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CONVERGENCE OF A PERTURBED THREE-STEP ITERATIVE
ALGORITHM WITH ERRORS FOR COMPLETELY

GENERALIZED NONLINEAR MIXED
QUASI-VARIATIONAL INEQUALITIES

Zeqing Liu, Beibei Zhu, Shin Min Kang and Jeong Sheok Ume

Abstract. In this paper, we introduce and study a new class of completely
generalized nonlinear mixed quasi-variational inequalities. Using the resolvent
operator technique for maximal monotone operators, we construct a perturbed
three-step iterative algorithm with errors for solving this kind of completely
generalized nonlinear mixed quasi-variational inequalities. Furthermore, we
establish a few existence and uniqueness results of solutions for the completely
generalized nonlinear mixed quasi-variational inequality involving relaxed Lip-
schitz, generalized pseudo-contractive and strongly monotone mappings and
prove some convergence results of the iterative sequence generated by the
perturbed three-step iterative algorithm with errors.

1. INTRODUCTION

Since its birth in the mid-1960’s, the area of variational inequalities has expe-
rienced a phenomenal growth. It is now considered a field in its own right. It is
well known that variational inequality theory provides a convenient mathematical
framework for discussing a number of interesting problems in the field of opti-
mization, equilibrium, elasticity and structural analysis, etc. For details we refer to
[1-4] and [6-23]. An important generalization of variational inequalities is a varia-
tional inequality containing a nonlinear term. Due to the presence of the nonlinear
term, the projection method cannot be used to study the existence of solutions for
the variational inequalities. In 1994, Hassouni and Moudafi [2] used the resolvent
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operator technique for maximal monotone operator to study a new class of mixed
variational inequalities. In 2000, Huang, Bai, Cho and Kang [4] extended this
technique for a new class of general mixed variational inequalities. In 2003, Liu,
Debnath, Kang and Ume [7] modified this technique for another new class of gener-
alized nonlinear quasi-variational inclusions. In 2004, Liu and Kang [16] used the
resolvent technique to establish the equivalence between the completely generalized
nonlinear quasi-variational inequality and the fixed point problem. What’s more,
they also suggested a perturbed three-step iterative algorithm for solving the class
of completely generalized nonlinear quasi-variational inequalities.

Inspired and motivated by recent research works [1-4] and [6-23], in this paper,
we introduce and study a new class of completely generalized nonlinear mixed
quasi-variational inequalities, and construct a perturbed three-step iterative algorithm
with errors for finding the approximate solutions of the completely generalized
nonlinear mixed quasi-variational inequality involving strongly monotone, relaxed
Lipschitz and generalized pseudo-contractive mappings. Under certain conditions,
we obtain a few existence and uniqueness of solutions for the completely generalized
nonlinear mixed quasi-variational inequality. Furthermore, some convergence results
of the iterative sequence generated by the perturbed three-step iterative algorithm
with errors are presented in this paper. Our results improve, extend and unify the
corresponding results in [2, 4] and [21].

2. PRELIMINARIES

Let H be a Hilbert space endowed with a norm ‖ · ‖ and inner product 〈·, ·〉,
respectively, and I be the identity mapping on H . 2H and CC(H) denote the
families of all the nonempty subsets of H, and all the nonempty closed convex
subsets of H , respectively. Suppose that W : H × H → 2H is a multi-valued
mapping such that for each fixed t ∈ H , W (·, t) : H → 2H is maximal monotone.

Given mappings g, a, b, c, d : H → H, N : H × H × H → H and f ∈ H , we
consider the following problem:

Find u ∈ H such that

(2.1) f ∈ g(u)− N (a(u), b(u), c(u))+ W (g(u), d(u)),

which is called a completely generalized nonlinear mixed quasi-variational inequal-
ity.

Special cases of problem (2.1) are as follows:
(a) If f = 0, d = I and N (a(u), b(u), c(u)) = −N (a(u), b(u)) + g(u) for all

u ∈ H, problem (2.1) is equivalent to finding u ∈ H such that

(2.2) 0 ∈ N (a(u), b(u))+ W (g(u), u),
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which is called the generalized nonlinear mixed quasi-variational inequality
introduced and studied by Huang et al. [4].

