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EVALUATION OF COMPLETE ELLIPTIC INTEGRALS
OF THE FIRST KIND AT SINGULAR MODULI

Habib Muzaffar and Kenneth S. Williams

Abstract. The complete elliptic integral of the first kind K(k) is defined for
0 < k < 1 by

K(k) :=
∫ π

2

0

dθ√
1 − k2 sin2 θ

.

The real number k is called the modulus of the elliptic integral. The comple-
mentary modulus is k′ = (1− k2)

1
2 (0 < k′ < 1). Let λ be a positive integer.

The equation
K(k′) =

√
λK(k)

defines a unique real number k(λ) (0 < k(λ) < 1) called the singular modulus
of K(k). Let H(D) denote the form class group of discriminant D. Let d be
the discriminant −4λ. Using some recent results of the authors on values of
the Dedekind eta function at quadratic irrationalities, a formula is given for
the singular modulus k(λ) in terms of quantities depending upon H(4d) if
λ ≡ 0 (mod 2); H(d) and H(4d) if λ ≡ 1 (mod 4); H(d/4) and H(4d) if
λ ≡ 3 (mod 4). Similarly a formula is given for the complete elliptic integral
K[

√
λ] := K(k(λ)) in terms of quantities depending upon H(d) and H(4d) if

λ ≡ 0 (mod 2); H(d) if λ ≡ 1 (mod 4); H(d/4) and H(d) if λ ≡ 3 (mod 4).
As an example the complete elliptic integral K[

√
17] is determined explicitly

in terms of gamma values.

1. INTRODUCTION

Let k ∈ R be such that

(1.1) 0 < k < 1.
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The complete elliptic integral K(k) of the first kind is defined by

(1.2) K(k) :=
∫ π

2

0

dθ√
1 − k2 sin2 θ

=
∫ 1

0

dt√
(1 − t2)(1− k2t2)

.

Clearly
lim

k→0+
K(k) =

π

2
, lim

k→1−
K(k) = +∞.

The quantity k is called the modulus of the elliptic integral K(k). The complemen-
tary modulus k′ is defined by

(1.3) k′ :=
√

1 − k2.

From (1.1) and (1.3) we see that

(1.4) 0 < k′ < 1.

The complete elliptic integral K(k ′) of modulus k′ is denoted by K′(k) so that

(1.5) K ′(k) = K(k′) = K(
√

1 − k2)

and

(1.6) lim
k→0+

K ′(k) = +∞, lim
k→1−

K ′(k) =
π

2
.

Let λ ∈ N. As k increases from 0 to 1, the function K ′(k)/K(k) decreases
from +∞ to 0. Hence there is a unique modulus k = k(λ) with 0 < k < 1 such
that

(1.7)
K ′(k)
K(k)

=
√

λ.

The real number k(λ) is called the singular modulus corresponding to λ. The value
of the complete elliptic integral K(k) of the first kind at the singular modulus
k = k(λ) is denoted by

(1.8) K[
√

λ] := K(k(λ)).

The first five singular moduli are

k(1) =
1√
2
,

k(2) =
√

2 − 1,

k(3) =
√

3 − 1√
8

,
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k(4) = 3 − 2
√

2,

k(5) =

√√
5 − 1 −

√
3 −√

5
2

,

see for example [1, p. 139]. The values of K[
√

λ] for λ = 1, 2, . . . , 16 are given
in [1, Table 9.1, p. 298]. Other values can be found scattered in the literature. For
example in [2, p. 277] the values

(1.9) k(22) = −99 − 70
√

2 + 30
√

11 + 21
√

22

and

(1.10) K[
√

22]=2−5/211−1/2(7+5
√

2+3
√

22)1/2π1/2

{
88∏

m=1

Γ
(m

88

)(−88
m )
}1/4

are given, where Γ(x) is the gamma function and
(

d

n

)
is the Kronecker symbol.

The values of k(25) and K[
√

25] are given in [5, p. 259].
Let H(D) denote the form class group of discriminant D. Let d be the discrim-

inant −4λ. Using some recent results of the authors on values of the Dedekind eta
function at quadratic irrationalities, a formula is given for the singular modulus k(λ)
in terms of quantities depending upon H(4d) if λ ≡ 0 (mod 2); H(d) and H(4d) if
λ ≡ 1 (mod 4); H(d/4) and H(4d) if λ ≡ 3 (mod 4), see Theorem 1 in Section 4.
Similarly a formula is given for the complete elliptic integral K[

√
λ] := K(k(λ))

in terms of quantities depending upon H(d) and H(4d) if λ ≡ 0 (mod 2); H(d)
if λ ≡ 1 (mod 4); H(d/4) and H(d) if λ ≡ 3 (mod 4), see Theorem 1 in Section
4. Zucker [5, p. 258] has determined but not published the values of K[

√
λ] for

λ = 17, 18, 19 and 20, so as an example we determine explicitly the complete
elliptic integral K[

√
17] in terms of gamma values, see Theorem 2 in Section 5.

Our method is different from that of Zucker.

2. PRELIMINARY RESULTS

Let λ ∈ N and set

(2.1) q = e−π
√

λ

so that 0 < q < 1. We define

(2.2) Q0 :=
∞∏

n=1

(1 − q2n),
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(2.3) Q1 :=
∞∏

n=1

(1 + q2n),

(2.4) Q2 :=
∞∏

n=1

(1 + q2n−1),

(2.5) Q3 :=
∞∏

n=1

(1 − q2n−1).

Since

Q1Q2 =
∞∏

n=1

(1 + qn), Q0Q3 =
∞∏

n=1

(1− qn),

we have

Q0Q1Q2Q3 =
∞∏

n=1

(1− q2n) = Q0,

so that

(2.6) Q1Q2Q3 = 1.

Jacobi [3] [4, p. 147] has shown that

(2.7) 16qQ8
1 + Q8

3 = Q8
2.

