EXISTENCE OF INVARIANT SUBSPACE FOR CERTAIN COMMUTATIVE BANACH ALGEBRAS OF OPERATORS

Gilbert L. Muraz* and Milagros P. Navarro**

Abstract

The main result presented in this paper is the existence of a nontrivial subspace of an \mathcal{A}-module Banach space X hyperinvariant for the commutative algebra \mathcal{A}. From this result we can deduce the 1952 theorem of \mathbf{J}. Wermer [8] and some other classical results on the existence of a nontrivial invariant subspace. Résumé. Le résultat principal de ce papier est l'existence d'un sous-espace nontrivial d'un \mathcal{A}-module de Banach X, hyperinvariant pour l'algèbre commutative \mathcal{A}. Ce ressultat inclut le theorème de J. Wermer [8] de 1952, ainsi que d'autres résultats classiques sur l'existence de sous-espace invariant nontrivial.

1. Introduction

The invariant subspace problem is stated below:
Given a normed vector space X and a bounded linear operator T on $X(T \in \mathcal{L}(X))$, does there exist a nontrivial subspace $M \subset X$ such that $T M \subset M$?

Since Beurling's paper in 1949 [2] "On 2 problems concerning linear transformation on a Hilbert space", there have been several hundred papers on the subject of existence of a nontrivial invariant subspace for a given operator. Most papers attempt to solve the problem in the positive direction. It took more than 30 years before the question was settled negatively when X is a Banach space. Separately, C. Read (1984) [6] and P. Enflo (1987) [5] (which had been going around already

[^0]before 1981) constructed a Banach space X and an operator $T \in \mathcal{L}(X)$ which does not admit a nontrivial invariant subspace. Since in both constructions the Banach space X is nonreflexive, there might still be some hope that the problem has a positive answer when X is a reflexive Banach space or in particular if X is a Hilbert space. But it is still interesting to find conditions on a general Banach space X and T for which T admits a nontrivial invariant subspace.

Among the important results in the invariant subspace problem are contained in the theorem of J.Wermer, 1952 [8]:
(a.) If $\left\|T^{n}\right\|$, does not "'grow too fast"' with $n \in \mathbf{Z}$, (e.g. $\left\|T^{n}\right\|=O\left(|n|^{k}\right)$ for some $k>0$,) then T admits a nontrivial invariant subspace.
(b.) If

$$
\sum_{n \in \mathbf{Z}} \frac{\ln +\left\|T^{n}\right\|}{1+n^{2}}<\infty
$$

and the spectrum $\sigma(T)$ contains at least two elements then T admits a nontrivial invariant subspace.

We will prove in this paper a theorem about existence of hyperinvariant subspaces for some regular semisimple Banach algebras of operators (Theorem 2), which also contains Wermer's theorem [8] as a special case.

2. Remarks

1. If X is a vector space over \mathbf{C} and $1<\operatorname{dim} X<\infty$, the classical Jordan decomposition theorem guarantees existence of a nontrivial invariant subspace for any bounded linear operator T on X.
2. If X is a vector space over R, a bounded linear operator T on \mathbf{R} may not admit a nontrivial invariant subspace. For example, let

$$
X=\mathbf{R}^{\mathbf{2}} \quad \text { and } \quad \mathbf{T}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Any nontrivial subspace M of \mathbf{R}^{2} is of dimension one and must therefore be generated by a single nonzero element, say $(a, b)^{t}$. For any element $x=$ $(\lambda a, \lambda b)^{t}$ in $M, \quad T x=(-\lambda a, \lambda b)^{t}$ is not in M. Therefore T does not admit a nontrivial invariant subspace.
3. If X is nonseparable and $0 \neq x \in X$, then

$$
M=\overline{\operatorname{span}}\left\{T^{n} x: n \in \mathbf{N}\right\} \neq X
$$

Therefore M is a nontrivial invariant subspace for T.
4. It is easy to see that T admits a nontrivial subspace M if and only if M is invariant for every operator S in the algebra \mathcal{A}_{T} generated by T; in particular if λ is not in the spectrum of $T,(\lambda I-T)$ is invertible and admits M as an invariant subspace.
Because of the above remarks, the invariant subspace problem is meaningful and interesting only under the following assumptions.