(b) If f = 0, N (a(u), b(u), c(u)) = b(u) − a(u) + g(u) and W (u, v) = ∂ϕ(u)
for all u, v ∈ H, where ∂ϕ stands for the sub-differential of a proper, convex
and lower semi-continuous functional ϕ : H → R ∪ {+∞}, then problem
(2.1) is equivalent to the following problem studied in [2]:

Find u ∈ H such that

(2.3) 〈a(u)− b(u), v − g(u)〉 ≥ ϕ(g(u))− ϕ(v), ∀v ∈ H.

(c) If f = 0, g = I , N (u, v, w) = w, W (u, v) = ∂ϕ(u) and ϕ(u) = IK(u) for
all u, v, w ∈ H, where K ∈ CC(H) and IK is the indicator function on K
defined by

IK(u) =

{
0, if u ∈ K ,

+∞, if u /∈ K,

then problem (2.1) collapses to finding u ∈ K such that

(2.4) 〈u − c(u), v − u〉 ≥ 0, v ∈ K,

which is called nonlinear variational inequality and introduced in [21].

For a suitable choice of the mappings g, a, b, c, d,N, the element f, and the
space H, one can obtain a number of known and new classes of variational in-
equalities from the generalized nonlinear mixed quasi-variational inequality (2.1).
Furthermore, these types of variational inequalities enable us to study many problems
arising in mathematical, regional, physical and engineering sciences in a general and
unified framework.

Definition 2.1. Let N : H × H × H → H and g : H → H be mappings.

(1) g is said to be r-strongly monotone if there exists a constant r > 0 such that

〈g(u)− g(v), u− v〉 ≥ r ‖ u − v ‖2, ∀u, v ∈ H ;

(2) g is said to be s-Lipschitz continuous if there exists a constant s > 0 such
that

‖g(x)− g(y)‖ ≤ s ‖ x − y ‖, ∀x, y ∈ H ;

(3) g is said to be r-generalized pseudo-contractive with respect to the first
argument of N if there exists a constant r > 0 such that

〈N (g(u), x, y)− N (g(v), x, y), u− v〉 ≤ r‖u− v‖2, ∀u, v, x, y ∈ H ;
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(4) g is said to be r-relaxed Lipschitz with respect to the second argument of N ,
if there exists a constant r > 0 such that

〈N (x, g(u), y)− N (x, g(v), y), u− v〉 ≤ −r ‖ u − v ‖2, ∀u, v, x, y ∈ H.

(5) g is said to be r-strongly monotone with respect to the third argument of N
if there exists a constant r > 0 such that

〈N (x, y, g(u))− N (x, y, g(v)), u− v〉 ≥ r ‖ u − v ‖2, ∀u, v, x, y ∈ H.

Definition 2.2. A multi-valued operator W : H → 2H is said to be

(1) monotone if

〈x − y, u− v〉 ≥ 0, ∀u, v ∈ H, x ∈ Wu, y ∈ Wv;

(2) maximal monotone if W is monotone and (I + λW )(H) = H for all λ > 0.

Remark 2.1. It is well known that an operator W is maximal monotone if and
only if it is monotone and there is no other monotone operator whose graph contains
strictly the graph Graph(W ) of W , where Graph(W ) = {(u, x) ∈ H × H : x ∈
Wu}.

Definition 2.3. Let H be a Hilbert space and W : H → 2H be a maximal
monotone operator. For any fixed ρ > 0, the mapping JW

ρ (x) : H → H defined by

JW
ρ (x) = (I + ρW )−1(x), ∀x ∈ H,

is said to be resolvent operator of W .

It is well-known that the resolvent operator JW
ρ is single valued and non-expan-

sive.

Definition 2.4. Let W, Wn : H → 2H be maximal monotone operators for
n ≥ 0. The sequence {Wn}n≥0 is said to be graph-convergence to W (write
Wn

G−→W as n → ∞) if for each (x, y) ∈ Graph(W ), there exists a sequence
{(xn, yn)}n≥0 such that (xn, yn) ∈ Graph(Wn), ∀n ≥ 0, xn → x and yn → y in
H as n → ∞.

Lemma 2.1. ([5]) Let {αn}n≥0, {βn}n≥0 and {γn}n≥0 be nonnegative se-
quences satisfying

αn+1 ≤ (1 − δn)αn + δnβn + γn, ∀n ≥ 0,
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where {δn}n≥0 ⊂ [0, 1],
∞∑

n=0
δn = ∞, lim

n→∞ βn = 0 and
∞∑

n=0
γn < ∞. Then

lim
n→∞ αn = 0.

