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PARTIAL INVERSE SEMIGROUP C∗-ALGEBRA

B. Tabatabaie Shourijeh

Abstract. The notion of partial group C∗-algebra of a discrete group intro-
duced by R. Exel in [3] is generalized to an idempotent unital inverse semi-
group, and the partial inverse semigroup C∗-algebra is defined. By using the
algebras of multipliers of ideals of an associative algebra, we can prove some
theorem in the C∗-algebra context without using the approximate identity.

1. INTRODUCTION

Concepts of partial action of groups and action of inverse semigroups appeared
in the theory of operator algebras roughly ten years ago. Together with the notion
of partial actions a generalization of the concept of crossed product appeared in that
theory (see [1-3, 8, 10]). The theory of partial crossed products by groups is well
developed. In [3] R. Exel investigated partial group C ∗-algebra of a discrete group
as a partial crossed product of a special C∗-algebra by a partial action. We are going
to follow his footsteps constructing the crossed product of a specific C∗-algebra and
an idempotent unital inverse semigroup by an action and define the partial inverse
semigroup C∗-algebra.

Another relevant concept which we will consider in this paper is the property
of associativity of A ×α S where A is an algebra and S is an idempotent unital
inverse semigroup. The associativity of the group ring A ×α G in which A is a
C∗-algebra has been proved by R. Exel in [1] where he employed special properties
of C∗-algebras i.e. approximate identity. For a general algebra A, the question
of associativity of A ×α G was open since then. Recently R. Exel answered this
question for an algebra whose ideals are idempotent [4]. In this paper we will prove
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the associativity of A ×α S, in which A is a special C∗-algebra, without using
approximate identity.

By a unital inverse semigroup we mean a semigroup S with the unit element e

such that for each s in S there exists a unique element s∗ in S with the following
properties:

(i) ss∗s = s,

(ii) s∗ss∗ = s∗.

See [7] for more information about inverse semigroups.
Before we define the action of an inverse semigroup on a C∗-algebra A, we

need to know about partial automorphism.

Definition 1.1. Let A be a C∗-algebra. A partial automorphism of A is a
triple (α, I, J) in which I and J are closed two-sided ideals in A and

α : I −→ J

is a C∗-algebra isomorphism.
For a given C∗-algebra A let PAut(A) be the set of all partial automorphisms

of A. Using the fact that ideals of ideals of a C∗-algebra are, themselves, ideals of
that C∗-algebra and the intersection of two ideals are equal to their products, we
see that PAut(A) is a unital inverse semigroup with the identity (i, A, A) in which
i is the identity map on A.

Note that (α, I, J)∗ = (α−1, J, I) and if (α, I, J) and (β, K, L) are two partial
automorphisms of A, then their product is the partial atuomorphism (αβ, β−1(I),
αβ(β−1(I))) in which αβ is the composition of α and β with the largest possible
domain.

Multiplier Algebra 1.2. Let A be a unital associative algebra. By a multiplier
of A we mean a pair (L, R) of bounded linear transformations on A such that for
all a, b ∈ A

L(ab) = L(a)b, R(ab) = aR(b) and R(a)b = aL(b).

The set of all multipliers of A will be denoted by M(A). One checks that M(A)
is itself an associative algebra under the following operations:

(L, R) + (L′, R′) = (L + L′, R + R′);

r(L, R) = (rL, rR), r ∈ C;

(L, R)(L′, R′) = (L ◦ L′, R′ ◦R);
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where, as usual, the symbol “◦” between operators means the composition of them.
With these operations, M(A) is called the multiplier algebra of A. The algebra
M(A) has the unit element (i, i), where i : A −→ A is the identity map. Let I

be a two-sided ideal in A. To each x ∈ A associated two linear transformations
Lx : I −→ I and Rx : I −→ I defined by Lx(a) = xa and Rx(a) = ax

respectively. L = Lx is a left multiplier and R = Rx is a right multiplier of I , and

M(I) = {(Lx, Rx) : x ∈ A}.
([5],[6] and [9] are good references for multiplier algebras.)

The following proposition is pivotal for our purpose.

Proposition 1.3. If A is an associative algebra and I an ideal of A, then we
have

(i) (R′ ◦ L)(ab)=(L ◦ R′)(ab) for every (L, R), (L′, R′)∈M(I) and a, b ∈ I .
(ii) If I is an idempotent ideal of A then (R ′ ◦ L)(a)=(L ◦R′)(a) for all a∈I .

(An ideal I of an algebra A is called idempotent if I 2 = I .)

Proof. (i) Since (L, R) and (L′, R′) are multipliers of I , by the properties of
multiplier we have

(R′ ◦ L)(ab) = R′(L(ab)) = R′(L(a)b)

= L(a)R′(b) = L(aR′(b)) = L(R′(ab))

= (L ◦R′)(ab).

