 32A70, 46J25.

Key words and phrases: Invariant subspace, Algebra representation, Algebra module Banach space, Beurling spectrum.

^{*} Part of this work was done during the visit of the first author at University of the Philippines-Diliman, to which he is grateful for the financial support and hospitality.

^{**} Supported by research grant from the Office of the President, University of the Philippines.

before 1981) constructed a Banach space X and an operator $T \in \mathcal{L}(X)$ which does not admit a nontrivial invariant subspace. Since in both constructions the Banach space X is nonreflexive, there might still be some hope that the problem has a positive answer when X is a reflexive Banach space or in particular if X is a Hilbert space. But it is still interesting to find conditions on a general Banach space X and T for which T admits a nontrivial invariant subspace.

Among the important results in the invariant subspace problem are contained in the theorem of J.Wermer, 1952 [8]:

(a.) If $||T^n||$, does not "grow too fast" with $n \in \mathbb{Z}$, (e.g. $||T^n|| = O(|n|^k)$ for some k > 0,) then T admits a nontrivial invariant subspace.

$$\sum_{n \in \mathbf{Z}} \frac{\ln^+ ||T^n||}{1 + n^2} < \infty$$

and the spectrum $\sigma(T)$ contains at least two elements then T admits a non-trivial invariant subspace.

We will prove in this paper a theorem about existence of hyperinvariant subspaces for some regular semisimple Banach algebras of operators (Theorem 2), which also contains Wermer's theorem [8] as a special case.

2. Remarks

- 1. If X is a vector space over C and $1 < \dim X < \infty$, the classical Jordan decomposition theorem guarantees existence of a nontrivial invariant subspace for any bounded linear operator T on X.
- 2. If X is a vector space over R, a bounded linear operator T on **R** may not admit a nontrivial invariant subspace. For example, let

$$X = \mathbf{R}^2$$
 and $\mathbf{T} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Any nontrivial subspace M of \mathbb{R}^2 is of dimension one and must therefore be generated by a single nonzero element, say $(a, b)^t$. For any element $x = (\lambda a, \lambda b)^t$ in M, $Tx = (-\lambda a, \lambda b)^t$ is not in M. Therefore T does not admit a nontrivial invariant subspace.

3. If X is nonseparable and $0 \neq x \in X$, then

$$M = \overline{span}\{T^n x : n \in \mathbf{N}\} \neq X.$$

Therefore M is a nontrivial invariant subspace for T.

4. It is easy to see that T admits a nontrivial subspace M if and only if M is invariant for every operator S in the algebra \mathcal{A}_T generated by T; in particular if λ is not in the spectrum of T, $(\lambda I - T)$ is invertible and admits M as an invariant subspace.

Because of the above remarks, the invariant subspace problem is meaningful and interesting only under the following assumptions.

- 1. X is a vector space over C 2. $\dim X = \infty$.
- 3. X is separable 4. T^{-1} exists.

3. A-Module Banach Space

Another way of looking at the invariant subspace problem is by considering $\mathcal{L}(X)$ as a Banach algebra. Our result is obtained through an algebraic approach.

(a) Definitions and Notations

The following definitions and notations are based on the paper of Datry-Muraz [DM]. Let X be a Banach space and A a commutative Banach algebra, where the product in A is denoted by *. X is an A-module Banach space if there exists a homomorphism

$$\pi: \mathcal{A} \to \mathcal{L}(X)$$

such that $\pi(a * b) = \pi(a)\pi(b)$ and $||\pi(a)||_{\mathcal{L}(X)} \leq ||a||_{\mathcal{A}}$. And we write $a \star x = \pi(a)x$. X is said to be **order free** if for each $x \in X$, $x \neq 0$, there exists $a \in \mathcal{A}$ such that $a \star x \neq 0$. We denote by Δ the spectrum of \mathcal{A} which consists of the nonzero complex homomorphisms on \mathcal{A} , called the characters of \mathcal{A} . If $C(\Delta)$ denotes the continuous functions on Δ , the **Gelfand morphism** is the map