Lemma 2.2. ([1]) Let Wn and W be maximal monotone operators for n ≥ 0.

Then Wn
G→W as n → ∞ if and only if J Wn

ρ (x) → JW
ρ (x) as n → ∞ for every

x ∈ H and ρ > 0.

3. A PERTURBED THREE-STEP ITERATIVE ALGORITHM WITH ERRORS

We first transfer the completely generalized nonlinear mixed quasi-variational
inequality (2.1) into a fixed point problem.

Lemma 3.1. Let ρ and t be positive parameters. Then the following conditions
are equivalent.

(a) the completely generalized nonlinear mixed quasi-variational inequality (2.1)
has a solution u ∈ H ;

(b) there exists u ∈ H satisfying

(3.1) g(u) = JW (·,d(u))
ρ ((1 − ρ)g(u) + ρN (a(u), b(u), c(u))+ ρf),

where J
W (·,d(u))
ρ is the resolvent operator;

(c) the mapping F : H −→ H defined by

(3.2)
Fx = (1 − t)x + t(x − g(x) + JW (·,d(x))

ρ ((1− ρ)g(x)

+ ρN (a(x), b(x), c(x))+ ρf)), ∀x ∈ H

has a fixed point u ∈ H.

Proof. Note that (3.1) holds if and only if

(1 − ρ)g(u) + ρN (a(u), b(u), c(u))+ ρf ∈ g(u) + ρW (g(u), d(u)),

which is equivalent to

f ∈ g(u)− N (a(u), b(u), c(u))+ W (g(u), d(u)).

On the other hand, F has a fixed point u ∈ H if and only if

u = F (u) + (1 − t)u + t(u − g(u) + JW (·,d(u))
ρ ((1− ρ)g(u)

+ ρN (a(u), b(u), c(u))+ ρf)),
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which is equivalent to (3.1). This completes the proof.

Based on Lemma 3.1, we suggest the following perturbed three-step iterative al-
gorithm with errors for the completely generalized nonlinear mixed quasi-variational
inequality (2.1).

Algorithm 3.1. Let g, a, b, c, d : H → H, N : H ×H ×H → H be mappings
and f ∈ H. Let

(3.3) Ex = (1− ρ)g(x) + ρN (a(x), b(x), c(x))+ ρf, ∀x ∈ H.

Given u0 ∈ H, the iterative sequence {un}n≥0 is defined by

un+1 = (1− an − bn)un + an(vn − g(vn) + JWn(·,d(vn))
ρ (E(vn))) + bnpn,

vn = (1− a′n − b′n)un + a′n(wn − g(wn) + JWn(·,d(wn))
ρ (E(wn))) + b′nqn,

wn = (1− a′′n − b′′n)un + a′′n(un − g(un) + JWn(·,d(un))
ρ (E(un))) + b′′nrn

for all n ≥ 0, where each Wn : H × H → 2H is a multi-valued mapping such that
for each y ∈ H, Wn(·, y) : H → 2H is maximal monotone, ρ is a positive constant,
{pn}n≥0, {qn}n≥0 and {rn}n≥0 are bounded sequences in H introduced to take
into account possible in inexact computation and the sequences {an}n≥0, {bn}n≥0,

{a′n}n≥0, {b′n}n≥0, {a′′n}n≥0 and {b′′n}n≥0 are in [0, 1] and satisfying

(3.4) max{an + bn, a′n + b′n, a′′n + b′′n} ≤ 1, ∀ n ≥ 0;

(3.5)
∞∑

n=0

an = ∞, lim
n→∞ a′nb′′n = lim

n→∞ b′n = 0

and one of the following conditions:

(3.6)
∞∑

n=0

bn < ∞;

(3.7)
there exists a nonnegative sequence {hn}n≥0 with
limn→∞ hn = 0 and bn = anhn, ∀n ≥ 0.

Remark 3.1. If a′′n = b′′n = 0 for all n ≥ 0, then the perturbed three-
step iterative algorithm with errors reduces to the Ishikawa type perturbed iterative
algorithm with errors. Furthermore, if a′n = b′n = 0 for all n ≥ 0, then the Ishikawa
type perturbed iterative algorithm with errors reduces to the Mann type perturbed
iterative algorithm with errors.
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4. EXISTENCE AND CONVERGENCE

In this section, we discuss those conditions under which the approximate so-
lutions un obtained from the perturbed three-step iterative algorithm with errors
converge strongly to the exact solution u ∈ H of the completely generalized non-
linear mixed quasi-variational inequality (2.1).

