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BOUNDEDNESS OF STABLE DOMAINS OF TRANSCENDENTAL
FUNCTIONS

Sheng Wang and Liangwen Liao

Abstract. Boundedness of components of the Fatou sets of iteration of tran-
scendental entire or meromorphic functions are investigated in this paper.

1. INTRODUCTION AND MAIN RESULTS

For an integer m ≥ 1, Σm denotes the one-sided word space, i.e.

Σm =
∞∏
1

{1, 2, · · · , m} = {1, 2, · · · , m} × {1, 2, · · · , m} × · · · .

Let fj(j = 1, 2, · · · , m) be a transcendental meromorphic function in C. For

w = (w1, w2, · · · , wn, · · · ) ∈ Σm,

fwn ◦ · · · ◦ fw1 is defined in C except for at most a countably infinite set:

∪n−1
j=1 {z ∈ C : fwj ◦ · · · ◦ fw1(z) = ∞},

where fwj ∈ {f1, f2, · · · , fm}, j = 1, 2, · · · . The Fatou set Fw on w is defined by

Fw = {z ∈ C : {fwn ◦ · · · ◦ fw1(z)}n is defined
and normal in a neighborhood of z}.

The Julia set on w Jw = C\Fw. Jw is closed and perfect, Fw is open. Let U
be a component of Fw. For any n ≥ 1, there is a component Un of Fw such that
fwn ◦ · · · ◦ fw1(U) ⊂ Un. U is said to be wandering if for any n �= k,

fwn ◦ · · · ◦ fw1(U) ∩ fwk
◦ · · · ◦ fw1(U) = ∅.
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If
f = fw1 = fw2 = · · · = fwn = · · · ,

the component U of the Fatou set F (f) is called pre-periodic domain if there exist
n > k ≥ 0 such that Un = Uk, where Un and Uk are the components of the Fatou set
F (f) and fn(U) ⊆ Un, fk(U) ⊆ Uk. U is called invariant under f if f(U) ⊂ U .
U is called completely invariant under f , z ∈ U if and only if f(z) ∈ U . For more
details, we refer to [6]. For r > 0, we define

L(r, f) = min
|z|=r

{|f(z)|}.

If f(z) is entire, we define

M(r, f) = max
|z|=r

{|f(z)|}.

The first result is stated below.

Theorem 1. Let fj(j = 1, 2, · · · , m) be transcendental entire functions with
the properties: for some constant d > 1 and all sufficiently large r > 0, there is
rj ∈ (r, rd) such that

L(rj, fj) > M(r, fj)d, j = 1, 2, · · · , m.

Then for w = (w1, w2, · · · ) ∈ Σm, all components of Fw are bounded.

Remark. It was proved in [19] that if set g(z) = fm◦· · ·◦f1(z), 1 ≤ m < ∞,
then the Fatou set F (g) has no unbounded components, this is a special case of
Theorem 1. There are some research on the bounded components of the Fatou set.
Let f(z) be a transcendental entire function in C. There is a problem based on [4]:

Problem. Does F (f) have only bounded components if the growth order of f(z)
is less than 1

2?

There are some papers on this problem, see [2, 4, 11, 13, 16-18]. But, the
problem still remains open. Wang [16] proved that the answer to this problem is
affirmative if the growth order and lower order of f(z) both lie in (0, 1

2). Zheng
and Wang [19] extended Wang’s result to the case of the composition of finitely
many entire functions under the same conditions. Here, we give a generalization of
the result below.

Corollary 1. Let fj(z)(j = 1, 2, · · · , m) be entire functions of growth order
and lower order lie in (0, 1

2). Then for w = (w1, w2, · · · ) ∈ Σm, all components
of Fw are bounded.
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By using Theorem in [5], Corollary 1 immediately follows from the following
result.

Corollary 2. Let fj(z)(j = 1, 2, · · · , m) be entire functions of finite order
and sup{ρ(fi), i = 1, · · · , m} < ∞, where ρ(fi) is the order of fi. Suppose that
for some α ∈ (0, 1),

L(r, fj) > M(r, fj)α, r ∈ Ej,

where Ej is a set of values r with nonzero lower logarithmic density, and for some
ε > 0,

Dj = {r : log M(r, fj) > rε}
has positive lower logarithmic density, j = 1, 2, · · · , m. Then for w = (w 1, w2, · · ·) ∈
Σm, all components of Fw are bounded.