1. X is a vector space over \mathbf{C}
2. $\operatorname{dim} X=\infty$.
3. X is separable
4. T^{-1} exists.

3. \mathcal{A}-Module Banach Space

Another way of looking at the invariant subspace problem is by considering $\mathcal{L}(X)$ as a Banach algebra. Our result is obtained through an algebraic approach.

(a) Definitions and Notations

The following definitions and notations are based on the paper of Datry-Muraz [DM]. Let X be a Banach space and \mathcal{A} a commutative Banach algebra, where the product in \mathcal{A} is denoted by $*$. X is an \mathcal{A}-module Banach space if there exists a homomorphism

$$
\pi: \mathcal{A} \rightarrow \mathcal{L}(X)
$$

such that $\pi(a * b)=\pi(a) \pi(b) \quad$ and $\quad\|\pi(a)\|_{\mathcal{L}(X)} \leq\|a\|_{\mathcal{A}}$. And we write $a \star x=$ $\pi(a) x . X$ is said to be order free if for each $x \in X, \quad x \neq 0$, there exists $a \in \mathcal{A}$ such that $a \star x \neq 0$. We denote by Δ the spectrum of \mathcal{A} which consists of the nonzero complex homomorphisms on \mathcal{A}, called the characters of \mathcal{A}. If $C(\Delta)$ denotes the continuous functions on Δ, the Gelfand morphism is the map

$$
\wedge: \mathcal{A} \rightarrow C(\Delta)
$$

We write $\wedge(a)=\hat{a}$ and define $\hat{a}(\phi)=\phi(a)$ for all $\phi \in \Delta$. The kernel of the Gelfand morphism is the radical, $\operatorname{Rad}(\mathcal{A})$, of \mathcal{A}. It is defined by

$$
\operatorname{Rad}(\mathcal{A})=\left\{a \in \mathcal{A}: \lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}=0\right\} .
$$

If $\operatorname{Rad}(\mathcal{A})=0$ then the Gelfand morphism is injective and the algebra \mathcal{A} is said to be semisimple. \mathcal{A} is said to be $\operatorname{regular}\left(\right.$ see [3]) if for each $\gamma_{1} \in \Delta$ and each closed set $E \subset \Delta \backslash\left\{\gamma_{1}\right\}$ there is $a \in \mathcal{A}$ for which $\hat{a}\left(\gamma_{1}\right)=1$ and $\hat{a}(\gamma)=0$ for all $\gamma \in E$.
(b) Some Properties of Ideals of \mathcal{A}

Given an ideal I of \mathcal{A},

$$
Z(I)=\{\gamma \in \Delta: \hat{a}(\gamma)=0 \quad \text { for all } a \in I\}=\cap_{a \in I} \hat{a}^{-1}(\{0\}) .
$$

Also given $F \subset \Delta$,

$$
I(F)=\{a \in \mathcal{A}: \hat{a}(\gamma)=0 \quad \text { for all } \gamma \in F\} .
$$

In general, $I(Z(I)) \neq I$. And it is clear that
$I \subset J$ implies $Z(I) \supset Z(J)$ and $F \subset G$ implies $I(F) \supset I(G)$.

(c) The Beurling Spectrum

Let \mathcal{A} be a semisimple commutative algebra and X an \mathcal{A}-module Banach space. Given an $x \in X$, we write
(1) $I_{x}=\{a \in \mathcal{A}: a \star x=0\}$.
(2) $s p(x)=\left\{\phi \in \Delta: \hat{a}(\phi)=0, \forall a \in I_{x}\right\}=\cap_{a \in I_{x}} \hat{a}^{-1}(\{0\})=Z\left(I_{x}\right)$

This is called the Beurling spectrum of x [4]. Similarly, for any subset M of X :
(3) $I_{M}=\{a \in \mathcal{A}: a \star x=0, \forall x \in M\}$.
(4) $\operatorname{sp}(M)=\left\{\gamma \in \Delta: \hat{a}(\gamma)=0, \forall a \in I_{M}\right\}$.