Theorem 4.1. a, b, c, d : H → H be p-Lipschitz continuous, q-Lipschitz
continuous, r-Lipschitz continuous, s-Lipschitz continuous, respectively, g : H →
H satisfy that I − g is l-Lipschitz continuous. Let N : H × H × H → H be
α-Lipschitz continuous in the first argument, β-Lipschitz continuous in the second
argument, h-Lipschitz continuous in the third argument, a be ξ-generalized pseudo-
contractive with respect to the first argument of N , b be ζ-relaxed Lipschitz with
respect to the second argument of N , c be η-strongly monotone with respect to
the third argument of N . Suppose that W n, W : H × H → 2H are such that,
for each y ∈ H and n ≥ 0, Wn(·, y), W (·, y) : H → 2H are maximal monotone,
Wn(·, y) G−→W (·, y) as n → ∞, and

(4.1)
sup{‖JW (·,x)

ρ (z) − J
W (·,y)
ρ (z)‖, ‖JWn(·,x)

ρ (z) − J
Wn(·,y)
ρ (z)‖ : n ≥ 0}

≤ µ‖x − y‖, ∀x, y, z ∈ H,

where µ is a constant. Let

k = l + µs, j =
√

1− 2ζ + β2q2 +
√

1 − 2η + h2r2,

A = 1 + α2p2 − 2ξ − (j − l)2, B = 1 − ξ − (1− k − l)(j − l),

C = 1 − (1 − k − l)2, A′ = 1 + α2p2 − 2ξ − (j + l)2,

B′ = 1 − ξ − (1− k + l)(j + l), C′ = 1 − (1 − k + l)2.

If there exists a constant ρ > 0 satisfying

(4.2) k + ρj + |1 − ρ|l < 1

and one of the following conditions:

(4.3)
A > 0, B >

√
AC,

ρ ∈
(

C

B +
√

B2 − AC
,

C

B −√
B2 − AC

)
∩ (0, 1];

(4.4) A < 0, ρ ∈
(

C

B +
√

B2 − AC
, +∞

)
∩ (0, 1];
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(4.5)
A′ > 0, B′ >

√
A′C′,

ρ ∈
(

C′

B′ +
√

B′2 − A′C′
,

C′

B′ −
√

B′2 − A′C′

)
∩ (1, +∞);

(4.6) A′ < 0, ρ ∈
(

C′

B′ +
√

B′2 − A′C′
, +∞

)
∩ (1, +∞),

then the completely generalized nonlinear mixed quasi-variational inequality (2.1)
has a unique solution u ∈ H and the sequence {u n}n≥0 defined by Algorithm 3.1
converges strongly to u.

Proof. First we show that the completely generalized nonlinear mixed quasi-
variational inequality (2.1) has a unique solution u ∈ H. According to Lemma 3.1,
it is enough to prove that the mapping F : H → H defined by (3.2) has a unique
fixed point u ∈ H, where t ∈ (0, 1] is a parameter. Let x, y be arbitrary elements
in H . Using the conditions of Theorem 4.1 and the non-expansivity of J

W (·,x)
ρ , we

infer that

(4.7)

‖F (x) − F (y)‖
≤ (1 − t)‖x − y‖+ t‖x − y − (g(x)− g(y))‖

+t‖JW (·,d(x))
ρ (E(x))− J

W (·,d(x))
ρ (E(y))‖

+t‖JW (·,d(x))
ρ (E(y))− J

W (·,d(y))
ρ (E(y))‖

≤ (1 − t + tk)‖x − y‖ + t‖E(x)− E(y)‖
≤ (1 − t + tk)‖x − y‖ + t|1 − ρ|‖g(x)− g(y)− (x − y)‖

+t‖(1 − ρ)(x− y) + ρ(N (a(x), b(x), c(x))− N (a(y), b(x), c(x)))‖
+tρ‖x − y + N (a(y), b(x), b(x))− N (a(y), b(y), c(x))‖
+tρ‖N (a(y), b(y), c(x))− N (a(y), b(y), c(y))− (x− y)‖