He has also shown that the singular modulus k = k(λ), the complementary singular
modulus k′(λ), and the complete elliptic integral K[

√
λ] = K(k(λ)) are given by

(2.8) k(λ) = 4
√

q

(
Q1

Q2

)4

,

(2.9) k′(λ) =
(

Q3

Q2

)4

,

and

(2.10) K[
√

λ] =
π

2

(
Q0Q2

Q1Q3

)2

,

see [3] [4, p. 146]. Next we recall that the Dedekind eta function η(z) is defined
by

(2.11) η(z) := eπiz/12
∞∏

m=1

(1− e2πimz), z ∈ C, Im(z) > 0,
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and that Weber’s functions f(z), f1(z) and f2(z) are defined in terms of the
Dedekind eta function by

(2.12) f(z) := e−πi/24

η

(
1 + z

2

)
η(z)

,

(2.13) f1(z) :=
η
(z

2

)
η(z)

,

(2.14) f2(z) :=
√

2
η(2z)
η(z)

,

see [9, p. 114]. It is convenient to set

f0(z) := f(z)

so that fj(z) is defined for j = 0, 1, 2. From (2.1)-(2.5) and (2.11), we deduce that

(2.15) η(
√−λ) = q1/12Q0,

(2.16) η(2
√−λ) = q1/6Q0Q1,

(2.17) η(
√−λ/2) = q1/24Q0Q3,

(2.18) η((1 +
√−λ)/2) = eπi/24q1/24Q0Q2.

From (2.12)-(2.18) we obtain

(2.19) Q0 = q−1/12η(
√
−λ),

(2.20) Q1 = 2−1/2q−1/12f2(
√−λ),

(2.21) Q2 = q1/24f0(
√−λ),

(2.22) Q3 = q1/24f1(
√−λ).

Then, from (2.6), (2.7), (2.20), (2.21) and (2.22), we obtain

(2.23) f0(
√−λ)f1(

√−λ)f2(
√−λ) =

√
2

and
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(2.24) f0(
√−λ)8 = f1(

√−λ)8 + f2(
√−λ)8,

see [9, p, 114]. Then, from (2.8), (2.10) and (2.19)− (2.23), we obtain k(λ) and
K[

√
λ] in terms of λ, namely,

(2.25) k(λ) =
(

f2(
√−λ)

f0(
√−λ)

)4

and

(2.26) K[
√

λ] =
π

2
η(
√−λ)2f0(

√−λ)4.

Recent results of Muzaffar and Williams [6] give the values of η(
√−λ), f0(

√−λ),
f1(

√−λ) and f2(
√−λ) for all λ ∈ N, see Section 3. Using these values in (2.25)

and (2.26), we obtain the singular modulus k(λ) and the complete elliptic integral
of the first kind K[

√
λ] in Section 4.

3. EVALUATION OF η(
√−λ), f0(

√−λ), f1(
√−λ) and f2(

√−λ)

Let d be an integer satisfying

(3.1) d < 0, d ≡ 0 or 1 (mod 4).

Let f be the largest positive integer such that

(3.2) f2 | d, d/f2 ≡ 0 or 1 (mod 4).

We set ∆ = d/f2 ∈ Z so that

(3.3) d = ∆f2, ∆ ≡ 0, 1 (mod 4) .

For a prime p, the nonnegative integer vp(f) is defined by pvp(f) | f , pvp(f)+1 � f .
We set

(3.4) αp(∆, f) =

(
pvp(f) − 1

)(
1 −

(
∆
p

))

pvp(f)−1(p − 1)
(

p −
(

∆
p

)) ,

where
(

∆
p

)
is the Legendre symbol modulo p. The quantity αp(∆, f) is used in

Proposition 1 below.
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The positive-definite, primitive, integral, binary quadratic form ax2 +bxy +cy2

is denoted by (a, b, c). Its discriminant is the quantity d = b2−4ac, which satisfies
(3.1). The class of the form (a, b, c) is

(3.5) [a, b, c] = {(a(p, r), b(p, q, r, s), c(q, s)) | p, q, r, s ∈ Z, ps − qr = 1} ,

where

a(p, r) = ap2+bpr+cr2, b(p, q, r, s)=2apq+bps+bqr+2crs, c(q, s) = aq2+bqs+cs2.

The group of classes of positive-definite, primitive, integral, binary quadratic forms
of discriminant d under Gaussian composition is denoted by H(d). H(d) is a finite
abelian group. We denote its order by h(d). The identity I of the group H(d) is
the principal class

(3.6) I =

{
[1, 0,−d/4] , if d ≡ 0 (mod 4),

[1, 1, (1− d)/4] , if d ≡ 1 (mod 4).

The inverse of the class K = [a, b, c] ∈ H(d) is the class K−1 = [a,−b, c] ∈
H(d). If p is a prime with

(
d

p

)
= 1, we let h1 and h2 be the solutions of

h2 ≡ d (mod 4p), 0 ≤ h < 2p, with h1 < h2. The class Kp of H(d) is defined by

Kp =
[
p, h1,

h2
1 − d

4p

]
.

Then
K−1

p =
[
p,−h1,

h2
1 − d

4p

]
=
[
p, h2,

h2
2 − d

4p

]
,

as h1 + h2 = 2p. If p is a prime with
(

d

p

)
= 0, p � f , the class Kp of H(d) is

defined by

Kp =




[p, 0,−d/4p], if p > 2, d ≡ 0 (mod 4),

[p, p, (p2 − d)/4p], if p > 2, d ≡ 1 (mod 4),

[2, 0,−d/8], if p = 2, d ≡ 8 (mod 16),

[2, 2, (4− d)/8], if p = 2, d ≡ 12 (mod 16),

so that Kp = K−1
p . We do not define Kp for any other primes p.