And for any subset $F \subset \Delta$, we write
(5) $X(F)=\{x \in X: s p(x) \subset F\}$.

(d) Some Properties of Spectrum

(1) For all $x \in X$ and $a_{1} \in \mathcal{A}, a_{1} \notin I_{x}$

$$
s p\left(a_{1} \star x\right) \subset \operatorname{sp}(x) \cap \operatorname{cl}\left\{\gamma \in \Delta: \hat{a}_{1}(\gamma) \neq 0\right\} .
$$

(2) For any $a_{1} \in \mathcal{A}$,

$$
\operatorname{sp}\left(a_{1} \star X\right) \subset \operatorname{sp}(X) \cap \operatorname{cl}\left\{\gamma \in \Delta: \hat{a}_{1}(\gamma) \neq 0\right\} .
$$

Proof of 1 and 2. By definition, it follows that $I_{x} \subset I_{a_{1} \star x}$ and $s p\left(a_{1} \star x\right) \subset$ $s p(x)$. Let $F=c l\left\{\gamma \in \Delta: \hat{a_{1}}(\gamma) \neq 0\right\}$. For every $b \in I(F)$,

$$
b *\left(a_{1} \star x\right)=\left(b * a_{1}\right) \star x=0
$$

because, $\hat{b}(\gamma) \hat{a}(\gamma)=0$, for all $\gamma \in \Delta$. Thus,

$$
I(F) \subset I_{a_{1} \star x} \text { and so } \operatorname{sp}\left(a_{1} \star x\right)=Z\left(I_{a_{1} \star x}\right) \subset Z(I(F)) \subset F .
$$

The proof of 2 follows because

$$
\begin{aligned}
\operatorname{sp}\left(a_{1} \star X\right) & =\cap_{x \in X} \operatorname{sp}\left(a_{1} \star x\right) \\
& \subset \cap_{x \in X}(\operatorname{sp}(x) \cap F) \\
& =\left(\cap_{x \in X} \operatorname{sp}(x)\right) \cap F=\operatorname{sp}(X) \cap F .
\end{aligned}
$$

The following results give some properties when the spectrum is empty.
(3) $x \in X(\emptyset)$ if and only if $I_{x}=\mathcal{A}$.

Proof. Let $x \in X(\emptyset)$. By definition of $X(\emptyset), s p(x)=\emptyset$. If $I_{x} \neq \mathcal{A}$, then I_{x} is a proper ideal of \mathcal{A}, and hence there is a maximal ideal I_{M} which contains I_{x}. We know that this maximal ideal is the kernel of some $\phi \in \Delta$, i.e., $\quad I_{x} \subset I_{M}=\operatorname{ker} \phi$. So, for any $a \in I_{x}, \phi(a)=0$ and so $\phi \in \operatorname{sp}(x)$. This is a contradiction because $s p(x)=\emptyset$.

Conversely, let $I_{x}=\mathcal{A}$. Suppose there exists a $\phi \in \operatorname{sp}(x)$. Then $\hat{a}(\phi)=0$, for all $a \in \mathcal{A}$ and this implies that $\phi=0$. This contradiction completes the proof.
(4) $X(\emptyset)=\{0\}$ if and only if X is of order free.

Proof. Let $X(\emptyset)=\{0\}$. Then for any nonzero $x \in X, x \notin X(\emptyset)$ and therefore by $3, I_{x}$ is strictly contained in \mathcal{A}. Hence there exists an $a \in \mathcal{A} \backslash I_{x}$ which means that $a \star x \neq 0 . \mathrm{X}$ is therefore of order free.