Corollary 1 and Corollary 2 were proved by Zheng and Wang [19] for the case
g(z) = fm ◦ · · · ◦ f1(z), 1 ≤ m < ∞. See also [15].

Let f1, f2. · · · , fm be meromorphic in C and G =< f1, f2, · · · , fm > the semi-
group generated by the generators f1, f2, · · · , fm, where the semigroup operation is
the composition of the functions. The Fatou set F (G) of G is defined by

F (G) = {z ∈ C : G is defined and normal in a neighborhood of z}.

The Julia set J(G) is the complement of F (G) in C. Obviously

J(G) = ∪w∈ΣmJw.

A component U of F (G) is said to be wandering if for any w = (w1, · · · , wi,

· · · , wj, · · · ) ∈ Σm, fwi ◦ · · · ◦ fw1(U) ∩ fwj ◦ · · · ◦ fw1(U) = ∅, i �= j. There are
no complete classification for the components of F (G) yet. It may be interesting
to find a way to classify the components of F (G). In this paper, we studied the
bounded wandering components of F (G) for some semigroups G.

For the case of meromorphic functions with poles, we have the following.

Theorem 2. Let fj(z)(j = 1, 2, · · · , m) be transcendental meromorphic in C

and have the properties: for some d > 1, for any positive number ρ > 0 and all
sufficiently large r, there exist r j ∈ (r, rd) such that

log+ L(rj, fj) > ρ log r, j = 1, 2, · · · , m.

If U is a wandering component of F (G) and there exists a point z 0 ∈ U such that

(1) log+ log+ |fwn ◦ · · · ◦ fw1(z0)| = O(n), n → ∞

for some w = (w1, · · · , wn, · · · ) ∈ Σw, then U is bounded.
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Theorem 2 is a generalization of those results in [15, 17, 19]. A transcendental
meromorphic function f(z) satisfies the first hypothese of Theorem 2, if the order
σ(f) < 1

2 and δ(∞, f) > 1−cos πσ(f), where δ(∞, f) is the Nevanlinna deficient
number, see [8].

2. PRELIMINARIES FOR THE PROOF OF THEOREM 1

Let fj(z)(j = 1, 2, · · · , m) be transcendental and entire. For

w = (w1, w2, · · · , wn, · · · ) ∈ Σm,

a point z0 is called a repelling fixed point of fwn ◦ · · · ◦ fw1(z) with order n if

fwn ◦ · · · ◦ fw1(z0) = z0,

fwk
◦ · · · ◦ fw1(z0) �= z0, k = 1, 2, · · · , n− 1,

|(fwn ◦ · · · ◦ fw1(z0))′| > 1.

By using Schwick’s method, see [12], we easily obtain the Lemma 1 bellow.

Lemma 1. Let fj(z)(j = 1, 2, · · · , m) be transcendental and entire. Then for

w = (w1, w2, · · · , wn, · · · ) ∈ Σm,

all repelling fixed points of fwn ◦ · · · ◦ fw1(z) are dense in Jw , n = 1, 2, · · · .

Lemma 2. Under the hypotheses of Lemma 1 and let U be a multiply connected
component of Fw . Then

(1) fwn ◦ · · · ◦ fw1(z) → ∞ uniformly locally on U as n → ∞;
(2) fwn ◦ · · · ◦ fw1(γ) winds the original point 0 at least once as n is sufficiently

large, where γ is an un-contractible Jordan curve in U .

Proof.

(1) If any uniformly locally convergent subsequence {fwn ◦ · · · ◦ fw1(z)}n has a
regularly finite limit in U , let γ be a Jordan curve in U and not contractible,
then {fwn ◦ · · · ◦ fw1}n is normal in the interior of γ . This is impossible.
Because Jw ∩ int(γ) �= ∅, where int(γ) denotes the interior of γ .

(2) Assume that for all sufficiently large n, fwn ◦ · · · ◦ fw1(γ) can not wind 0.
Then fwn ◦ · · · ◦ fw1(z) have no zeros in int(γ) for all sufficiently large n.
By the minimum principle and (1), fwn ◦ · · · ◦ fw1(z) → ∞ in int(γ) as
n → ∞. This contradicts the fact that Jw ∩ int(γ) �= ∅.
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Lemma 2 was proved for the case of a single entire function, see [7].

