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COMPACTIFICATIONS OF METRIC SPACES

M. Koçak and İ. Akça

Abstract. If X is a discrete topological space, the points of its Stone-Cech
compactification βX can be regarded as ultrafilters on X, and this fact is a
useful tool in analysing the properties of βX. The purpose of this paper is
to describe the compactification X̃ of a metric space in terms of the concept
of near ultafilters. We describe the topological space X̃ and we investigate
conditions under which S̃ will be a semigroup compactification if S is a semi-
group which has a metric. These conditions will always hold if the topology
of S is defined by an invariant metric, and in this case our compactification
S̃ coincides with SLUC .

0. INTRODUCTION

The purpose of this paper is to describe the compactification of a metric space
in terms of the concept of near ultafilters. If X is a discrete topological space, the
points of its Stone-Cech compactification βX can be regarded as ultrafilters on X,
and this fact is a useful tool in analysing the properties of βX. An analogous concept
of “near ultrafilter” is used to describe the points of an arbitrary compactification
of a topological group in [5]. We were motivated by this in defining the analogous
concept of “near ultrafilter” to describe the points of an arbitrary compactification
of a metric space. A metric space X has a compactification X̃ with the property
that C(X̃) is isomorphic to the algebra of bounded real-valued uniformly continuous
functions defined on X. We believe that near ultrafilters provide a natural and useful
method for describing X̃.

In §2 we describe the topological space X̃. In §3 we assume that we have a
semigroup S which has a metric and investigate conditions under which S̃ will be a
semigroup compactification of S. These conditions will always hold if the topology
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of S is defined by an invariant metric, and in this case our compactification S̃

coincides with SLUC.
Our results are not all new. For example, Theorems 4.7 and 4.8 are known for

SLUC [1]. We include these theorems, however, because the proofs that we give
are a natural application of our construction of S̃.

1. PRELIMINARIES

We first remind the reader of some basic definitions.

Metric Spaces. Let X be a set and d : X × X → R be a function. We say
that d is a metric on X if the followings are satisfied:

(M-1) For all x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y.

(M-2) For all x, y ∈ X, d(x, y) = d(y, x).

(M-3) For all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

If d is a metric on X, the ordered pair (X, d) is called a metric space. Suppose
that X is also a semigroup then d is called an invariant metric if d(ax, ay) =
d(xa, ya) = d(x, y) for all x, y, a ∈ X

For each ε > 0 and each Y ⊆ X, B(Y, ε) will denote {z ∈ X |d(y, z) < ε for
some y ∈ Y }. In the case of a singleton set {y}, we may use B(y, ε) instead of the
cumbersome B({y}, ε).

A metric d on a set X will generate a topology on X for which the neighbour-
hoods of each point x ∈ X are the sets of the form B(x, ε), where ε > 0. If X
has this topology, X is called a metrisable space. With this topology X is always
Hausdorff.

Suppose that (X, d1) and (Y, d2) are metric spaces. A function f : X → Y

is said to be uniformly continuous if, for each ε > 0, there exists δ > 0 such that
d2(f(x1), f(x2)) < ε whenever d1(x1, x2) < δ.

Compactifications. Let X be a topological space. By a compactification of
X we shall mean a pair (C, e), where C is a compact Hausdorff space, e : X → C

is an embedding and e[X ] is dense in C. In this case, we may simply refer to C
as being a compactification of X. Two compactifications (C, e) and (C′, e′) are
regarded as equivalent if there is a homeomorphism h : C → C′ for which e = e′h.

Semigroups. Let S be a semigroup. For each s ∈ S, we shall use λs and ρs

to denote the mappings from S to itself for which λs(t) = st and ρs(t) = ts.
Suppose that S is also a topological space. S will be called a topological

semigroup if the mapping (s, t) �→ st is a continuous mapping from S × S to S. It
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will be called a semitopological semigroup if, for every s ∈ S, λs and ρs are both
continuous. It will be called a right topological semigroup if, for every s ∈ S, ρs

is continuous.
If S is a right topological semigroup, {s ∈ S|λs : S → S is continuous} will

be called the topological centre of S.
Suppose that S is a semitopological semigroup and that (C, e) is a compactifi-

cation of S. We shall say that (C, e) is a semigroup compactification of S if C is
a right topological semigroup, e is a homomorphism and e[S] is contained in the
topological centre of C.