≤ [1 − t + t(k + |1− ρ|l)]‖x− y‖
+t[

√
(1− ρ)2 + 2ξρ(1− ρ) + ρ2α2p2

+ρ(
√

1 − 2ζ + β2q2 +
√

1 − 2η + h2r2)]‖x− y‖
= [1 − (1 − θ)t]‖x − y‖,

where

(4.8) θ = k + ρj + |1 − ρ|l +
√

(1− ρ)2 + 2ξρ(1− ρ) + ρ2α2p2.
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In view of (4.2) and (4.8), we have

(4.9) θ < 1 ⇐⇒
{

Aρ2 − 2Bρ < −C, if 0 < ρ ≤ 1,

A′ρ2 − 2B′ρ < −C′, if ρ > 1.

It follows from (4.8) and one of (4.3)-(4.6) that θ < 1. Since t ∈ (0, 1], F is a
contraction mapping. Hence it has a unique fixed point u ∈ H, which is a unique
solution of the completely generalized nonlinear mixed quasi-variational inequality
(2.1).

Now we show that lim
n→∞ un = u. Notice that

(4.10)

u = (1an − bn)u + an(u − g(u) + J
W (·,d(u))
ρ (E(u)))+ bnu

= (1 − a′n − b′n)u + a′n(u − g(u) + J
W (·,d(u))
ρ (E(u))) + b′nu

= (1 − a′′n − b′′n)u+a′′n(u− g(u)+J
W (·,d(u))
ρ (E(u)))+b′′nu, ∀ n ≥ 0.

Put dn = ‖JWn(·,d(u))
ρ (E(u))−J

W (·,d(u))
ρ (E(u))‖ for all n ≥ 0 and L = sup{‖pn−

u‖, ‖qn − u‖, ‖rn − u‖ : n ≥ 0}. Lemma 2.2 ensures that

(4.11) lim
n→∞ dn = 0.

Using (3.3), (3.4) and (4.10), we know that

(4.12)

‖un+1 − u‖
≤ (1− an − bn)‖un − u‖ + an‖vn − u − (g(vn)− g(u))‖

+an‖JWn(·,d(vn))
ρ (E(vn)) − J

Wn(·,d(vn))
ρ (E(u))‖

+an‖JWn(·,d(vn))
ρ (E(u))− J

Wn(·,d(u))
ρ (E(u))‖

+an‖JWn(·,d(u))
ρ (E(u))− J

W (·,d(u))
ρ (E(u))‖+ bn‖pn − u‖

≤ (1− an − bn)‖un − u‖ + anl‖vn − u‖ + an‖E(vn) − E(u)‖
+anµs‖vn − u‖+ andn + bnL

≤ (1− an − bn)‖un − u‖ + ank‖vn − u‖
+an(|1− ρ|l + ρj)‖vn − u‖
+an

√
(1 − ρ)2 + 2ξρ(1− ρ) + ρ2α2p2‖vn − u‖ + andn + bnL

= (1− an − bn)‖un − u‖ + anθ‖vn − u‖ + andn + bnL

for all n ≥ 0. Similarly, we have

(4.13)
‖vn − u‖ ≤ (1− a′n − b′n)‖un − u‖ + a′nθ‖wn − u‖ + a′ndn + b′nL,

‖wn − u‖ ≤ (1− a′′n − b′′n)‖un − u‖ + a′′nθ‖un − u‖ + a′′ndn + b′′nL
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for all n ≥ 0. Substituting (4.13) into (4.12), we get that

(4.14)

‖un+1 − u‖
≤ [1 − an − bn+anθ(1−a′n−b′n+a′nθ(1−a′′n−b′′n+a′′nθ))]‖un − u‖

+an[θa′n(θa′′ndn + θLb′′n + dn) + θLb′n + dn] + bnL

≤ (1 − (1 − θ)an)‖un − u‖ + an(3dn + a′nb′′nL + Lb′n) + bnL

for all n ≥ 0. It follows from Lemma 2.1, (3.5), (4.11), (4.14) and one of (3.6) and
(3.7) that lim

n→∞un = u. This completes the proof.

Theorem 4.2. Let k, a, b, d, g, N, W, {Wn}n≥0, C and C ′ be as in Theorem
4.1. Suppose that c : H → H is r-Lipschitz continuous. Let

σ = ξ − ζ, τ = (αp + βq)2,

A = 1 − 2σ + τ − (hr − l)2, B = 1 − σ − (hr − l)(1− k − l),

A′ = 1 − 2σ + τ − (hr + l)2, B′ = 1− σ − (hr + l)(1− k + l).