As H(d) is a finite abelian group, there exist positive integers h1, h2, . . . , hν

and generators A1, A2, . . . , Aν ∈ H(d) such that

h1h2 · · ·hν = h(d), 1 < h1 | h2 | . . . | hν, ord(Ai) = hi (i = 1, . . . , ν),



1640 Habib Muzaffar and Kenneth S. Williams

and, for each K ∈ H(d), there exist unique integers k1, . . . , kν with

K = Ak1
1 · · ·Akν

ν (0 ≤ kj < hj, j = 1, . . . , ν).

We fix once and for all the generators A1, . . . , Aν of the group H(d). For j =
1, . . . , ν we set

indAj (K) := kj,

and for K, L ∈ H(d), we define χ : H(d)× H(d) −→ Ωhν (group of hν th roots
of unity) by

χ(K, L) = e

2πi

ν∑
j=1

indAj(K) indAj (L)
hj

.

The function χ has the properties

χ(K, L) = χ(L, K), for all K, L ∈ H(d),

χ(K, I) = 1, for all K ∈ H(d),

χ(KL, M) = χ(K, M)χ(L, M), for all K, L, M ∈ H(d),

χ(Kr, Ls) = χ(K, L)rs, for all K, L ∈ H(d) and all r, s ∈ Z,

see [6, Lemma 6.2]. It is known that for K( �= I) ∈ H(d) the limit

(3.7) j(K, d) = lim
s→1+

∏
p

( d
p)=1

(
1 − χ(K, Kp)

ps

)(
1 − χ(K−1, Kp)

ps

)

exists and is a nonzero real number such that j(K, d) = j(K−1, d), see [6, Lemma
7.6]. For n ∈ N and L ∈ H(d) we define

HL(n) := card{h | 0 ≤ h < 2n, h2 ≡ d (mod 4n),
[
n, h,

h2 − d

4n

]
= L}.

The properties of HL(n) are developed in [6, Section 5]. Then, for n ∈ N and
K ∈ H(d), we set

YK(n) :=
∑

L∈H(d)

χ(K, L)HL(n).

Properties of YK(n) are given in [6, Section 7]. Further, for a prime p and a class
K( �= I) ∈ H(d), we set

(3.8) A(K, d, p) =
∞∑

j=0

YK(pj)
pj

.



Evalation of Complete Elliptic Integrals 1641

Next, for K( �= I) ∈ H(d), we set

(3.9) l(K, d) =
∏
p|d
p�f

(
1 +

χ(K, Kp)
p

)∏
p|f

A(K, d, p),

where the products are over all primes p satisfying the stated conditions. Finally,
for K ∈ H(d), we define

(3.10) E(K, d) =
π
√|d|w(d)
48h(d)

∑
L∈H(d)

L�=I

χ(L, K)−1 t1(d)
j(L, d)

l(L, d),

see [6, Section 9], where

(3.11) w(d) = 6, 4 or 2 according as d = −3, d = −4 or d < −4,

and

(3.12) t1(d) :=
∏
p(

d
p

)
= 1

(
1 − 1

p2

)
.

The following evaluation of η(
√−λ) follows immediately from [6, Theorem 1],

as η(
√−λ) is real and positive for λ ∈ N.

Proposition 1. Let λ ∈ N. Let d = −4λ = ∆f2, where ∆ and f are defined
in (3.2) and (3.3). Let K = [1, 0, λ] ∈ H(d). Then

η(
√−λ) = 2−3/4π−1/4λ−1/4

∏
p|f

pαp(∆,f)/4


 |∆|∏

m=1

Γ
(

m

|∆|
)(∆

m)



w(∆)
8h(∆)

e−E(K,d),

where αp(∆, f) is defined in (3.4) and
(

∆
m

)
is the Kronecker symbol.

The following result is Theorem 3 of [6].

Proposition 2. Let λ ∈ N. Let d = −4λ. Let K = [1, 0, λ] ∈ H(d).
(a) λ ≡ 0 (mod 4). Set

M0 = [4, 4, λ+ 1] ∈ H(4d),

M1 =
[
1, 0,

λ

4

]
∈ H

(
d

4

)
,

M2 = [1, 0, 4λ] ∈ H(4d).

Let λ = 4αµ, where α is a positive integer and µ ≡ 1, 2 or 3 (mod 4).
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(i) µ ≡ 1 or 2 (mod 4) (so that ∆ is even and v2(f) = α). We have

f0(
√−λ) = 2

1
2α+3 eE(K,d)−E(M0,4d),

f1(
√−λ) = 2

2α+1−1
2α+2 eE(K,d)−E(M1,d/4),

f2(
√−λ) = 2

1
2α+3 eE(K,d)−E(M2,4d).

(ii) µ ≡ 3 (mod4) (so that ∆ ≡ −µ (mod8) and v2(f) = α + 1). If µ ≡
3 (mod 8), we have

f0(
√−λ) = 2

1
3·2α+2 eE(K,d)−E(M0,4d),

f1(
√
−λ) = 2

3·2α−1
3.2α+1 eE(K,d)−E(M1,d/4),

f2(
√−λ) = 2

1
3·2α+2 eE(K,d)−E(M2,4d).

If µ ≡ 7 (mod 8), we have

f0(
√−λ) = eE(K,d)−E(M0,4d),

f1(
√−λ) =

√
2eE(K,d)−E(M1,d/4),

f2(
√−λ) = eE(K,d)−E(M2,4d).

(b) λ ≡ 1 (mod 4) (so that ∆ is even and f is odd). Set

M0 =
[
2, 2,

λ + 1
2

]
∈ H(d),

M1 = [4, 0, λ] ∈ H(4d),

M2 = [1, 0, 4λ] ∈ H(4d).

Then
f0(

√−λ) = 21/4eE(K,d)−E(M0,d),

f1(
√−λ) = 21/8eE(K,d)−E(M1,4d),

f2(
√−λ) = 21/8eE(K,d)−E(M2,4d).