Notation. We shall use N to denote the set of positive integers, Z to denote
the set of all integers and R to denote the set of real numbers.

If X is a topological space, C(X) will denote the set of continuous bounded real-
valued functions defined on X, and βX will denote the Stone-Čech compactification
of X.

2. THE TOPOLOGICAL SPACE X̃

Definition 2.1. Suppose that (X, d) is a metric space and that G ⊆ P(X). We
shall say that G has the near finite intersection property if G is non-empty and if,
for every finite subset F of G and every ε > 0,

⋂
Y ∈F B(Y, ε) 	= ∅.

Definition 2.2. Let ξ ⊆ P(X). We shall say that ξ is a near ultrafilter
on (X, d) if ξ is maximal subject to being a subset of P(X) with the near finite
intersection property.

In this case, we may simply refer to ξ as being a near ultrafilter if it is clear
which metric space (X, d) is being referred to.

Notation. We shall use (X̃, d) to denote the set of all near ultrafilters on
(X, d). We may simply denote this set by X̃ if there is no ambiguity about which
metric structure is being used.

Remark 2.3 It is immediate from Zorn’s Lemma that every subset of P(X) with
the near finite intersection property is contained in a near ultrafilter. It is also clear
that, if ξ ∈ (X̃, d) and if Y ⊆ X, Y ∈ ξ if and only if B(Y, ε)∩⋂

Z∈F B(Z, ε) 	= ∅
for every finite subset F of ξ and every ε > 0.

We observe that the concept of a near ultrafilter generalises the concept of an
ultrafilter. If d denotes the discrete metric on a set X , a near ultrafilter on (X, d)
is simply an ultrafilter on X .

Throughout this section, we shall assume that (X, d) denotes a given metric
space.
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Lemma 2.4. Let ξ ∈ X̃. For every finite subset F of ξ and every ε > 0,⋂
Y ∈F B(Y, ε) ∈ ξ.

Proof. If
⋂

Y ∈F B(Y, ε) /∈ ξ, there will be a finite subset F ′ of ξ and a δ > 0 for
which B(

⋂
Y ∈F B(Y, ε), δ)∩⋂

Y ∈F ′ B(Y, δ) = ∅. We can choose σ > 0 satisfying
2σ ≤ min{ε, δ}. This will imply that

⋂
Y ∈F∪F ′ B(Y, σ) = ∅ - contradictiong our

assumption that ξ has the near finite intersection property.

Lemma 2.5. Let ξ ∈ X̃ and let Y ⊆ X . The following statements are
equivalent:

(i) Y ∈ ξ;
(ii) For every ε > 0 and every Z ∈ ξ, B(Y, ε) ∩ Z 	= ∅;
(iii) For every ε > 0 and every Z ∈ ξ, Y ∩ Û(Z) 	= ∅;

Proof. (i) ⇔ (ii) If Y /∈ ξ there will be a finite subset F of ξ and an ε > 0 such
that B(Y, ε) ∩ ⋂

Y ′∈F B(Y ′, ε) = ∅. If Z denotes
⋂

Y ′∈F B(Y ′, ε), then Z ∈ ξ by
Lemma 2.4 and B(Y, ε) ∩ Z = ∅.

Conversely, suppose that B(Y, ε) ∩ Z = ∅ for some Z ∈ ξ and some ε > 0.
We can choose a δ > 0 satisfying 2δ ≤ ε. We claim that B(Y, δ) ∩ B(Z, δ) = ∅.
To see this, assume that there is a point x ∈ B(Y, δ) ∩ B(Z, δ). Since d(x, y) < δ

for some y ∈ Y and d(x, z) < δ for some z ∈ Z, it follows that d(y, z) < 2δ ≤ ε.
Thus z ∈ B(Y, ε) ∩ Z - contradiction. This shows that B(Y, δ) ∩ B(Z, δ) = ∅ and
hence that Y /∈ ξ.