$$\wedge: \mathcal{A} \to C(\Delta).$$

We write $\wedge(a) = \hat{a}$ and define $\hat{a}(\phi) = \phi(a)$ for all $\phi \in \Delta$. The kernel of the Gelfand morphism is the radical, Rad(A), of A. It is defined by

$$Rad(\mathcal{A}) = \{ a \in \mathcal{A} : \lim_{n \to \infty} ||a^n||^{1/n} = 0 \}.$$

If $Rad(\mathcal{A}) = 0$ then the Gelfand morphism is injective and the algebra \mathcal{A} is said to be **semisimple**. \mathcal{A} is said to be **regular**(see [3]) if for each $\gamma_1 \in \Delta$ and each closed set $E \subset \Delta \setminus \{\gamma_1\}$ there is $a \in \mathcal{A}$ for which $\hat{a}(\gamma_1) = 1$ and $\hat{a}(\gamma) = 0$ for all $\gamma \in E$.

(b) Some Properties of Ideals of \mathcal{A}

Given an ideal I of \mathcal{A} ,

$$Z(I) = \{\gamma \in \Delta : \hat{a}(\gamma) = 0 \text{ for all } a \in I\} = \bigcap_{a \in I} \hat{a}^{-1}(\{0\})$$

Also given $F \subset \Delta$,

$$I(F) = \{ a \in \mathcal{A} : \hat{a}(\gamma) = 0 \text{ for all } \gamma \in F \}.$$

In general, $I(Z(I)) \neq I$. And it is clear that

$$I \subset J$$
 implies $Z(I) \supset Z(J)$ and $F \subset G$ implies $I(F) \supset I(G)$.

(c) The Beurling Spectrum

Let \mathcal{A} be a semisimple commutative algebra and X an \mathcal{A} -module Banach space. Given an $x \in X$, we write

- (1) $I_x = \{a \in \mathcal{A} : a \star x = 0\}.$
- (2) $sp(x) = \{\phi \in \Delta : \hat{a}(\phi) = 0, \forall a \in I_x\} = \cap_{a \in I_x} \hat{a}^{-1}(\{0\}) = Z(I_x)$

This is called the **Beurling spectrum** of x [4]. Similarly, for any subset M of X:

- (3) $I_M = \{a \in \mathcal{A} : a \star x = 0, \forall x \in M\}.$
- (4) $sp(M) = \{ \gamma \in \Delta : \hat{a}(\gamma) = 0, \forall a \in I_M \}.$

And for any subset $F \subset \Delta$, we write

(5) $X(F) = \{x \in X : sp(x) \subset F\}.$

(d) Some Properties of Spectrum

(1) For all $x \in X$ and $a_1 \in \mathcal{A}$, $a_1 \notin I_x$

$$sp(a_1 \star x) \subset sp(x) \cap cl\{\gamma \in \Delta : \hat{a}_1(\gamma) \neq 0\}.$$

(2) For any $a_1 \in \mathcal{A}$,

$$sp(a_1 \star X) \subset sp(X) \cap cl\{\gamma \in \Delta : \hat{a}_1(\gamma) \neq 0\}.$$

Proof of 1 and 2. By definition, it follows that $I_x \subset I_{a_1 \star x}$ and $sp(a_1 \star x) \subset sp(x)$. Let $F = cl\{\gamma \in \Delta : \hat{a_1}(\gamma) \neq 0\}$. For every $b \in I(F)$,

$$b \ast (a_1 \star x) = (b \ast a_1) \star x = 0$$

because, $\hat{b}(\gamma)\hat{a}(\gamma) = 0$, for all $\gamma \in \Delta$. Thus,

$$I(F) \subset I_{a_1 \star x}$$
 and so $sp(a_1 \star x) = Z(I_{a_1 \star x}) \subset Z(I(F)) \subset F$.