(c) λ ≡ 2 (mod 4) (so that ∆ is even and f is odd). Set

M0 = [4, 4, λ+ 1] ∈ H(4d),

M1 =
[
2, 0,

λ

2

]
∈ H(d),

M2 = [1, 0, 4λ] ∈ H(4d).
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Then

f0(
√−λ) = 21/8eE(K,d)−E(M0,4d),

f1(
√−λ) = 21/4eE(K,d)−E(M1,d),

f2(
√−λ) = 21/8eE(K,d)−E(M2,4d).

(d) λ ≡ 3 (mod 4) (so that λ ≡ −∆ (mod 8) and f ≡ 2 (mod 4)). Set

M0 =
[
1, 1,

λ + 1
4

]
∈ H

(
d

4

)
,

M1 = [4, 0, λ] ∈ H(4d),

M2 = [1, 0, 4λ] ∈ H(4d).

Then, for λ ≡ 3 (mod 8), we have

f0(
√−λ) = 21/3eE(K,d)−E(M0,d/4),

f1(
√−λ) = 21/12eE(K,d)−E(M1,4d),

f2(
√−λ) = 21/12eE(K,d)−E(M2,4d),

and, for λ ≡ 7 (mod 8), we have

f0(
√−λ) =

√
2eE(K,d)−E(M0,d/4),

f1(
√−λ) = eE(K,d)−E(M1,4d),

f2(
√−λ) = eE(K,d)−E(M2,4d).

4. FORMULAE FOR k(λ) AND K[
√

λ]

From (2.25), (2.26), Proposition 1 and Proposition 2, we obtain the main result
of this paper, namely, the formulae for the singular modulus k(λ) and the complete
elliptic integral of the first kind K[

√
λ] at the singular modulus valid for every

λ ∈ N.

Theorem 1. Let λ ∈ N. Let d = −4λ. Let K = [1, 0, λ] ∈ H(d).
(a) λ ≡ 0 (mod 4). Set

M0 = [4, 4, λ+ 1] ∈ H(4d), M2 = [1, 0, 4λ] ∈ H(4d).

Then
k(λ) = e4(E(M0,4d)−E(M2,4d)).

Let λ = 4αµ, where α is a positive integer and µ ≡ 1, 2 or 3 (mod 4). Then



1644 Habib Muzaffar and Kenneth S. Williams

K[
√

λ] = 2βπ1/2λ−1/2
∏
p|f

pαp(∆,f)/2


 |∆|∏

m=1

Γ
(

m

|∆|
)(∆

m )



w(∆)
4h(∆)

e2E(K,d)−4E(M0,4d),

where

β =




1
2α+1

− 5
2
, if µ ≡ 1 or 2 (mod 4),

1
3 · 2α

− 5
2
, if µ ≡ 3 (mod 8),

−5
2
, if µ ≡ 7 (mod 8),

(b) λ ≡ 1 (mod 4). Set

M0 =
[
2, 2,

λ + 1
2

]
∈ H(d), M2 = [1, 0, 4λ] ∈ H(4d).

Then
k(λ) = 2−1/2e4(E(M0,d)−E(M2,4d))

and

K[
√

λ] = 2−3/2π1/2λ−1/2
∏
p|f

pαp(∆,f)/2


 |∆|∏

m=1

Γ
(

m

|∆|
)(∆

m)



w(∆)
4h(∆)

e2E(K,d)−4E(M0,d).

(c) λ ≡ 2 (mod 4). Set

M0 = [4, 4, λ+ 1] ∈ H(4d), M2 = [1, 0, 4λ] ∈ H(4d).

Then
k(λ) = e4(E(M0,4d)−E(M2,4d))

and

K[
√

λ] = 2−2π1/2λ−1/2
∏
p|f

pαp(∆,f)/2


 |∆|∏

m=1

Γ
(

m

|∆|
)(∆

m)



w(∆)
4h(∆)

e2E(K,d)−4E(M0,4d).

(d) λ ≡ 3 (mod 4). Set

M0 =
[
1, 1,

λ + 1
4

]
∈ H

(
d

4

)
, M2 = [1, 0, 4λ] ∈ H(4d).

Then, for λ ≡ 3 (mod 8), we have

k(λ) = 2−1e4(E(M0,d/4)−E(M2,4d))
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and

K[
√

λ] = 2−7/6π1/2λ−1/2
∏
p|f

pαp(∆,f)/2


 |∆|∏

m=1

Γ
(

m

|∆|
)(∆

m)



w(∆)
4h(∆)

e2E(K,d)−4E(M0,d/4),

and, for λ ≡ 7 (mod 8), we have

k(λ) = 2−2e4(E(M0,d/4)−E(M2,4d))

and

K[
√

λ] = 2−1/2π1/2λ−1/2
∏
p|f

pαp(∆,f)/2


 |∆|∏

m=1

Γ
(

m

|∆|
)(∆

m)



w(∆)
4h(∆)

e2E(K,d)−4E(M0,d/4).

5. EVALUATION OF K[
√

17]

In this section we use Theorem 1 to evaluate the complete elliptic integral of
the first kind K[

√
17]. Thus λ = 17, d = −4λ = −68, ∆ = −68 and f = 1 in

the notation of Sections 3 and 4. The group H(−68) of classes of positive-definite,
primitive, integral binary quadratic forms of discriminant −68 under composition is

H(−68) = {I, A, A2, A3}, A4 = I,

where

I = [1, 0, 17], A = [3,−2, 6], A2 = [2, 2, 9], A3 = [3, 2, 6].

In order to determine K[
√

17] explicitly using Theorem 1, we must determine
E(I,−68) and E(A2,−68) (see Lemma 14). This requires finding j(Am,−68)
(m = 1, 2, 3) (see Lemma 13). To compute j(Am,−68) (m = 1, 2, 3) from (3.7)
we must determine those primes p satisfying

(
−1
p

)
=
( p

17

)
= 1 for which Kp = I

and those for which Kp = A2. This depends upon whether p is of the form x2+17y2

for integers x and y or of the form 2x2 + 2xy + 9y2 for integers x and y. By class
field theory the former occurs if and only if the quartic polynomial x4 +x2 +2x+1
is the product of four linear factors (mod p). This leads us to consider the arithmetic
of the field K = Q(θ), where θ is a root of x4 + x2 + 2x + 1.