(ii) ⇔ (iii) For every ε > 0 and every Y, Z ⊆ X, B(Y, ε) ∩ Z 	= ∅ ⇔ Y ∩
B(Z, ε) 	= ∅.

Lemma 2.6. Let ξ ∈ X̃ and let Y ⊆ X . Then Y ∈ ξ if and only if B(Y, ε) ∈ ξ

for every ε > 0. Furthermore, this is the case if and only if Y ∈ ξ.

Proof. Clearly, if Y ∈ ξ, then B(Y, ε) ∈ ξ for every ε > 0, because Y ⊆
B(Y, ε).

Conversely, if Y /∈ ξ, then B(Y, ε) ∩ Z = ∅ for some ε > 0 and some Z ∈ ξ

(by Lemma 2.5). Let δ > 0 satisfying 2δ ≤ ε. Then B(Y, 2δ) ⊆ B(Y, ε) and so
B(Y, 2δ) ∩ Z = ∅ and B(Y, δ) /∈ ξ.

Now, for every ε > 0, Y ⊆ Y ⊆ B(Y, ε). It follows that Y ∈ ξ if and only if
Y ∈ ξ.

Lemma 2.7. Let ξ ∈ X̃. For any Y1, Y2 ⊆ X, Y1 ∪Y2 ∈ ξ implies that Y1 ∈ ξ

or Y2 ∈ ξ.

Proof. If Y1, Y2 /∈ ξ, there will be sets Z1, Z2 ∈ ξ and ε1, ε2 > 0 for which
Y1 ∩B(Z1, ε1) = Y2 ∩B(Z2, ε2) = ∅ (by Lemma 2.5). We choose ε > 0 satisfying
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2ε ≤ min{ε1, ε2}, and claim that B(Y1, ε)∩ B(Z1, ε) = B(Y2, ε)∪ B(Z2, ε) = ∅.
To see this, suppose that x ∈ B(Yi, ε) ∩ B(Zi, ε), where i ∈ {1, 2}. Then there
will be points y ∈ Yi, z ∈ Zi for which d(x, y) < ε, d(x, z) < ε. This implies that
d(y, z) < 2ε ≤ εi and hence that y ∈ Yi ∩ B(Zi, εi) - contradiction.

Since B(Y1∪Y2, ε) = B(Y1, ε)∪B(Y2, ε), we have shown that B(Y1∪Y2, ε)∩
B(Z1, ε) ∩ B(Z2, ε) = ∅ and hence that Y1 ∪ Y2 /∈ ξ.

3. THE TOPOLOGICAL SPACE X̃

Definition 3.1. For each Y ⊆ X, we put CY = {ξ ∈ X̃|Y ∈ ξ}.

Lemma 3.2. For every Y1, Y2 ⊆ X, CY1∪Y2 = CY1 ∪CY2 . Furthermore, C∅ = ∅
and CX = X̃.

Proof. The first statement follows from Lemma 2.7, and the second is immediate
from the definition.

Definition 3.3. We define the topology of X̃ by choosing the sets of the form
CY , where Y ∈ P(X), as a base for the closed sets.

Theorem 3.4. X̃ is a compact Hausdorff space.

Proof. Let (CYα)α∈A be a family of basic closed subsets of X̃ with the finite
intersection property. We shall show that

⋂
α∈ACYα 	= ∅. It will follow that X̃ is

compact.
For any finite F ⊆ A and any ε > 0, there will be a near ultrafilter ξF ∈⋂

α∈F CYα and so, since Yα ∈ ξF for every α ∈ F,
⋂

α∈A B(Yα, ε) 	= ∅. This
shows that the family (Yα)α∈A has the near finite intersection property and hence
that it is contained in a near ultrafilter ξ. Since ξ ∈ ⋂

α∈A CYα , it follows that⋂
α∈A CYα 	= ∅.