Lemma 3. Under the hypotheses of Lemma 1. If Fw has an unbounded
component U , then all other components of Fw are simple connected. Furthermore,
if U is multiply connected, then U is completely invariant component under f wn ◦
· · · ◦ fw1(z), n = 1, 2, · · · , i.e., for any integer n

U = fwn ◦ · · · ◦ fw1(U) = f−1
w1

◦ · · · ◦ f−1
wn

(U).

Proof. If there exists a multiply connected component V of Fw such that
V ∩U = ∅, then by Lemma 2, for some sufficiently large n, fwn ◦· · ·◦fw1(V )∩U �=
∅. This is impossible. So, V is simple connected.

If U is multiply connected, then for all n, fwn◦· · ·◦fw1(U) and f−1
w1

◦· · ·◦f−1
wn

(U)
are a multiply connected component of Fw. Thus by the above argument, we have

U = fwn ◦ · · · ◦ fw1(U) = f−1
w1

◦ · · · ◦ f−1
wn

(U).

Lemma 3 was proved by Töpler [14] for the case of a single entire function.

Lemma 4. ([4], Lemma 5) In a domain D the analytic functions g of the family
� omit the value 0, 1. K is a compact connected subset of D on which the functions
all satisfy |g(z)| ≥ 1. Then there exist constants B, C depending only on K and
D and such that for any z, z ′ in K and any g ∈ � we have |g(z ′)| < B|g(z)|C.

Theorem 3. Under the hypotheses of Lemma 1, let U be an unbounded com-
ponent of Fw. Then U is simply connected.

Proof. Without loss of generality, we assume that 0, 1 ∈ Jw and fw1(0) = 0,
by Lemma 1. Suppose that U is multiply connected by contradiction. Let γ be an
un-contractible Jordan curve in U . Then fwn ◦ · · · ◦ fw1(z)|γ → ∞ as n → ∞ and
fwn ◦ · · · ◦ fw1(γ) winds 0 at least once when n is sufficiently large by Lemma 2.
Take a sufficiently large k such that fwk

◦ · · · ◦ fw1(γ) winds 0 and

M(
1
4
r, fw1) > r, r > r0,

where r0 is the minimum distance between fwk
◦ · · · ◦ fw1(γ) and 0. Take a

sufficiently large p such that fwp ◦ · · · ◦ fw1(γ) winds 0 and t(> r) is the minimum
distance between fwp ◦ · · · ◦ fw1(γ) and 0. By Lemma 3, fwk

◦ · · · ◦ fw1(γ) ⊂ U

and fwp ◦ · · ·◦fw1(γ) ⊂ U . Take a Jordan arc γ′ in U connecting fwk
◦ · · ·◦fw1(γ)

and fwp ◦ · · · ◦ fw1(γ). Set

Γ = γ ′ ∪ fwk
◦ · · · ◦ fw1(γ) ∪ fwp ◦ · · · ◦ fw1(γ).
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Γ is a compact subset of U . Since fw1(U) ⊂ U by Lemma 3, we may assume that
|(fn

w1
(z))| > 1 on Γ and fn

w1
(z) �= 0, 1 in U , n = 0, 1, 2, · · · . By Lemma 4, there

exist constants B, C which are only dependent on Γ and U such that

|fn
w1

(z2)| < B|fn
w1

(z1)|C , z1, z2 ∈ Γ,

n = 1, 2, · · · . By the same method of Baker’s in [3], using a result of Pólya [10],
we obtain that

|fn
w1

(z2)| > B|fn
w1

(z1)|C

for all sufficiently large n. This is impossible. Theorem 3 follows.
Following Zheng and Wang [19], we shall prove the main results below.

3. PROOFS OF MAIN RESULTS

In order to prove the Theorems, we need to recall some properties on hyperbolic
domains, see [1,9]. Let W and Y be hyperbolic domains. For any z1, z2 ∈ W ,
ρW (z1, z2) denotes the hyperbolic distance between z1 and z2 on W , i.e.

(2) ρW (z1, z2) = inf
γ∈W

∫
γ
λW (z)|dz|,

where γ denote all Jordan curves connecting z1 to z2 in W , λW (z) is hyperbolic
metric of the domain W . Let f : W → Y be analytic. Then

(3) ρY (f(z1), f(z2)) ≤ ρW (z1, z2), z1, z2 ∈ W.

Proof of Theorem 1

By contradiction, assume that U is an unbounded component of Fw. By Theorem
3, U is simply connected.

Fixed a point z0 ∈ U . For a sufficiently large r > |z0|, there exists r1 ∈ (r, rd)
such that

|fw1(z)| ≥ L(r1, fw1) > M(r, fw1)
d > |fw1(z0)|d, |z| = r1.