Let f(x) be the irreducible quartic polynomial given by

(5.1) f(x) = x4 + x2 + 2x + 1 ∈ Z[x].
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The discriminant of f(x) is 272 = 24 · 17 and its Galois group is D8 (the dihedral
group of order 8) [8, p. 441]. The four roots of f(x) are

1
2
(i + (−1 + 4i)

1
2 ),

1
2
(i − (−1 + 4i)

1
2 ),

1
2
(−i + (−1 − 4i)

1
2 ),

1
2
(−i − (−1 − 4i)

1
2 ),

where z
1
2 denotes the principal value of the square root of the complex number z.

Let
θ =

1
2
(i + (−1 + 4i)

1
2 )

and set

(5.2) K = Q(θ)

so that K is the totally complex quartic field Q((−1 + 4i)
1
2 ). Thus the number

of real embeddings of K is r1 = 0 and the number of imaginary embeddings is
2r2 = 4. The ring of integers of K is

(5.3) OK = Z + Zθ + Zθ2 + Zθ3,

see [8, p. 441]. As K is monogenic, its discriminant d(K) = disc(f(x)) = 272.
It is known that OK has classnumber hK = 1 [8, p. 435] so that it is a principal
ideal domain. As r1 + r2 −1 = 0+2−1 = 1 we know by Dirichlet’s unit theorem
that OK has a single fundamental unit. This unit can be taken to be θ [8, p. 441].
The regulator

R(K)=2 log |θ|=log

∣∣∣∣∣ i + (−1 + 4i)
1
2

2

∣∣∣∣∣
2

=log

(
1 +

√
2 + 2

√
17+

√
17

4

)
≈0.732,

see [8, p. 441]. The quartic field K contains a unique subfield (�= Q, K), namely,
Q(i). The only roots of unity in OK are ±1 and ±i. Thus the number of roots of
unity in OK is w(K) = 4.

We now give the factorization of f(x) modulo a prime p. We use the notation
(m) to denote a monic irreducible polynomial of degree m with integer coefficients.
Thus g(x) ≡ (2)(2) (mod p) means that g(x) is the product of two distinct monic
irreducible quadratic polynomials modulo p and h(x) ≡ (2)2 means that h(x) is
the square of a monic irreducible quadratic polynomial modulo p. From class field
theory or indeed by elementary arguments one can show that the factorization of
f(x) (mod p), where p is a prime �= 2, 17, is given as follows:
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If (−1
p

)
=
( p

17

)
= 1 and p = u2 + 17v2 for some integers u and v

then
f(x) ≡ (1)(1)(1)(1) (mod p).

If (−1
p

)
=
( p

17

)
= 1 and p = 2u2 + 2uv + 9v2 for some integers u and v

then
f(x) ≡ (2)(2) (mod p).

If (−1
p

)
= −1,

( p

17

)
= 1

then
f(x) ≡ (2)(2) (mod p).

If (−1
p

)
= 1,

( p

17

)
= −1

then
f(x) ≡ (1)(1)(2) (mod p).

If (−1
p

)
=
( p

17

)
= −1

then
f(x) ≡ (4) (mod p).

For p = 2
f(x) ≡ (2)2 (mod 2)

and for p = 17
f(x) ≡ (1)(1)(1)2 (mod 17).

Using these results, a standard algebraic number theoretic argument gives the fac-
torization of the principal ideal pOK into prime ideals in OK , where p is a prime.

Lemma 1. Let p be a prime �= 2, 17.
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(i) If (−1
p

)
=
(

17
p

)
= 1 and p = x2 + 17y2 for some integers x and y

then
pOK = PQRS, N (P ) = N (Q) = N (R) = N (S) = p,

where P , Q, R, S are distinct prime ideals of OK .
(ii) If(−1

p

)
=
(

17
p

)
= 1 and p = 2x2 + 2xy + 9y2 for some integers x and y

then
pOK = PQ, N (P ) = N (Q) = p2,

where P and Q are distinct prime ideals of O K .
(iii) If (−1

p

)
= −1,

(
17
p

)
= 1

then
pOK = PQ, N (P ) = N (Q) = p2,

where P and Q are distinct prime ideals of O K .
(iv) If (−1

p

)
= 1,

(
17
p

)
= −1

then
pOK = PQR, N (P ) = N (Q) = p, N (R) = p2,

where P , Q and R are distinct prime ideals of OK .
(v) If (−1

p

)
=
(

17
p

)
= −1

then
pOK = P, N (P ) = p4,

where P is a prime ideal.
(vi) 2OK = P 2, N (P ) = 22, where P is a prime ideal.

(vii) 17OK = PQR2, N (P ) = N (Q) = N (R) = 17, where P , Q and R are
distinct prime ideals.
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The next lemma determines the class Kp of H(−68) when p is a prime such
that

(
−68
p

)
= 1.

Lemma 2. Let p be a prime such that
(
−68

p

)
= 1. Then

Kp = I ⇐⇒ p = x2 + 17y2 for some integers x and y,

Kp = A2 ⇐⇒ p = 2x2 + 2xy + 9y2 for some integers x and y,

Kp = A or A3 ⇐⇒ p = 3x2 ± 2xy + 6y2 for some integers x and y.

Proof. As
(
−68

p

)
= 1 there exist integers x and y such that

p = x2 + 17y2 or 2x2 + 2xy + 9y2, if
(−1

p

)
=
(

17
p

)
= 1,

and such that

p = 3x2 ± 2xy + 6y2, if
(−1

p

)
=
(

17
p

)
= −1.

We recall that as p is a prime the only classes representing p are Kp and Kp
−1.