To see that X̃ is Hausdorff, suppose that ξ1, ξ2 are distinct elements of X̃.
Choose any Y1 ∈ ξ1 \ ξ2. There will be a set Y2 ∈ ξ2 and a ε > 0 for which
Y1 ∩ B(Y2, ε) = ∅ (by Lemma 2.5). We choose a δ > 0 satisfying 2δ ≤ ε and
put Z = X̃ \ B(Y2, δ). It is easy to check that Y1 ∩ B(Y2, 2δ) = ∅ and hence that
ξ1 ∈ X̃ \ CB(Y2,δ) (by Lemma 2.5). Also, since Z ∩ B(Y2, δ) = ∅, ξ2 ∈ X̃ \ CZ .

Now CB(Y2,δ) ∪ CZ = X̃, by Lemma 2.7, and so (X̃ \ CB(Y2,δ)) ∩ (X̃ \ CZ) = ∅.
Thus X̃ is indeed Hausdorff.

Definition 3.5. We define a mapping e on X by stating that, for each x ∈ X,
e(x) = {Y ∈ P(X)|x ∈ Y }.

It is easy to verify that e(x) ∈ X̃.
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Theorem 3.6. The mapping e embeds X as a dense subspace in X̃.

Proof. We first remark that e is injective. To see this, suppose that x1, x2 are
distinct points of X . Then {x1} ∈ e(x1) \ e(x2) and so e(x1) 	= e(x2).

Now, for any Y ⊆ X and any x ∈ X,

x ∈ Y ⇔ Y ∈ e(x) ⇔ e(x) ∈ CY .

This shows that e−1(CY ) = Y and hence that e is continuous.
It also shows that, for any closed subset Y of X , e[Y ] = CY ∩ e[X ]. Since this

is a closed subset of e[X ], e is a closed mapping from X to e[X ] and therefore
defines a homeomorphism from X to e[X ].

Finally, suppose that CY 	= X̃. If ξ ∈ X̃ \ CY , then Y ∩ B(Z, ε) = ∅ for
some Z ∈ ξ and some ε > 0. This implies that B(Y, ε) ∩ Z = ∅ and hence that
Y 	= X , because Y ⊆ B(Y, ε). Thus we can choose x ∈ X \ Y . This implies that
e(x) ∈ X̃ \ CY and shows that e[X ] is dense in X̃, because every non-empty open
subset of X̃ will contain a non-empty set of the form X̃ \ CY .

Theorem 3.7. Suppose that (X, d1) and (Y, d2) are metric spaces and that f :
X → Y is uniformly continuous. Then there is a continuous function f̃ : X̃ → Ỹ

which is an extension of f in the sense that f̃eX = eY f, where eX , eY denote the
natural embeddings of X, Y in X̃, Ỹ respectively.

Proof. Given ξ ∈ X̃, we define η = {T ∈ P(Y )|f−1(B(Y, δ)) ∈ ξ for every
δ > 0}. We shall show that η ∈ Ỹ .

We first show that η has the near finite intersection property. To see this, suppose
that F is a finite subset of η and that σ > 0. We choose δ > 0 satisfying 2δ ≤ σ.
Then, there is ε > 0 such that d1(x1, x2) < ε implies that d2(f(x1), f(x2) < δ.
It follows that

⋂
T∈F B(f−1(B(T, δ)), ε) 	= ∅. If x is in this set, then, for each

T ∈ F , there will be a point xT ∈ f−1(B(T, δ)) for which d1(x, xT ) < ε. This
implies that d2(f(x), f(xT)) < δ and hence, since f(xT ) ∈ B(T, δ), that f(x) ∈
B(T, 2δ) ⊆ B(T, σ). Thus

⋂
T∈F B(T, σ) 	= ∅ and η does have the near finite

intersection property.
We now show that η is a near ultrafilter. If T /∈ η, f−1(B(T, δ)) /∈ ξ for some

δ > 0. This implies that f−1(B(T, δ)) ∩ S = ∅ for some S ∈ ξ, and hence that
B(T, δ) ∩ f [S] = ∅. Now f [S] ∈ η, because, for every σ > 0, f−1(B(f [S], σ)) ⊇
f−1(f [S]) ⊇ S. It follows that η is maximal subject to having the near finite
intersection property.