Conversely, let $x \in X(\emptyset)$. Again by $3, I_{x}=\mathcal{A}$, i.e., $a \star x=0$ for all $a \in \mathcal{A}$. Since X is of order free, $x=0$.

(e) Remarks

By 1 , for any $F \in \Delta$, the space $X(F)$ is an \mathcal{A}-invariant subspace.
By 4 , if X is not order free, the space $X(\emptyset)$ is an \mathcal{A}-invariant subspace, different of (0).

2. Existence of a Nontrivial Invariant Subspace

(a) When $\operatorname{sp}(X)$ has a finite number of elements

If $\operatorname{sp}(X)=\emptyset 3$ implies that $I_{x}=\mathcal{A}$, for every $x \in X$, i.e. $a * x=0$ for all $a \in \mathcal{A}, x \in X$. In this case therefore every subspace of X is invariant for \mathcal{A}, because \mathcal{A} annihilates every $x \in X$.
If $\operatorname{sp}(X)=\left\{\gamma_{0}\right\}$.
Theorem 1. Let $x \in X$ be such that $\operatorname{sp}(x)=\left\{\gamma_{0}\right\}$. If $\left\{\gamma_{0}\right\}$ is a set of spectral synthesis(i.e., $Z(I)=\left\{\gamma_{0}\right\}$ if and only if $\left.I=I\left(\left\{\gamma_{0}\right\}\right)\right)$ then for every $a \in \mathcal{A}, a \star x=\hat{a}\left(\gamma_{0}\right) x$.

By hypothesis, the ideal $I_{x}=\{a \in \mathcal{A}: a \star x=0\}$ satisfies

$$
\begin{aligned}
\operatorname{sp}(x)=Z\left(I_{x}\right) & =\left\{\gamma \in \Delta: \hat{a}(\gamma)=0 \text { for all } a \in I_{x}\right\} \\
& =\cap_{a \in I_{x}} \hat{a}^{-1}(0)=\left\{\gamma_{0}\right\}
\end{aligned}
$$

Since $R(a)\left\{\gamma_{0}\right\}$ is a set of spectral synthesis, $I_{x}=\left\{a \in \mathcal{A}: \hat{a}\left(\gamma_{0}\right)=0\right\}$ and hence for every $b \in \mathcal{A}, b-\hat{b}\left(\gamma_{0}\right) e \in I_{x}$ (e is the identity in \mathcal{A}) and therefore, $\left(b-\hat{b}\left(\gamma_{0}\right) e\right) \star x=0=b \star x-\hat{b}\left(\gamma_{0}\right) x$. So for every $a \in \mathcal{A} \backslash I_{x}, x$ is an eigenvector corresponding to the eigenvalue $\hat{a}\left(\gamma_{0}\right)$.
If $\operatorname{sp}(X)$ is a finite set with more than one element.
Let $\gamma_{1} \in \operatorname{sp}(X)$. For every $a \in \mathcal{A}$ and $x \in X$, the element $a * x-\hat{a}\left(\gamma_{1}\right) x$ is in X with

$$
s p\left(\left\{a \star x-\hat{a}\left(\gamma_{1}\right) x: a \in \mathcal{A}, x \in X\right\}\right) \subset \operatorname{sp}(X) \backslash\left\{\gamma_{1}\right\}
$$

Thus the space generated by $\left\{a \star x-\hat{a}\left(\gamma_{1}\right) x: a \in \mathcal{A}, x \in X\right\}$ is a nontrivial invariant subspace of X for \mathcal{A}, contained in $X\left(\operatorname{sp}(X)\left\{\gamma_{1}\right\}\right)$.

(b) When \mathcal{A} is a Regular Algebra

In the preceding paragraph we saw the existence of a nontrivial subspace invariant when $\operatorname{sp}(X)$ is empty or has a finite number of elements, even if \mathcal{A} is not regular. The following theorem, covers the case when $\operatorname{sp}(X)$ has an infinite number of elements but here, regularity of \mathcal{A} is required.