Hence

p =x2+17y2 =⇒ [1, 0, 17] represents p =⇒ I =Kp or K−1
p =⇒ Kp=I,

p =2x2+2xy+9y2 =⇒ [2, 2, 9] represents p =⇒ A2 =Kp or K−1
p =⇒ Kp =A2,

p =3x2±2xy+6y2 =⇒ [3, 2, 6] represents p =⇒A3 =Kp or K−1
p =⇒Kp =A or A3.

This completes the proof of Lemma 2.

Definition 1. For s > 1 and ε, η ∈ {−1, +1} we define

Aε,η(s) : =
∏

p �= 2,17(
−1
p

)
= ε,

(
17
p

)
= η

(
1 +

1
ps

)−1

and

Bε,η(s) : =
∏

p �= 2,17(
−1
p

)
= ε,

(
17
p

)
= η

(
1 − 1

ps

)−1

.
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For brevity we just write A+1,+1(s), A+1,−1(s), ... as A++(s), A+−(s), ... re-
spectively. In view of Lemmas 1 and 2 we can split each of A++(s) and B++(s)
into two products as

A++(s) = A′
++(s)A′′

++(s), B++ = B′
++(s)B′′

++(s),

where

A′
++(s) : =

∏
p �= 2,17
Kp = I

(
1 +

1
ps

)−1

, A′′
++(s) : =

∏
p �= 2,17
Kp = A2

(
1 +

1
ps

)−1

and

B′
++(s) : =

∏
p �= 2,17
Kp = I

(
1 − 1

ps

)−1

, B′′
++(s) : =

∏
p �= 2,17
Kp = A2

(
1 − 1

ps

)−1

.

Lemma 3. For s > 1 we have

Aε,η(s) =
Bε,η(2s)
Bε,η(s)

, where ε, η ∈ {−1, +1},

and
A′

++(s) =
B′

++(2s)
B′

++(s)
, A′′

++(s) =
B′′

++(2s)
B′′

++(s)
.

Proof. We just prove the first equality as the other two equalities can be proved
similarly. We have

Aε,η(s)Bε,η(s) =
∏

p �= 2,17(
−1
p

)
= ε,

(
17
p

)
= η

(
1 +

1
ps

)−1 ∏
p �= 2,17(

−1
p

)
= ε,

(
17
p

)
= η

(
1− 1

ps

)−1

=
∏

p �= 2,17(
−1
p

)
= ε,

(
17
p

)
= η

(
1 − 1

p2s

)−1

= Bε,η(2s),

from which the asserted result follows.
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For s > 1 the Riemann zeta function is given by

ζ(s) =
∏
p

(
1 − 1

ps

)−1

,

where the product is taken over all primes p. If D is an integer with D ≡ 0 or 1
(mod 4) the Dirichlet L-series L(s, D) (s > 1) is given by

L(s, D) =
∏
p


1 −

(
D
p

)
ps




−1

.

We prove

Lemma 4. For s > 1 we have

(i) ζ(s) =
(

1 − 1
2s

)−1 (
1 − 1

17s

)−1

B−−(s)B−+(s)B+−(s)B++(s),

(ii) L(s,−4) =
(

1 − 1
17s

)−1 B−−(2s)
B−−(s)

B−+(2s)
B−+(s)

B+−(s)B++(s),

(iii) L(s, 17) =
(

1 − 1
2s

)−1 B−−(2s)
B−−(s)

B−+(s)
B+−(2s)
B+−(s)

B++(s),

(iv) L(s,−68) = B−−(s)
B−+(2s)
B−+(s)

B+−(2s)
B+−(s)

B++(s).

Proof. We just give the proofs of (i) and (ii). Equations (iii) and (iv) can be
proved similarly. Let

X = {(−1,−1), (−1, +1), (+1,−1), (+1, +1)}.

First we prove (i). We have

(
1 − 1

2s

)(
1 − 1

17s

)
ζ(s) =

∏
p �=2, 17

(
1 − 1

ps

)−1

=
∏

(ε,η)∈X

∏
p �= 2, 17(

−1
p

)
=ε,

(
17

p

)
= η

(
1 − 1

ps

)−1

,

from which (i) now follows by Definition 1.



1652 Habib Muzaffar and Kenneth S. Williams

Next we prove (ii). We have

L(s,−4) =
∏
p


1 −

(
−4
p

)
ps




−1

=
(

1 − 1
17s

)−1 ∏
p �=2, 17


1 −

(
−4
p

)
ps




−1

=
(

1 − 1
17s

)−1 ∏
(ε,η)∈X

∏
p �= 2, 17(

−1
p

)
= ε,

(
17
p

)
= η

(
1 − ε

ps

)−1

=
(

1 − 1
17s

)−1

A−−(s)A−+(s)B+−(s)B++(s),

and (ii) follows using Lemma 3.

Lemma 5. For s > 1 we have

B−−(s)4 = L(s,−4)−1L(s, 17)−1L(s,−68)B−−(2s)2ζ(s),

B−+(s)4 =
(

1 − 1
2s

)2

L(s,−4)−1L(s, 17)L(s,−68)−1B−+(2s)2ζ(s),

B+−(s)4 =
(

1 − 1
17s

)2

L(s,−4)L(s, 17)−1L(s,−68)−1B+−(2s)2ζ(s),

B++(s)4 =
(

1 − 1
2s

)2(
1 − 1

17s

)2

L(s,−4)L(s, 17)L(s,−68)

×B−−(2s)−2B−+(2s)−2B+−(2s)−2ζ(s),

Proof. We obtain the asserted equalities by solving the equations (i)-(iv) in
Lemma 4 for B−−(s), B−+(s), B+−(s) and B++(s).

The Dedekind zeta function for the field K is given by

ζK(s) =
∏
P

(
1 − 1

N (P )s

)−1

,

where the product is taken over all prime ideals of OK.