We can thus define a mapping f̃ : X̃ → Ỹ by stating that f(ξ) = η. It is
immediate that f̃ is continuous, because, if T ⊆ Y, (f̃)−1(CT ) =

⋂
δ>0 Cf−1(B(T,δ)).

Finally, let x ∈ X . It is obvious that {f(x)} ∈ f̃(eX(x)) and hence that
f̃(eX(x)) = eY (f(x)).
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Lemma 3.8. Let ξ ∈ X̃ and let Y ⊆ X . Then ξ ∈ clX̃e[Y ] if and only if
Y ∈ ξ.

Proof. Clearly, clX̃e[Y ] =
⋂{CZ |CZ ⊇ e[Y ]}. Now y ∈ Y ⇒ Y ∈ e(y) ⇒

e(y) ∈ CY . So CY ⊇ e[Y ]. On the other hand, suppose that Z ∈ P(X) satisfies
CZ ⊇ e[Y ]. Then y ∈ Y ⇒ e(y) ∈ CZ ⇒ Z ∈ e(y) ⇒ y ∈ clXZ. So Y ⊆ Z and
hence CY ⊆ CZ = CZ (by Lemma 2.6). Thus clX̃e[Y ] = CY .

Corollary 3.9. For any Y1, Y2 ∈ P(X), clX̃(Y1) ∩ clX̃(Y2) 	= ∅ if and only if
B(Y1, ε) ∩ B(Y2, ε) 	= ∅ for every ε > 0.

Proof. The condition that B(Y1, ε)∩B(Y2, ε) 	= ∅ for every ε > 0 is equivalent
to the condition that CY1 ∩ CY2 	= ∅.

Remark 3.10. We shall henceforward regard X as being a subspace of X̃ by
identifying the point x ∈ X with the point e(x) ∈ X̃.

The following Lemma is elementary and obviously well-known. We include it
for the sake of completeness.

Lemma 3.11. Let (fn) be a sequence of uniformly continuous real-valued
functions defined on a metric space (X, d). If (fn) converges uniformly on X to a
function f , then f is uniformly continuous.

Proof. Let ε > 0. We can choose n ∈ N so that |f(x) − fn(x)| < ε
3 for

every x ∈ X . We can then choose δ > 0 so that |fn(x) − fn(y)| < ε
3 whenever

d(x, y) < δ. It follows that |f(x) − f(y)| < ε whenever d(x, y) < δ.

Theorem 3.12. A bounded continuous function f : X → R has a continuous
extension f̃ : X̃ → R if and only if it is uniformly continuous.

Proof. Let C(X̃) denote the set of all continuous real-valued functions defined
on X̃. We know from Theorem 3.7 that a bounded uniformly continuous bounded
functions f : X → R does have a continuous extension f̃ : X̃ → R. The set of all
functions f̃ which arise in this way will be a uniformly closed subalgebra of C(X̃)
(by Lemma 3.11) and will contain the constant functions. By the Stone-Weierstrass
Theorem, it will be the whole of C(X̃) if it separates the points of X̃.

To see that it does, let ξ1, ξ2 be distinct points of X̃ . By Lemma 2.5, we
can choose Y1 ∈ ξ1, Y2 ∈ ξ2 and ε > 0 for which B(Y1, ε) ∩ Y2 = ∅. There
will be a uniformly continuous function f : X → [0, 1] for which f [Y1] = {0}
and f [Y2] = {1} (cf. [7]). Since ξ1 ∈ clX̃Y1 and ξ2 ∈ clX̃Y2 (by Lemma 3.8), it
follows that f̃(ξ1) = 0 and f̃(ξ2) = 1. Thus the functions of the form f̃ do separate
the points of X̃.
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Corollary 3.13. C(X̃) can be identified with the algebra of uniformly contin-
uous bounded real-valued functions defined on X.