138

The proof of 2 follows because

$$sp(a_1 \star X) = \bigcap_{x \in X} sp(a_1 \star x)$$

$$\subset \bigcap_{x \in X} (sp(x) \cap F)$$

$$= (\bigcap_{x \in X} sp(x)) \cap F = sp(X) \cap F.$$

The following results give some properties when the spectrum is empty.

(3) $x \in X(\emptyset)$ if and only if $I_x = \mathcal{A}$.

Proof. Let $x \in X(\emptyset)$. By definition of $X(\emptyset)$, $sp(x) = \emptyset$. If $I_x \neq A$, then I_x is a proper ideal of A, and hence there is a maximal ideal I_M which contains I_x . We know that this maximal ideal is the kernel of some $\phi \in \Delta$, i.e., $I_x \subset I_M = \ker \phi$. So, for any $a \in I_x$, $\phi(a) = 0$ and so $\phi \in sp(x)$. This is a contradiction because $sp(x) = \emptyset$.

Conversely, let $I_x = A$. Suppose there exists a $\phi \in sp(x)$. Then $\hat{a}(\phi) = 0$, for all $a \in A$ and this implies that $\phi = 0$. This contradiction completes the proof.

(4) $X(\emptyset) = \{0\}$ if and only if X is of order free.

Proof. Let $X(\emptyset) = \{0\}$. Then for any nonzero $x \in X$, $x \notin X(\emptyset)$ and therefore by 3, I_x is strictly contained in \mathcal{A} . Hence there exists an $a \in \mathcal{A} \setminus I_x$ which means that $a \star x \neq 0$. X is therefore of order free.

Conversely, let $x \in X(\emptyset)$. Again by 3, $I_x = A$, i.e., $a \star x = 0$ for all $a \in A$. Since X is of order free, x = 0.

(e) Remarks

By 1, for any $F \in \Delta$, the space X(F) is an \mathcal{A} -invariant subspace.

By 4, if X is not order free, the space $X(\emptyset)$ is an A-invariant subspace, different of (0).

2. EXISTENCE OF A NONTRIVIAL INVARIANT SUBSPACE

(a) When sp(X) has a finite number of elements

If $sp(X) = \emptyset$ 3 implies that $I_x = \mathcal{A}$, for every $x \in X$, i.e. a * x = 0 for all $a \in \mathcal{A}, x \in X$. In this case therefore every subspace of X is invariant for \mathcal{A} , because \mathcal{A} annihilates every $x \in X$. If $sp(X) = \{\gamma_0\}$.

Theorem 1. Let $x \in X$ be such that $sp(x) = \{\gamma_0\}$. If $\{\gamma_0\}$ is a set of spectral synthesis(i.e., $Z(I) = \{\gamma_0\}$ if and only if $I = I(\{\gamma_0\})$ then for every $a \in A$, $a \star x = \hat{a}(\gamma_0)x$.

By hypothesis, the ideal $I_x = \{a \in \mathcal{A} : a \star x = 0\}$ satisfies

$$sp(x) = Z(I_x) = \{\gamma \in \Delta : \hat{a}(\gamma) = 0 \text{ for all } a \in I_x\}$$
$$= \bigcap_{a \in I_x} \hat{a}^{-1}(0) = \{\gamma_0\}.$$

Since $R(a)\{\gamma_0\}$ is a set of spectral synthesis, $I_x = \{a \in \mathcal{A} : \hat{a}(\gamma_0) = 0\}$ and hence for every $b \in \mathcal{A}$, $b - \hat{b}(\gamma_0)e \in I_x$ (e is the identity in \mathcal{A}) and therefore, $(b - \hat{b}(\gamma_0)e) \star x = 0 = b \star x - \hat{b}(\gamma_0)x$. So for every $a \in \mathcal{A} \setminus I_x$, x is an eigenvector corresponding to the eigenvalue $\hat{a}(\gamma_0)$.