Take a Jordan arc γ joining z0 to a point of {z : |z| = r1} such that γ ⊂ U ∩ {z :
|z| ≤ r1}. Put r̃1 = M(r, fw1). Then

fw1(γ)∩ {z : |z| = r̃d
1} �= ∅,

fw1(γ)∩ {z : |z| = r̃1} �= ∅.
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There exists r2 ∈ (r̃1, r̃
d
1) such that

|fw2(z)| ≥ L(r2, fw2) ≥ M(r̃1, fw2)
d = M(M(r, fw1), fw2)

d

≥ M(r, fw2 ◦ fw1)
d > |fw2 ◦ fw1(z0)|d, |z| = r2.

Put r̃2 = M(r̃1, fw2). Then

fw2 ◦ fw1(γ)∩ {z : |z| = r̃d
2} �= ∅,

fw2 ◦ fw1(γ)∩ {z : |z| = r̃2} �= ∅.
So, there is a point z2 ∈ γ satisfying

|fw2 ◦ fw1(z2)| ≥ M(r, fw2 ◦ fw1)
d > |fw2 ◦ fw1(z0)|d.

By the Mathematical Induction, for all sufficiently large n, there is a point zn ∈ γ
satisfying

|fwn ◦ · · · ◦ fw1(zn)| ≥ M(r, fwn ◦ · · · ◦ fw1)
d > |fwn ◦ · · · ◦ fw1(z0)|d.

Clearly, fwn ◦ · · · ◦ fw1(zn) → ∞ as n → ∞, zn ∈ γ .
Note that fwn ◦ · · · ◦ fw1(U) ⊂ Un, where Un is a simply connected and

unbounded component of Fw . From [9], for any a ∈ ∂Un,

λUn(z) ≥ 1
2d(z, ∂Un)

≥ 1
2(|z|+ |a|) ,

where d(z, ∂Un) is the Euclidean distance from z to ∂Un. Therefore

ρUn(fwn ◦ · · · ◦ fw1(z0), fwn ◦ · · · ◦ fw1(zn)) ≥
∫ |fwn◦···◦fw1(zn)|

|fwn◦···◦fw1(z0)|

|dz|
2(|z|+ |a|)

≥ 1
2

log
|fwn ◦ · · · ◦ fw1(zn)| + |a|
|fwn ◦ · · · ◦ fw1(z0)| + |a| .

Set A = max{ρU(z0, z) : z ∈ γ}. Obviously A ∈ (0,∞). By the Principle of
Hyperbolic Metric,

ρUn(fwn ◦ · · · ◦ fw1(z0), fwn ◦ · · · ◦ fw1(zn)) ≤ ρU(z0, zn) ≤ A.

Combining the above,

|fwn ◦ · · ·fw1(z0)|d < |fwn ◦ · · · ◦ fw1(z0)|+ |a| ≤ (|fwn ◦ · · · ◦ fw1(z0)|+ |a|)e2A.

This is impossible as n → ∞, since d > 1 and fwn ◦· · ·◦fw1(z0) → ∞ as n → ∞.
Theorem 1 follows.
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In order to prove Corollary 2, we need to prove the following lemma, which is
from [15].

Lemma 5. Let E be a set of values r of positive lower logarithmic density.
Then there exists a positive number t > 1, for all sufficiently large r, the linear
measure of (r, rt) ∩ E is positive, i.e.

mes((r, rt) ∩ E) > 0.

Proof. Assume that the conclusion is invalid by contradiction. Then for any
positive number t > 1, there exists an unbounded set of r, say Et such that for all
r ∈ Et, mes([r, rt] ∩ E) = 0. Choose t satisfying

1
t

< log denseE,

where
log denseE = lim

r→∞
1

log r

∫
(1,r)∩E

dt

t
.

We can select an unbounded series {rn}∞n=1 ⊂ Et such that

mes([rn, rt
n] ∩ E) = 0, n = 1, 2, · · · .

Since

1
log rt

n

∫
E∩(1,rt

n)

dt

t
≤ 1

t log rn

∫ rn

1

dt

t
+

1
t log rn

∫
(rn,rt

n)∩E

dt

t

=
1
t

+
1

t log rn
mes((rn, rt

n) ∩ E) =
1
t
.

We deduce a contradiction

log denseE ≤ lim
n→∞

1
log rt

n

∫
E∩(1,rt

n)

dt

t
≤ 1

t
.