Theorem 3.14. Suppose that the metric space (X, d) is not totally bounded.
Then X̃ contains a topological copy of βN.

Proof. We can choose a symmetric vicinity ε > 0 for which the covering
{B(x, ε)|x ∈ X} of X has no finite subcovering. We can then choose a sequence
(xn) ⊆ X with the property that, for each n ∈ N, xn /∈ ⋃n−1

1 B(xm, ε). We do
this inductively, first choosing x1 to be any element of X . We then assume that xm

has been chosen for each m = 1, 2, . . . , n− 1 and choose xn to be any element of
X \ ⋃n−1

1 B(xm, ε).
We then choose δ > 0 satisfying 2δ ≤ ε. This implies that the sets B(xn, δ)

will be pairwise disjoint.
Let D denote the discrete subspace {xn|n ∈ N} of X . We shall show that

clX̃D � βN.

The mapping f : N → X̃, defined by stating that f(n) = xn, has a continuous
extension fβ : βN → X̃. It will be sufficient to show that fβ is injective. Suppose
then that μ1 and μ2 are distinct elements of βN, and that G1 and G2 are disjoint open
subsets of βN containing μ1 and μ2 respectively. Let Mi = N∩Gi (i = 1, 2). Since
B(f [M1], δ) ∩ B(f [M2], δ) = ∅, clX̃(f [M1]) ∩ clX̃(f [M2]) = ∅, by the Corollary
to Lemma 3.8. Now fβ(μi) ∈ clX̃(f [Mi]) for i=1, 2, and so fβ(μ1) 	=fβ(μ2).

Remark 3.15. It follows from Theorem 3.14 that X̃ has at least 2c points if
(X, d) is not totally bounded, because it is well known that |βN| = 2c (cf. [9]).
However, if X is a non-compact totally bounded space, X̃ need not be as vast as
this. For example, let X denote the subspace { 1

n |n ∈ N} of R, with its standard
metric. Then X̃ is the countable subspace X ∪ {0} of R, because the functions in
C(X) which have continuous extensions to X∪

Definition 3.16. Suppose that Y is a subspace of a metric space (X, d). Then
Y is also a metric space with the induced metric dY : Y × Y →

Theorem 3.17. Suppose that Y is a subspace of a metric space (X, d) and
that Y has the induced metric dY . Then Ỹ � clX̃Y.

Proof. The inclusion map i : Y → X is uniformly continuous and therefore
has a continuous extension ı̃ : Ỹ → X̃ (by Theorem 3.7). We shall show that ı̃ is
injective.

Suppose that μ1, μ2 are distinct points in Ỹ . There will then be sets Z1, Z2 ⊆ Y

and a ε > 0 for which BY (Z1, ε)∩Z2 = ∅, where BY (Z1, ε) denotes B(Z1, ε)∩Y.
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Now BY (Z1, ε)∩Z2 = ∅ implies that BY (Z1, ε)∩Z2 = ∅ and hence that clX̃(Z1)∩
clX̃(Z2) = ∅, by the Corollary to Lemma 3.8. Since ı̃(μi) ∈ clX̃(Zi) for i = 1, 2,
it follows that ı̃(μ1) 	= ı̃(μ2).

4. THE COMPACTIFICATION OF A SEMIGROUP

We shall now suppose that (S, d) is a metric space and that S is a semigroup.
We shall give conditions under which the semigroup operation on S can be extended
to S̃, giving S̃ the structure of a compact right topological semigroup.

Notation. For each s ∈ S, we define λs : S → S and ρs : S → S by stating
that λs(t) = st and ρs(t) = ts.