If sp(X) is a finite set with more than one element.

Let $\gamma_1 \in sp(X)$. For every $a \in \mathcal{A}$ and $x \in X$, the element $a * x - \hat{a}(\gamma_1)x$ is in X with

 $sp(\{a \star x - \hat{a}(\gamma_1)x : a \in \mathcal{A}, x \in X\}) \subset sp(X) \setminus \{\gamma_1\}.$

Thus the space generated by $\{a \star x - \hat{a}(\gamma_1)x : a \in \mathcal{A}, x \in X\}$ is a nontrivial invariant subspace of X for \mathcal{A} , contained in $X(sp(X) \{\gamma_1\})$.

(b) When \mathcal{A} is a Regular Algebra

In the preceding paragraph we saw the existence of a nontrivial subspace invariant when sp(X) is empty or has a finite number of elements, even if \mathcal{A} is not regular. The following theorem, covers the case when sp(X) has an infinite number of elements but here, regularity of \mathcal{A} is required.

Theorem 2. Let A be a regular semisimple commutative Banach algebra and X an A-module Banach space with card $(sp(X)) \ge 2$. Then X has a nontrivial subspace which is invariant for A.

Proof. If $\{\gamma_1, \gamma_2\} \subset sp(X)$, by regularity of \mathcal{A} , for each closed set K_2 where $\gamma_2 \in K_2$ and $\gamma_1 \notin K_2$, there exists $a_1 \in \mathcal{A}$ such that

$$\hat{a}(\gamma) = 0$$
 if $\gamma \in K_2$ and $\hat{a}_1(\gamma_1) = 1$.

 K_2 is taken such that K_2 contains an open neighborhood of γ_2 .

Now, let $X_1 = a_1 \star X$. Suppose that $a_1 \star x = 0$ for all $x \in X$ (i.e., $a_1 \in I_X$), by the choice of a_1 , $\hat{a}_1(\gamma_1) = 1$. Therefore, $\gamma_1 \notin sp(X)$. This is a contradiction. Hence $a_1 \star X = X_1 \neq \{0\}$ and by 2,

$$sp(X_1) \subset sp(X) \cap \overline{\{\gamma : \hat{a}_1(\gamma) \neq 0.\}}$$

Since $\hat{a}_1(\gamma) = 0$ on the neighborhood of γ_2 , then $\gamma_2 \notin sp(X_1)$. Thus $X_1 \neq X$. Moreover, $\mathcal{A} \star X_1 = \mathcal{A} \star (a_1 \star X) = a_1 \star (\mathcal{A} \star X) \subset a_1 \star X = X_1$. Hence X_1 is a nontrivial subspace of X which is invariant for \mathcal{A} . This completes the proof.

If \mathcal{A} is a semisimple regular commutative subalgebra of $\mathcal{L}(X)$, then X can be considered naturally as an \mathcal{A} -module Banach space and hence X is necessarily order free.

140

The corollary below follows immediately from the theorem.

Corollary 1. Let \mathcal{A} be a commutative semisimple regular Banach subalgebra of the algebra $\mathcal{L}(X)$ of all bounded linear operators on X with $card(\Delta) \ge 2$. Then each $T \in \{\mathcal{A}\}'$ (the commutants of \mathcal{A}) admits a nontrivial invariant subspace.

Remark. Let T be a bounded linear operator on X and A_T the sub-Banach algebra of $\mathcal{L}(X)$ generated by T; if A_T is semisimple and regular then T admits a nontrivial hyperinvariant subspace.