Lemma 6. For s > 1 we have

ζK(s) =
(

1 − 1
22s

)−1(
1 − 1

17s

)−3

B−−(4s)B−+(2s)2B+−(2s)B′′
++(2s)2B+−(s)2B′

++(s)4.
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Proof. We split ζK(s) into seven products and make use of Lemma 1 to
recognize each of these products in terms of the Bε,η . We have

ζK(s) = Π1Π2Π3Π4Π5Π6Π7,

where

Π1 : =
∏

P |2OK

(
1 − 1

N (P )s

)−1

=
(

1 − 1
4s

)−1

=
(

1 − 1
22s

)−1

,

Π2 : =
∏

P |17OK

(
1 − 1

N (P )s

)−1

=
(

1− 1
17s

)−3

,

Π3 : =
∏

p �= 2, 17(
−1
p

)
=
(

17
p

)
= −1

∏
P |pOK

(
1− 1

N (P )s

)−1

=
∏

p �= 2, 17(
−1
p

)
=
(

17
p

)
= −1

(
1 − 1

p4s

)−1

= B−−(4s),

Π4 : =
∏

p �= 2, 17(
−1
p

)
= −1,

(
17
p

)
= 1

∏
P |pOK

(
1 − 1

N (P )s

)−1

=
∏

p �= 2, 17(
−1
p

)
= −1,

(
17
p

)
= 1

(
1 − 1

p2s

)−2

= B−+(2s)2,

Π5 : =
∏

p �= 2, 17(
−1
p

)
= 1,

(
17
p

)
= −1

∏
P |pOK

(
1 − 1

N (P )s

)−1

=
∏

p �= 2, 17(
−1
p

)
= 1,

(
17
p

)
= −1

(
1 − 1

ps

)−2 (
1 − 1

p2s

)−1

= B+−(s)2B+−(2s),

Π6 : =
∏

p �= 2, 17( −1
p

)
=
(

17
p

)
=1

p=x2+17y2

∏
P |pOK

(
1 − 1

N (P )s

)−1

=
∏

p �= 2, 17( −1
p

)
=
(

17
p

)
=1

Kp=I

(
1− 1

ps

)−4

= B′
++(s)4,
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Π7 : =
∏

p �= 2, 17( −1
p

)
=
(

17
p

)
=1

p=2x2+2xy+9y2

∏
P |pOK

(
1 − 1

N (P )s

)−1

=
∏

p �= 2, 17( −1
p

)
=
(

17
p

)
=1

Kp=A2

(
1 − 1

p2s

)−2

= B′′
++(2s)2.

Multipying Π1, Π2, ... , Π7 together, we obtain the asserted equality.

Lemma 7. For s > 1 we have

B′
++(s)8 =

(
1− 1

2s

)2 (
1 +

1
2s

)2(
1 − 1

17s

)4

L(s,−4)−1L(s, 17)L(s,−68)

×B−−(4s)−2B−+(2s)−4B+−(2s)−4B′′
++(2s)−4ζK(s)2ζ(s)−1,

B′′
++(s)8 =

(
1− 1

2s

)2 (
1 +

1
2s

)−2

L(s,−4)3L(s, 17)L(s,−68)

×B−−(4s)2B−−(2s)−4B′′
++(2s)4ζK(s)−2ζ(s)3.

Proof. The first equality follows by replacing B+−(s)4 in the square of the
equality in Lemma 6 by its value given in Lemma 5. The second equality then
follows from B′

++(s)8B′′
++(s)8 = B++(s)8 and the value of B++(s)8 given by

Lemma 5.

Lemma 8.

(i) B−−(2)B−+(2)B+−(2)B++(2) =
36π2

289
,

(ii) t1(−68) =
289
36π2

B−+(2)B+−(2).

Proof. By Lemma 4(i) we have (as ζ(2) = π2/6)

B−−(2)B−+(2)B+−(2)B++(2) =
(

1 − 1
22

)(
1 − 1

172

)
ζ(2) =

36
289

π2,

which is (i). Then

t1(−68) =
1

B−−(2)B++(2)
=

289
36π2

B−+(2)B+−(2).

by (3.12), Definition 1 and (i).
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Lemma 9.

lim
s→1+

(
ζK(s)
ζ(s)

)
=

π2

4
√

17
log

(
1 +

√
2 + 2

√
17 +

√
17

4

)
.

Proof. By [7, Theorem 7.1, p. 326] we have

lim
s→1+

(s − 1)ζK(s)=
2r1+r2πr2R(K)h(K)

w(K)|d(K)|1/2
=

π2

4
√

17
log

(
1+
√

2+2
√

17+
√

17
4

)
.

As
lim

s→1+
(s − 1)ζ(s) = 1

the asserted result follows.

Lemma 10.

L(1,−4) =
π

4
, L(1, 17) =

2√
17

log(4 +
√

17), L(1,−68) =
2π√
17

.

Proof. Dirichlet’s class number formula [7, Theorem 7.1, p. 326] for the
quadratic field Q(

√
d) of discriminant d asserts that

L(1, d) =
2h(d) logη(d)√

d
, if d > 0,

and
L(1, d) =

2πh(d)
w(d)

√|d|, if d < 0,

where h(d) is the class number of Q(
√

d), η(d) is the fundamental unit > 1 of
Q(

√
d) when d > 0, and w(d) = 2, 4 or 6 according as d < −4, d = −4 or

d = −3 when d < 0. As

h(−4) = 1, h(17) = 1, h(−68) = 4, η(17) = 4 +
√

17

the asserted result follows.

Lemma 11.

lim
s→1+

(
B−−(s)
B++(s)

)2

=
17

√
17B−−(2)2B−+(2)B+−(2)

4π log(4 +
√

17)
.
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Proof. By Lemma 5 we have(
B−−(s)
B++(s)

)2

=
(

1 − 1
2s

)−1(
1 − 1

17s

)−1

L(s,−4)−1L(s, 17)−1

×B−−(2s)2B−+(2s)B+−(2s).

Letting s → 1+ and appealing to Lemma 10, we obtain the asserted limit.