Proof of Corollary 2

Choose a sufficiently large d > 1 such that αd ≥ 1 and εd > σ, where
σ = sup{ρ(fi), i = 1, · · · , m}. For all sufficiently large r, by Lemma 5, there
exist r′j ∈ (rd, rd2

) ∩ Ej and rj ∈ (r, rd) satisfying rd
j = r′j . Take ζ satisfying

0 < ζ < εd − σ. So

log M(rd
j , fj) > rεd

j > rζ
j log M(rj, fj) > d4 logM(r, fj).



Boundedness of Stable Domains of Transcendental Functions 1611

By Lemma 5, there exists r̃j ∈ (rd2
, rd3

) such that

log L(r̃j, fj) > α log M(r̃j, fj)

> α log M(rd
j , fj)

> αd4 logM(r, fj)

> d3 log M(r, fj), j = 1, 2, · · · , m.

Now, the condition of Theorem 1 are satisfied. Corollary 2 follows.

Proof of Theorem 2.

Assume that U is unbounded. Then there is a wandering component V of Fw

such that U ⊂ V . So V is unbounded. From (1), there exists M > 1 such that

(4) log |fwn ◦ · · · ◦ fw1(z0)| < Mn, n = 1, 2, · · · .

Take a positive number ρ satisfying K = ρ
d > 2M and R0 > max{eM , |z0|}. For

all sufficiently large r ≥ R0, there is rj ∈ (r, rd) such that

(5) logL(rj, fj) > ρ log r, j = 1, 2, · · · , m.

Since V is unbounded, we shall derive a contradiction from (5). Make a Jordan
curve γ connecting z0 to a point of {z : |z| = Rd

0} in V ∩ {z : |z| ≤ Rd
0}. Then

from (4) and (5), there is r0 ∈ (R0, R
d
0) such that

log |fw1(z)| ≥ logL(r0, fw1) > ρ logR0

= dK logR0 > 2M

> log |fw1(z0)|, |z| = r0.

Set R1 = RK
0 . Then

R1 > eM > |fw1(z0)|.
So

fw1(γ)∩ {z : |z| = R1} �= ∅,
and

fw1(γ) ∩ {z : |z| = Rd
1} �= ∅.

Furthermore, there is r1 ∈ (R1, R
d
1) such that

log |fw2(z)| ≥ logL(r1, fw2) > ρ logR1, |z| = r1.
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And then there exists a point z1 ∈ γ , such that |fw1(z1)| = r1, namely

log |fw2 ◦ fw1(z1)| > ρ logR1 = ρK logR0

> 2M2 > log |fw2 ◦ fw1(z0)|.
By induction, similarly we can find a point zn ∈ γ satisfying

(6) log |fwn ◦ · · · ◦ fw1(zn)| > 2Mn > log |fwn ◦ · · · ◦ fw1(z0)|, n = 1, 2, · · · .

Since V is an unbounded wandering component, Jw has an unbounded component,
say Γ. Then

fwn ◦ · · · ◦ fw1 : V → C\Γ, n = 1, 2, · · · ,

is analytic. Write
A = max{ρV (z0, z) : z ∈ γ},

we have A < ∞. From (2) and (3), we obtain

ρC\Γ(fwn ◦ · · · ◦ fw1(z0), fwn ◦ · · · ◦ fw1(zn)) ≤ ρV (z0, zn) ≤ A.

It is well known that

λC\Γ(z)dC\Γ(z) ≥ 1
4
, ∀z ∈ C\Γ,

where dC\Γ(z) is the Euclidean distance from z to Γ. Take a point a ∈ Γ, and have

λC\Γ(z) ≥ 1
4dC\Γ(z)

≥ 1
4

1
|z| + |a| .

And then, we have

A ≥ ρC\Γ(fwn ◦ · · · ◦ fw1(z0), fwn ◦ · · · ◦ fw1(zn))

≥
∫ |fwn◦···◦fw1(zn)|

|fwn◦···◦fw1(z0)|

1
4

1
|z| + |a| |dz|

=
1
4

log
|fwn ◦ · · · ◦ fw1(zn)| + |a|
|fwn ◦ · · · ◦ fw1(z0)|+ |a| .

From (6), we have

2Mn < log(|fwn ◦ · · · ◦ fw1(z0)|+ |a|) + 4A.

From (4), when n → ∞, the above inequality can not occur. This is a contradiction.
The contradiction means V is bounded. The proof is completed.
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