5. Applications

1. Proof of Wermer's theorem

It will be seen that the 1952 existence theorem of Wermer[8] can be deduced from the result of the previous section. Given a bounded linear operator T on a Banach space X, a Banach algebra \mathcal{A} which is a certain weighted l^1 -space, will be constructed and let this act on X, making X an \mathcal{A} -module Banach space. Let w be a weight function defined on \mathbb{Z} and set

$$l^{1}(w) = \{a = (a_{k}) \in l^{1}(\mathbf{Z}) : \sum_{k \in \mathbf{Z}} |a_{k}| w(k) < \infty.\}$$

If $a = (a_k)$ and $b = (b_k)$, a multiplication in $l^1(w)$ is defined by

$$a * b = c$$
 where the nth term of c is $c_n = \sum_{k \in \mathbf{Z}} a_{n-k} b_k$

This makes $l^1(w)$ a commutative Banach algebra. The action of $l^1(w)$ on X is defined by

$$a \star x = \sum_{k \in \mathbf{Z}} a_k T^k x$$

making X an $l^{1}(w)$ -module Banach space if w(n) is defined by

$$w(n) = \max\{1, \|T^n\|, \|T^{-1}\|\}.$$

Then for some constant C, by the hypothesis of Wermer,

$$\sum_{n \neq 0} \frac{\ln^+ w(n)}{n^2} < C \sum_{n \in \mathbf{Z}} \frac{\ln^+ \|T^n\|}{1 + n^2} \le \infty.$$

By the Wiener-Domar Theorem [3], [?]

The subalgebra $l^1(w)$ of $l^1(\mathbf{Z})$ is regular and semisimple if and only if

Gilbert L. Muraz and Milagros P. Navarro

$$\sum_{n \neq 0} \frac{\ln^+ w(n)}{n^2} < \infty$$

it follows that for w(n) defined above, $l^1(w)$ is a regular semisimple subalgebra of $l^1(\mathbf{Z})$. Hence by the Theorem 2, X has a nontrivial subspace M invariant under the action of $l^1(w)$. In particular for $a = (a_k)$ where $a_k = 0$ if $k \neq 1$ and $a_1 = 1$, $a \star x = Tx$ for all $x \in X$. Thus M is invariant for T. This proves Wermer's theorem.

2. If *T* is a normal operator, classical result [?] shows that the algebra \mathcal{A}_{T^*T} generated by T^* and *T* is a C^* -algebra which is identified with the space $C(\sigma(T))$ of continuous functions on the spectrum of *T*. Since $C(\sigma(T))$ is regular and hence is semisimple, the well known result that a normal operator (in particular a self-adjoint operator) admits a nontrivial hyperinvariant subspace follows from Corollary 1.

References

- 1. B. Beauzamy, *An Introduction to Operator Theory and Invariant Subspaces*, North-Holland Amsterdam-New York-Oxford-Tokyo, 1988.
- 2. A. Beurling, On two problems concerning linear transformation in a Hilbert space, *Acta Math.*, **18** (1949).
- 3. Y. Domar, Analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1-29.
- 4. C. Datry and G. L. Muraz, Analyse Harmonique dans les modules de Banach, Part I: Propriétés Générales, *Bull. des Sci. Maths.*, **119(4)** (1995), ???.
- 5. P. Enflo, On the invariant subspace problem in Banach spaces, *Acta Math.*, **158** (1987), 213-313.
- 6. C. Read, A solution to the invariant subspace problem, Bull. London Math. Soc. 16, (1984).
- 7. Sz.-Nagy and B. Foias, *Harmonic Analysis of Operators on Hilbert Space*, North-Holland, Amsterdam-London 1970.
- 8. J. Wermer, The existence of invariant subspaces, Duke Math. Journal, 1952.

Gilbert L. Muraz Institut Fourier, UMR 5582 (CNRS-UJF,) St Martin d'Hères, France E-mail: gilbert.muraz@ujf-grenoble.fr

Milagros P. Navarro Department of Mathematics, University of the Philippines, Diliman, Quezon City, Philippines E-mail: mitos@math.upd.edu.ph

142