(ii) For arbitrary a ∈ I , since I = I2, we have a ∈ I2 = span{xy : x ∈ I, y ∈ I}.
Therefore it suffices to prove the statement for a = xy in which x, y ∈ I .

Now by (i) (R′ ◦ L)(a) = (R′ ◦ L)(xy) = (L ◦ R′)(xy) = (L ◦ R′)(a).

2. PARTIAL INVERSE SEMIGROUP C∗-ALGEBRA

This section starts with the definition of action of an inverse semigroup on a C∗-
algebra, then we construct an auxiliary C∗-algebra and consequently we consider
the partial crossed product of this C∗-algebra by that action. The major new results
of this section are 2.4, 2.6 and theorem 2.7.

Definition 2.1. Let S be a unital inverse semigroup with the identity e and A
be a C∗-algebra. An action of S on A is a semigroup homomorphism:

β : S −→ PAut(A)

s �→ (βs, Es∗, Es)
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such that Ee = A.
An element s of an inverse semigroup S is called idempotent if s2 = s. And S

is called an idempotent semigroup if s 2 = s for all s in S.

Lemma 2.2. Let S be a unital inverse semigroup, A be a C ∗-algebra, β an
action of S on A and s ∈ S, then βs∗ = β−1

s , βe is the identity map on A and if s

is an idempotent, then βs is the identity map on Es∗ = Es.

Proof. Since β is a homomorphism, we have

βs = β(s) = β(ss∗s) = β(s)β(s∗)β(s) = βsβs∗βs

on the other hand β−1
s = βsβ

−1
s βs. So, by the uniqueness of inverse in inverse

semigroups, we conclude that βs∗ = β−1
s .

Moreover
βeβs = βes = βs = βse = βsβe

therefore βe = iA. If s is an idempotent, since s2 = s we have sss = s2 = s and
ss∗s = s so by uniqueness of inverse of s we conclude that s = s∗ and βs = βs∗ .
On the other hand (βs)2 = βsβs = βsβs∗ = βe = i.

Lemma 2.3. If β is an action of the unital inverse semigroup S on a C ∗-
algebra A, then βt(Et∗Es) = Ets for all s, t in S.

Proof. Since Et∗ and Es are ideals in the C∗-algebra A we have Et∗Es =
Et∗ ∩ Es. So

βt(Et∗Es) = βt(Et∗ ∩ Es) = image(βtβs)
= image(β(t)β(s))
= imageβ(ts)
= image(βts) = Ets.

An auxiliary C∗-algebra and an action of a semigroup on it 2.4. Let S
be a unital idempotent inverse semigroup with unit e. The auxiliary C ∗-algebra in
our study is the universal C∗-algebra denoted by Ae, defined via generators and
relations as follows. The set of generators consists of symbol PE in which E is a
finite subset of S such that e ∈ E , and the relations are:

(i) PEPF = PE∪F

(ii) P ∗
E = PE
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for all possible choices of E and F . Since P2
E = PEPE = PE∪E = PE and

P ∗
E = PE , each PE will be a projection. Obviously Ae is an abelian C∗-algebra

with the identity element P{e} and is nothing but the closed linear span of elements
of the form PE .

In order to define an action of S on the above C∗-algebra we need to construct
a collection of partial automorphisms of Ae. Therefore we define the collection
{(βt, Et∗, Et) : t ∈ S} as follows:

For t ∈ S let Et = span{PE : t, e ∈ E} and βt : Et∗ −→ Et defined by
βt(PE) = PtEt∪{e} where tEt = {tst : s ∈ E}. It is clear that each Et is a closed
two-sided ideal in Ae and each βt is a C∗-isomorphism from Et∗ onto Et.

It should be noted that in the definition of βt from Et∗ onto Et the situation
is more delicated than it may appear at first glance. That is, t∗, e ∈ E where
PE ∈ Et∗ , and our definition of βt should imply that t and e be elements of some
F where PF ∈ Et. Clearly t = tt∗t ∈ βt(Et∗), e ∈ βt(Et∗) and also since S is an
idempotent semigroup we have t = t2 = tet ∈ βt(Et∗). Therefore

β : S −→ PAut(Ae)

defined by
t �→ (βt, Et∗, Et)

is an action of S on Ae.
A close look to the construction of ideals Et shows that each Et is an idempotent

ideal in Ae, simply because each PE is a projection.
The following proposition shows that, for given partial automorphism (βs, Es∗, Es)

we can make an element of M(Es).

Proposition 2.5. Let A be a C∗-algebra, S a unital inverse semigroup and
(βs, Es∗, Es) be a partial automorphism of A for s ∈ S. If L and R are left and
right multiplier of E s∗ respectively, then (βs ◦ L ◦ βs∗ , βs ◦R ◦ βs∗) ∈ M(Es).