If there exists a constant ρ > 0 satisfying

(4.15) k + ρhr + |1 − ρ|l < 1

and one of (4.3)-(4.6), then the completely generalized nonlinear mixed quasi-
variational inequality (2.1) has a unique solution u ∈ H and the sequence {u n}≥0

defined by Algorithm 3.1 converges strongly to u.

Proof. Using the conditions in Theorem 4.3, we infer that

(4.16)

‖(1 − ρ)(x− y) + ρ[N (a(x), b(x), c(x))− N (a(y), b(x), c(x))

+N (a(y), b(x), c(x))− N (a(y), b(y), c(x))]‖2

= (1 − ρ)2‖x − y‖2 + 2ρ(1− ρ)〈x− y, N (a(x), b(x), c(x))

−N (a(y), b(x), c(x))〉+ 2ρ(1− ρ)〈x− y, N (a(y), b(x), c(x))

−N (a(y), b(y), c(x))〉+ρ2‖N (a(x), b(x), c(x))−N(a(y), b(x), c(x))

+N (a(y), b(x), c(x))− N (a(y), b(y), c(x))‖2

≤ [(1 − ρ)2 + 2σρ(1− ρ)]‖x− y‖2 + ρ2[‖N (a(x), b(x), c(x))

−N (a(y), b(x), c(x))‖+‖N(a(y), b(x), c(x))−N (a(y), b(y), c(x))‖]2
≤ [(1 − ρ)2 + 2σρ(1− ρ) + (αp + βq)2ρ2]‖x− y‖2, ∀x, y ∈ H.
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Depending on the proof of Theorem 4.1, by (4.16) we know that

‖F (x) − F (y)‖
≤ (1 − t + t(l + µs))‖x − y‖ + t|1 − ρ|‖g(x)− g(y)− (x − y)‖

+ t‖(1− ρ)(x− y) + ρ[N (a(x), b(x), c(x))− N (a(y), b(x), c(x))

+ N (a(y), b(x), c(x))− N (a(y), b(y), c(x))]‖
+ tρ‖N (a(y), b(y), c(x))− N (a(y), b(y), c(y))‖

≤ (1 − (1 − θ)t)‖x − y‖, ∀x, y ∈ H,

where

θ = k + ρhr + |1− ρ|l +
√

(1 − ρ)2 + 2σρ(1− ρ) + (αp + βq)2ρ2.

Thus, (4.15) and one of (4.3)-(4.6) ensure that θ < 1. That is, F has a unique fixed
point u ∈ H, which is a unique solution of the completely generalized nonlinear
mixed quasi-variational inequality (2.1).

Similarly, we can show that

‖un+1 − u‖ ≤ (1 − (1 − θ)an)‖un − u‖
+ an(3dn + a′nb′′nL + Lb′n) + bnL, ∀n ≥ 0.

The rest of the argument follows as in the proof of Theorem 4.1 and is therefore
omitted. This completes the proof.

Theorem 4.3. Let k, a, c, d, g, N, W, {Wn}n≥0, C and C ′ be as in Theorem
4.1. Suppose that b : H → H is q-Lipschitz continuous. Let

j = βq +
√

1− 2η + h2r2,

A = α2p2 − (l − j)2, B = (1 − k − l)(l− j) − ξ,

A′ = α2p2 − (j + l)2, B′ = −(1 − k + l)(l + j) − ξ.

If there exists a constant ρ > 0 satisfying (4.2) and one of (4.3)-(4.6), then the
completely generalized nonlinear mixed quasi-variational inequality (2.1) has a
unique solution u ∈ H and the sequence {un}≥0 defined by Algorithm 3.1 con-
verges strongly to u.
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Proof. Depending on the proof of Theorem 4.1, we infer that

‖F (x) − F (y)‖
≤ (1− t + tk)‖x − y‖ + t‖E(x)− E(y)‖
≤ (1− t + tk)‖x − y‖ + t|1 − ρ|‖g(x)− g(y)− (x − y)‖

+ t‖x − y + ρ[N (a(x), b(x), c(x))− N (a(y), b(x), c(x))]‖
+ tρ‖N (a(y), b(x), c(x))− N (a(y), b(x), c(y))− (x− y)‖
+ tρ‖N (a(y), b(x), c(y))− N (a(y), b(y), c(y))‖

≤ [1− t + t(k + |1 − ρ|l + ρj +
√

1 + 2ξρ + α2p2ρ2)]‖x− y‖
≤ (1− (1− θ)t)‖x − y‖, ∀x, y ∈ H,

where
θ = k + |1− ρ|l + ρj +

√
1 + 2ξρ + α2p2ρ2.