Theorem 4.1. Suppose that the two following conditions are satisfied:
(i) For every s ∈ S, the mapping λs : S → S is uniformly continuous;
(ii) For every ε > 0, there exists a δ > 0 with the property that

d(s1, s2) < δ ⇒ d(s1t, s2t) < ε(∀t ∈ S).

Then the semigroup operation defined on S can be extended to S̃ in such a
way that S̃ becomes a semigroup compactification of S.

Proof. For each s ∈ S, the uniformly continuous mapping λs can be extended
to a continuous mapping λ̃s : S̃ → S̃, by Theorem 3.7. If η ∈ S̃, we shall denote
λ̃s(η) by sη.

We shall show that, for each η ∈ S̃, the mapping s �→ sη from S to S̃ is
uniformly continuous.

Let φ : S̃ → R be continuous. Then, by Theorem 3.12, φ|S is uniformly
continuous. Thus, if ε > 0, there will be a δ > 0 such that |φ(s) − φ(s′)| < ε if
d(s, s′) < δ. By condition ii), there will be a σ > 0 such that, whenever d(s, s′) <

σ, d(st, s′t) < δ for every t ∈ S. So, if d(s, s′) < σ, |φ(st)− φ(s′t)| < ε for every
t ∈ S. Now |φ(sη)−φ(s′η)| = limt→η |φ(st)−φ(s′t)|, and so |φ(sη)−φ(s′η)| ≤ ε
if d(s, s′) < σ. Using the fact that the unique metric structure on S̃ can be defined
by the functions in C(S̃), we have shown that the mapping s �→ sη from S to S̃ is
uniformly continuous.

It now follows from Theorem 3.7 that the mapping s �→ sη can be extended to
a continuous mapping from S̃ to itself. The image of the element ξ ∈ S̃ under this
extension will be denoted by ξη.

Thus we have defined a binary operation on S̃ by a double limit process. If
ξ, η ∈ S̃,

ξη = lim
s→ξ

lim
t→η

st.
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We observe that our definitions ensure that, for each s ∈ S, the mapping η �→ sη

is a continuous mapping from S̃ to itself. Furthermore, for each η ∈ S̃, the mapping
ξ �→ ξη is also a continuous mapping from S̃ to itself.

The associativity of the operation defined on S̃ is immediate from the following
equations: For every ξ, η, ζ ∈ S̃,

ξ(ηζ) = lim
s→ξ

lim
t→η

lim
u→ζ

s(tu);

(ξη)ζ = lim
s→ξ

lim
t→η

lim
u→ζ

(st)u.

Remark 4.2. The conditions used in Theorem 4.1 are satisfied by any semi-
group S whose topology is defined by an invariant metric.

We shall henceforward assume that S is a semitopological semigroup for which
the conditions of Theorem 4.1 are satisfied, and that S̃ has the semigroup structure
defined in this theorem.

Remark 4.3. Suppose that T is a subsemigroup of S. We have seen in Theorem
3.17 that T̃ can be regarded as topologically embedded in S̃, if T is assumed to
have the metric induced by that of S. The embedding is also algebraic, because the
inclusion map i : T → S has an extension ı̃ : T̃ → S̃ which is readily seen to be a
homomorphism. Thus T̃ can be regarded as a subsemigroup of S̃.

Lemma 4.4. Let s ∈ S and ξ ∈ S̃. Then, if Y ∈ ξ, sY ∈ sξ.

Proof. This follows from Lemma 3.8, since the mapping λs : S̃ → S̃ is
continuous. So, if ξ ∈ clS̃Y, sξ ∈ clS̃sY.

Lemma 4.5. If S is a group, then, for each s ∈ S and each ξ ∈ S̃, sξ =
{sY |Y ∈ ξ}.

Proof. This is immediate from Lemma 4.4.

Lemma 4.6. Let (X, d) be a metric space and let ξ ∈ X̃. For each Y ∈ ξ
and each ε > 0, CB(Y,ε) is a neighbourhood of ξ in X̃. Furthermore, the sets of
this form provide a basis for the neighbourhoods of ξ in X̃.