Lemma 12.

lim
s→1+

(
B′

++(s)
B′′

++(s)

)2

=
24π

17
√

17
log

(
1 +

√
2 + 2

√
17 +

√
17

4

)

×B−−(4)−1B−−(2)B−+(2)−1B+−(2)−1B′′
++(2)−2.

Proof. By Lemma 7 we have(
B′

++(s)
B′′

++(s)

)2

=
(

1+
1
2s

)(
1− 1

17s

)
L(s,−4)−1B−−(4s)−1B−−(2s)B−+(2s)−1

×B+−(2s)−1B′′
++(2s)−2

(
ζK(s)
ζ(s)

)
.

Letting s → 1+ and appealing to Lemmas 9 and 10, we obtain the asserted limit.

We note (in the notation of Section 3) that

K2 = [2, 2, 9] = A2,

K17 = [17, 0, 1] = [1, 0, 17] = I,

χ(Aj , Ak) = ijk,

l(Aj,−68) =
(

1 +
χ(Aj , A2)

2

)(
1 +

χ(Aj, I)
17

)
=
(

1 +
(−1)j

2

)(
1 +

1
17

)

=




9
17

, if j = 1, 3,

27
17

, if j = 2.

Lemma 13.

j(A,−68) = j(A3,−68) =
17

√
17B−+(2)B+−(2)

24π log

(
1 +

√
2 + 2

√
17 +

√
17

4

) ,
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j(A2,−68) =
17

√
17B−+(2)B+−(2)

4π log(4 +
√

17)
.

Proof. For r = 1, 2, 3 we have by (3.7)

j(Ar,−68) = lim
s→1+

∏
p �= 2, 17(

−1
p

)
=
(

17
p

)

(
1 − χ(Ar, Kp)

ps

)(
1 − χ(A−r, Kp)

ps

)
.

Thus, by Lemmas 1 and 2, we have

j(Ar,−68) = lim
s→1+

∏
(

−1
p

)
=
(

17
p

)
= 1

Kp = I

(
1 − 1

ps

)2 ∏
(

−1
p

)
=
(

17
p

)
= 1

Kp = A2

(
1 − (−1)r

ps

)2

×
∏

(
−1
p

)
=
(

17
p

)
=−1

(
1− ir

ps

)(
1− i−r

ps

)
.

Hence

j(A2,−68) = lim
s→1+

B++(s)−2A−−(s)−2

= lim
s→1+

1
B−−(2s)2

(
B−−(s)
B++(s)

)2

(by Lemma 3)

=
1

B−−(2)2
lim

s→1+

(
B−−(s)
B++(s)

)2

.

The determination of j(A2,−68) now follows by Lemma 11.
Finally

j(A,−68) = j(A3,−68) = lim
s→1+

B′
++(s)−2A′′

++(s)−2A−−(2s)−1

= lim
s→1+

B−−(2s)
B′′

++(2s)2B−−(4s)

(
B′

++(s)
B′′

++(s)

)−2

(by Lemma 3)

=
B−−(2)

B′′
++(2)2B−−(4)

lim
s→1+

(
B′

++(s)
B′′

++(s)

)−2

.

The determination of j(A,−68) now follows by Lemma 12.

Lemma 14.

E(I,−68) =
1
4

log

(
1 +

√
2 + 2

√
17 +

√
17

4

)
+

1
16

log(4 +
√

17),

E(A2,−68) = −1
4

log

(
1 +

√
2 + 2

√
17 +

√
17

4

)
+

1
16

log(4 +
√

17).
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Proof. From (3.10) we have for r = 0, 1, 2, 3

E(Ar,−68) =
π
√

68w(−68)
48h(−68)

3∑
m=1

χ(Am, Ar)−1 t1(−68)
j(Am,−68)

l(Am,−68)

=
289

√
17

1728π
B−+(2)B+−(2)

3∑
m=1

i−mr l(Am,−68)
j(Am,−68)

(by Lemma 8(ii))

=
17

√
17

192π
B−+(2)B+−(2)

(
i−r

j(A,−68)
+ 3

i−2r

j(A2,−68)
+

i−3r

j(A3,−68)

)
.

The asserted results now follow by taking r = 0 and r = 2 and appealing to Lemma
13.

From Proposition 2(b) and Lemma 14 we obtain

f0(
√−17) = 21/4

(
1 +

√
2 + 2

√
17 +

√
17

4

)1/2

in agreement with [9, p. 721].

Theorem 2.

K[
√

17] = 2−9/217−1/2π1/2(
√

17− 4)1/8

×(1 +
√

2 + 2
√

17 +
√

17)3/2
{∏68

m=1 Γ
(

m
68

)(−68
m )
}1/8

.

Proof. We apply Theorem 1(b) with λ = 17 so that K = [1, 0, 17] = I and
M0 = [2, 2, 9] = A2. We obtain

K[
√

17] = 2−3/2π1/217−1/2

{
68∏

m=1

Γ
(m

68

)(−68
m )
}1/8

e2E(I,−68)−4E(A2,−68).

By Lemma 14 we have

2E(I,−68)−4E(A2,−68) =
3
2

log

(
1 +

√
2 + 2

√
17 +

√
17

4

)
−1

8
log(4+

√
17),

so that

e2E(I,−68)−4E(A2,−68) =

(
1 +

√
2 + 2

√
17 +

√
17

4

)3/2

(4 +
√

17)1/8
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= 2−3(
√

17− 4)1/8

(
1 +

√
2 + 2

√
17 +

√
17
)3/2

,

and Theorem 2 follows.

In a similar manner it can be shown that the singular modulus k(17) is given
by

k(17) =
1
2
(
√

U −
√

V ) = 0.006156 . . . ,

where
U = 21 + 5

√
17 − 8

√
2 + 2

√
17 − 6

√
2
√

17 − 2

and
V = −19 − 5

√
17 + 8

√
2 + 2

√
17 + 6

√
2
√

17 − 2.
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