Thus, (4.2) and one of (4.3)-(4.6) ensure that θ < 1. That is, F has a unique fixed
point u ∈ H, which is a unique solution of the completely generalized nonlinear
mixed quasi-variational inequality (2.1).

Similarly, we can show that

‖un+1 − u‖ ≤ (1 − (1 − θ)an)‖un − u‖
+ an(3dn + a′nb′′nL + Lb′n) + bnL, ∀n ≥ 0.

The rest of the argument follows as in the proof of Theorem 4.1 and is therefore
omitted. This completes the proof.

Replacing the Lipschitz continuity of I − g by the Lipschitz continuity and the
strong monotonicity of g in Theorems 4.1, 4.2, and 4.3, respectively, we have the
following results.

Theorem 4.4. Let j, a, b, c, d, A, B, C, A′, B′, C′, N, W and {Wn}n≥0

be as in Theorem 4.1. Let g : H → H be l-Lipschitz continuous and m-strongly
monotone and

k =
√

1 − 2m + l + µs.

If there exists a constant ρ > 0 satisfying (4.2) and one of (4.3)-(4.6), then the com-
pletely generalized nonlinear mixed quasi-variational inequality (2.1) has a unique
solution u ∈ H and the sequence {un}n≥0 defined by Algorithm 3.1 converges
strongly to u.
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Proof. Since g is l-Lipschitz continuous and m-strong monotone, it follows
that

‖x − y − (g(x)− g(y))‖2

= ‖x − y‖2 − 2〈x − y, g(x)− g(y)〉+ ‖g(x)− g(y)‖2

≤ (1 − 2m + l2)‖x − y‖2, ∀x, y ∈ H.

By a similar argument used in the proof of Theorem 4.1, the result follows. This
completes the proof.

Theorem 4.5. Let σ, τ, a, b, c, d, A, B, C, A′, B′, C′, N, W and {Wn}n≥0 be
as in Theorem 4.2. Let g and k be as in the Theorem 4.4. If there exists a constant
ρ > 0 satisfying (4.15) and one of (4.3)-(4.6), then the completely generalized
nonlinear mixed quasi-variational inequality (2.1) has a unique solution u ∈ H

and the sequence {un}n≥0 defined by Algorithm 3.1 converges strongly to u.

Theorem 4.6. Let j, a, b, c, d, A, B, C, A′, B′, C′, N, W and {Wn}n≥0 be
as in Theorem 4.3. Let g and k be as in the Theorem 4.4. If there exists a constant
ρ > 0 satisfying (4.2) and one of (4.3)-(4.6), then the completely generalized
nonlinear mixed quasi-variational inequality (2.1) has a unique solution u ∈ H

and the sequence {un}n≥0 defined by Algorithm 3.1 converges strongly to u.

Remark 4.1. Theorems 4.1-4.6 improve, extend and unify Theorems 2.1 in
[2], Theorem 4.1 in [4] and Theorem 2.2 in [21].

5. EXAMPLES

In this section, we construct two examples to explain our results.

Example 5.1. Let H = (−∞, +∞) with the usual metric | · |. Define W, Wn :
H → 2H by

W (x) =




{0} for x < 0,

[0, 1] for x = 0,

{1 + x} for x > 0,

and

Wn(x) =




{0} for x < 0,[
0,

n + 1
n + 2

]
for x = 0,{

1 +
n + 1
n + 2

x

}
for x > 0,

where n ∈ {0, 1, 2, · · ·}.
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Let a, b, c, g : H → H and N : H × H × H → H be mappings such that

a(x) = sin(x − 3), b(x) = x, c(x) = −x + 2, g(x) =
3
4
x + 1, ∀x ∈ H

and
N (x, y, z) = 2|x| − y +

1
2
z − 1, ∀x, y, z ∈ H.