Proof. Since ξ ∈ X̃ \ CX\B(Y,ε) ⊆ CB(Y,ε), CB(Y,ε) is a neighbourhood of ξ.

On the otherhand, suppose that T ⊆ X and that ξ ∈ X̃ \ CT . Then T /∈ ξ

and so T ∩ B(Y, δ) = ∅ for some Y ∈ ξ and some δ > 0 (by Lemma 2.5). Let
ε > 0 be satisfying 2ε ≤ δ. Then ξ ∈ CB(Y,ε) and CB(Y,ε) ⊆ X̃ \ CT because
B(Y, ε)∩B(T, δ) = ∅. Thus the sets of the form CB(Y,ε) do provide a basis for the
neighbourhoods of ξ.
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Theorem 4.7. Suppose that S is a topological group. Then the mapping
(s, ξ) �→ sξ is a continuous mapping from S × S̃ to S̃.

Proof. We now from Theorem 4.1 that the maps s �→ sξ from S to S̃ are
uniformly continuous. Suppose that φ : S̃ → R is continuous and that ε < 0.
There is δ > 0 such that |φ(sξ) − φ(s′ξ)| < ε whenever d(s, s′) < δ and every
ξ ∈ S̃. Let s ∈ S and ξ ∈ S̃. Since the map λs : S̃ → S̃ is continuous, there is a
neighbourhood W of ξ in S̃ such that |φ(sξ) − φ(sξ′)| < ε whenever ξ′ ∈ W. It
follows that |φ(sξ)− φ(s′ξ′)| < 2ε whenever d(s, s′) < δ and ξ′ ∈ W.

In the next theorem, we show that there is a sense in which S̃ is the largest
semigroup compactification of S in which the continuity condition of Theorem 3.7
is satisfied.

Theorem 4.8. Let S be a topological group. Suppose that T is a compact
right topological semigroup and that h : S → T is a continuous homomorphism.
Suppose also that the mapping (s, η) �→ h(s)η is a continuous mapping from S×T
to T. Then there is a continuous homomorphism h̃ : S̃ → T for which h = h̃|S .

Proof. We shall first show that h is uniformly continuous.
Let φ : T → [0, 1] be a continuous function and let ε > 0. For each η ∈ T

there will be a neighbourhood N (η) of η in T, and a neigbourhood U(η) of the
identity in S, for which |φ(h(s)ζ)− φ(η)| < ε

2 whenever s ∈ U(η) and ζ ∈ N (η).
Now T will be covered by a finite number of neighbourhoods of the form N (η),
corresponding to points η1, η2, . . . , ηn in T. Let U =

⋂n
i=1 U(ηi).

Suppose that s1, s2 ∈ S satisfy s1 ∈ Us2. If h(s2) ∈ N (ηi), then

|φ(h(s1s
−1
2 )h(s2))− φ(ηi)| <

ε

2

and
|φ(h(s2))− φ(ηi)| <

ε

2
,

and so |φ(h(s1)) − φ(h(s2))| < ε. Thus h is uniformly continuous.
It follows from Theorem 3.7 that there is a continuous function h̃ : S̃ → T for

which h = h̃|S .
That h̃ is a homomorphism can be seen as follows: For any ξ1, ξ2 ∈ S̃,

h̃(ξ1ξ2) = lim
s1→ξ1

lim
s2→ξ2

h(s1s2)

= lim
s1→ξ1

lim
s2→ξ2

h(s1)h(s2)

= h̃(ξ1)h̃(ξ2)
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Remark 4.9. If S is a semigroup then SLUC compactification of S is defined to
be the spectrum of the Banach algebra SLUC of bounded left uniformly continuous
functions on S i.e all f ∈ CB(S) such that the map s → sf, sf(t) = f(st),
s, t ∈ S, is continuous when CB(S) has the sup norm topology. (Cf. [5].)

Corollary 4.10. If S is a group, S̃ can be identified with the compactification
SLUC , since SLUC is known to be the largest semigroup compactification of S in
which the continuity condition of
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