Theorem 2. Let \mathcal{A} be a regular semisimple commutative Banach algebra and X an \mathcal{A}-module Banach space with card $(s p(X)) \geq 2$. Then X has a nontrivial subspace which is invariant for \mathcal{A}.

Proof. If $\left\{\gamma_{1}, \gamma_{2}\right\} \subset \operatorname{sp}(X)$, by regularity of \mathcal{A}, for each closed set K_{2} where $\gamma_{2} \in K_{2}$ and $\gamma_{1} \notin K_{2}$, there exists $a_{1} \in \mathcal{A}$ such that

$$
\hat{a}(\gamma)=0 \text { if } \gamma \in K_{2} \quad \text { and } \quad \hat{a}_{1}\left(\gamma_{1}\right)=1
$$

K_{2} is taken such that K_{2} contains an open neighborhood of γ_{2}.
Now, let $X_{1}=a_{1} \star X$. Suppose that $a_{1} \star x=0$ for all $x \in X$ (i.e., $a_{1} \in I_{X}$), by the choice of $a_{1}, \hat{a}_{1}\left(\gamma_{1}\right)=1$. Therefore, $\gamma_{1} \notin s p(X)$. This is a contradiction. Hence $a_{1} \star X=X_{1} \neq\{0\}$ and by 2 ,

$$
\operatorname{sp}\left(X_{1}\right) \subset \operatorname{sp}(X) \cap \overline{\left\{\gamma: \hat{a}_{1}(\gamma) \neq 0 .\right\}}
$$

Since $\hat{a}_{1}(\gamma)=0$ on the neighborhood of γ_{2}, then $\gamma_{2} \notin \operatorname{sp}\left(X_{1}\right)$. Thus $X_{1} \neq X$. Moreover, $\mathcal{A} \star X_{1}=\mathcal{A} \star\left(a_{1} \star X\right)=a_{1} \star(\mathcal{A} \star X) \subset a_{1} \star X=X_{1}$. Hence X_{1} is a nontrivial subspace of X which is invariant for \mathcal{A}. This completes the proof.

If \mathcal{A} is a semisimple regular commutative subalgebra of $\mathcal{L}(X)$, then X can be considered naturally as an \mathcal{A}-module Banach space and hence X is necessarily order free.

The corollary below follows immediately from the theorem.
Corollary 1. Let \mathcal{A} be a commutative semisimple regular Banach subalgebra of the algebra $\mathcal{L}(X)$ of all bounded linear operators on X with $\operatorname{card}(\Delta) \geq 2$. Then each $T \in\{\mathcal{A}\}^{\prime}$ (the commutants of \mathcal{A}) admits a nontrivial invariant subspace.

Remark. Let T be a bounded linear operator on X and \mathcal{A}_{T} the sub- Banach algebra of $\mathcal{L}(X)$ generated by T; if \mathcal{A}_{T} is semisimple and regular then T admits a nontrivial hyperinvariant subspace.

5. Applications

1. Proof of Wermer's theorem

It will be seen that the 1952 existence theorem of Wermer[8] can be deduced from the result of the previous section. Given a bounded linear operator T on a Banach space X, a Banach algebra \mathcal{A} which is a certain weighted l^{1}-space, will be constructed and let this act on X, making X an \mathcal{A}-module Banach space. Let w be a weight function defined on \mathbf{Z} and set

$$
l^{1}(w)=\left\{a=\left(a_{k}\right) \in l^{1}(\mathbf{Z}): \sum_{k \in \mathbf{Z}}\left|a_{k}\right| w(k)<\infty .\right\}
$$

If $a=\left(a_{k}\right)$ and $b=\left(b_{k}\right)$, a multiplication in $l^{1}(w)$ is defined by

$$
a * b=c \text { where the } n t h \text { term of } c \text { is } c_{n}=\sum_{k \in \mathbf{Z}} a_{n-k} b_{k} \text {. }
$$