It is easy to verify that W and each Wn are maximal monotone and Wn
G−→W as

n → ∞. Take p = q = r = β = h = 1, l = 1
4 , α = ξ = 2, ζ = −1, η = 1

2 ,

µ = s = 0, then j = 3, A = −105
16 , B = −19

8 , C = 3
4 and C

B+
√

B2−AC
= 6

7 .

Obviously, the conditions of Theorem 4.1 are all satisfied for W (x, y) = W (x),
Wn(x, y) = Wn(x), ∀x, y ∈ H, n ≥ 0. It follows from Theorem 4.1 that for
ρ ∈ ( 6

7 , 1], the following quasi-variational inequality:

(5.1) f ∈ g(u)− N (a(u), b(u), c(u))+ W (g(u))

has a unique solution u ∈ H and the sequence {un}n≥0 defined by Algorithm 3.1
with Wn(x, y) = Wn(x), ∀x, y ∈ H, n ≥ 0 converges strongly to u.

Remark 5.1. We use the assumptions (4.2) and (4.4) of Theorem 4.1 to infer
the existence, uniqueness and iterative approximation of solutions for the quasi-
variational inequality (5.1).

Example 5.2. Let H , W and {Wn}n≥0 be as in Example 5.1. Let a, b, g :
H → H and N : H × H → H be mappings such that

a(x) =
1
4
|x|+ 1, b(x) = sin

(1
2
x + 1

)
, g(x) = x− 1

16
cos(x− 1), ∀x ∈ H

and
N (x, y) = x − 1

2

√
1 + y2, ∀x, y ∈ H.

Take p = β = ξ = 1
4 , q = 1

2 , l = 1
16 , r = s = µ = 0 and j = βq = 1

8 .
Clearly, A = 143

256 , B = 89
128 , C = 15

64 and c
B+

√
B2−AC

= 60
178+

√
29539

. Hence the
assumptions of Theorem 4.1 are fulfilled for N (x, y, z) = N (x, y), W (x, y) =
W (x), Wn(x, y) = Wn(x), ∀x, y, z ∈ H, n ≥ 0. It follows from Theorem 4.1 that
for ρ ∈ ( 60

178+
√

29539
, 1], the following quasi-variational inequality:

(5.2) f ∈ g(u)− N (a(u), b(u))+ W (g(u))

has a unique solution u ∈ H and the sequence {un}n≥0 defined by Algorithm 3.1
with N (x, y, z) = N (x, y), Wn(x, y) = Wn(x), ∀x, y, z ∈ H, n ≥ 0.
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Remark 5.2. We would like to point out that the mapping b is not ζ-relaxed
Lipschitz with respect to the second argument of N in Example 5.2. Otherwise,
there exists a positive constant ζ satisfying

(5.3)

〈N (t, b(x))− N (t, b(y)), x− y〉

= −1
2
(x − y)

[√
1 + sin2

(1
2
x + 1

)
−

√
1 + sin2

(1
2
y + 1

)]

≤ −ζ‖x − y‖2, ∀t, x, y ∈ H.

Let x = (8n + 1)π − 2 and y = 4nπ − 2. It follows from (5.3) that

ζ ≤
√

1 + sin2( 1
2xn + 1)−

√
1 + sin2( 1

2yn + 1)

2(xn − yn)
=

√
2 − 1

2(4n + 1)π
→ 0 as n → ∞,

that is, ζ ≤ 0, which is a contradiction. On the other hand, N is only β-Lipschitz
continuous in the second argument. As in the proof of Theorem 4.1, in Example
5.2 we infer that

|E(x)− E(y)|

= |(1− ρ)(g(x)− g(y)) + ρ[N (a(x), b(x))− N (a(y), b(y))]|

≤ |1− ρ||g(x)− g(y)− (x− y)|
+ |(1− ρ)(x− y) + ρ[N (a(x), b(x))− N (a(y), b(x))]|

+ ρ|N (a(y), b(x))− N (a(y), b(y))|

≤ [l|1− ρ|+
√

(1 − ρ)2 + 2ξρ(1− ρ) + α2p2ρ2 + qβρ]|x− y|, ∀x, y ∈ H.

In order to apply Theorem 4.1 in Example 5.2, we have to replace the condition
j =

√
1 − 2ζ + β2q2 +

√
1 − 2η + h2r2 in Theorem 4.1 by j = qβ. Now the

conditions (4.2) and (4.3) of Theorem 4.1 ensure the existence, uniqueness and
iterative approximation of solutions for the quasi-variational inequality (5.2).
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