This makes $l^{1}(w)$ a commutative Banach algebra. The action of $l^{1}(w)$ on X is defined by

$$
a \star x=\sum_{k \in \mathbf{Z}} a_{k} T^{k} x
$$

making X an $l^{1}(w)$-module Banach space if $w(n)$ is defined by

$$
w(n)=\max \left\{1,\left\|T^{n}\right\|,\left\|T^{-1}\right\|\right\} .
$$

Then for some constant C, by the hypothesis of Wermer,

$$
\sum_{n \neq 0} \frac{l n^{+} w(n)}{n^{2}}<C \sum_{n \in \mathbf{Z}} \frac{l n^{+}\left\|T^{n}\right\|}{1+n^{2}} \leq \infty
$$

By the Wiener-Domar Theorem [3], [?]
The subalgebra $l^{1}(w)$ of $l^{1}(\mathbf{Z})$ is regular and semisimple if and only if

$$
\sum_{n \neq 0} \frac{l n^{+} w(n)}{n^{2}}<\infty
$$

it follows that for $w(n)$ defined above, $l^{1}(w)$ is a regular semisimple subalgebra of $l^{1}(\mathbf{Z}$.) Hence by the Theorem 2, X has a nontrivial subspace M invariant under the action of $l^{1}(w)$. In particular for $a=\left(a_{k}\right)$ where $a_{k}=0$ if $k \neq 1$ and $a_{1}=1, a \star x=T x$ for all $x \in X$. Thus M is invariant for T. This proves Wermer's theorem.
2. If T is a normal operator, classical result [?] shows that the algebra $\mathcal{A}_{T^{*} T}$ generated by T^{*} and T is a C^{*}-algebra which is identified with the space $C(\sigma(T))$ of continuous functions on the spectrum of T. Since $C(\sigma(T))$ is regular and hence is semisimple, the well known result that a normal operator (in particular a self-adjoint operator) admits a nontrivial hyperinvariant subspace follows from Corollary 1.

References

1. B. Beauzamy, An Introduction to Operator Theory and Invariant Subspaces, NorthHolland Amsterdam-New York-Oxford-Tokyo, 1988.
2. A. Beurling, On two problems concerning linear transformation in a Hilbert space, Acta Math., 18 (1949).
3. Y. Domar, Analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1-29.
4. C. Datry and G. L. Muraz, Analyse Harmonique dans les modules de Banach, Part I: Propriétés Générales, Bull. des Sci. Maths., 119(4) (1995), ???.
5. P. Enflo, On the invariant subspace problem in Banach spaces, Acta Math., 158 (1987), 213-313.
6. C. Read, A solution to the invariant subspace problem, Bull. London Math. Soc. 16, (1984).
7. Sz.-Nagy and B. Foias, Harmonic Analysis of Operators on Hilbert Space, NorthHolland, Amsterdam-London 1970.
8. J. Wermer, The existence of invariant subspaces, Duke Math. Journal, 1952.

Gilbert L. Muraz
Institut Fourier,
UMR 5582 (CNRS-UJF,)
St Martin d'Hères, France
E-mail: gilbert.muraz@ujf-grenoble.fr
Milagros P. Navarro
Department of Mathematics, University of the Philippines,
Diliman, Quezon City,
Philippines
E-mail: mitos@math.upd.edu.ph

[^0]: Received August 23, 2005, accepted October 26, 2005. Communicated by Sen-Yen Shaw. 2000 Mathematics Subject Classification: 47A15, 32A70, 46J25.
 Key words and phrases: Invariant subspace, Algebra representation, Algebra module Banach space, Beurling spectrum.

 * Part of this work was done during the visit of the first author at University of the PhilippinesDiliman, to which he is grateful for the financial support and hospitality.
 ** Supported by research grant from the Office of the President, University of the Philippines.