Proof. Since βs∗ : Es −→ Es∗ is an algebra isomorphism, L : Es∗ −→ Es∗ is
a left multiplier and βs : Es∗ −→ Es is an algebra isomorphism we conclude that

βs ◦ L ◦ βs∗ : Es −→ Es

and similarly
βs ◦ R ◦ βs∗ : Es −→ Es

are linear transformations on Es. In order to see that (βs ◦L ◦ βs∗ , βs ◦R ◦ βs∗) is
a multiplier of Es, let βs ◦L ◦ βs∗ = L′ and βs ◦R ◦βs∗ = R′. Now for a, b ∈ Es,
x ∈ Ae we have

L′
x(ab) = βs ◦ Lx(βs∗(ab)) = βs(xβs∗(ab)) = βs(x)(ab)
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and

L′(a)b = [βs ◦ Lx(βs∗(a))]b
= [βs(xβs∗(a))]b = [βs(x)a]b
= βs(x)(ab) i.e. L′(ab) = L′(a)b.

Also

R′(ab) = (βs ◦ Rx ◦ βs∗)(ab) = βs ◦ Rx(βs∗(ab))
= βs(βs∗(ab)x) = (ab)β(x),

and aR′(b) = a(βs ◦ Rx ◦ βs∗)(b)
= a(βs ◦ Rx(βs∗(b))) = aβs(βs∗(b)x)
= a(bβs(x)) = (ab)βs(x),

therefore R′(ab) = aR′(b).
And

R′(a)b = [(βs ◦ Rx ◦ βs∗)(a)]b = [βs ◦ Rx(βs∗(a))]b
= [βs(βs∗(a)x)]b = [aβs(x)]b.

On the other hand

aL′(b) = a[(βs ◦ Lx ◦ βs∗)b] = a[βs ◦ Lx(βs∗(b))]
= aβs(xβs∗(b)) = aβs∗(x)b = [aβs∗(x)]b

i.e. R′(a)b = aL′(b), and these facts show (βs◦L◦βs∗, βs◦R◦βs∗) is a multiplier
of Es.

Here we are ready to give the definition of Partial inverse semigroup C∗-
algebra.

Definition 2.6. Let β : S −→ PAut(Ae) be the action of the unital idempotent
inverse semigroup S on the C∗-algebra Ae which is discussed in 2.4. The partial
inverse semigroup C∗-algebra C∗

p(S) given by the crossed product [11] of Ae by
β, that is,

C∗
p(S) = Ae ×β S.

Examples.

(a) Let A = C be the C∗-algebra of complex numbers and S = {0, 1} be the
unital inverse semigroup with the identity element 1 and 0 is its idempotent
element. We have 1∗ = 1 and 0∗ = 0. Let βs be the identity map on A for
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all s ∈ S. Obviously, for all s ∈ S we have Es = C and (βs, Es∗, Es) is a
parital automorphism of A. Now

β : S → PAut(A)

s �−→ (βs, Es∗, Es)

is an action of S on A. Since S is an idempotent inverse semigroup, by [11,
4.6] we see that C ×β S is isomorphic to C.

(b) The set of all pairs with complex coordinates, C
2, is a C∗-algebra with norm,

multiplication and involution defined as follow:

||(c1, c2)|| = max{|c1|, |c2|};

(c1, c2)(c′1, c
′
2) = (c1c

′
1, c2c

′
2);

(c1, c2)∗ = (c1, c2).

The group of integers, Z, is a unital inverse semigroup.
Take A = C2 and S = Z. Define ideals E0 = A, E−1 = {(a, 0) : a ∈ A}, E1 =

{(0, a) : a ∈ A} and En = {(0, 0)} for all n, except for n = −1, 0, 1. Let β0 be
the identity map on A. Also β1((a, 0)) = (0, a) is the forward shift and βn = βn

1

for all n �= 0. Obviously, (βn, E−n, En) is a partial automorphism of A. Therefore
by [8, 2.5], A ×β S is isomorphic to the matrix algebra M2.

Sieben in [11], before the definition of crossed product showed that

L = {x ∈ l1(S, A) : x(s) ∈ Es}

with the multiplication

(x ∗ y)(s) =
∑

rt=s

βr[βr∗(x(r))y(t)],

the involution
x∗(s) = βs(x(s∗)∗),

the norm, scalar multiplication, and addition inherited from l1(S, A) is a Banach
∗-algebra.
Since x(r) ∈ Er and βr∗ : Er −→ Er∗ is C∗-algebra isomorphism we conclude
that βr∗(xr) ∈ Er∗. y(t) ∈ Et, therefore βr∗(xr)y(t) ∈ Er∗Et = Er∗ ∩ Et. By
Lemma 2.3, βr(Er∗Et) = Ert, this shows that

βr(βr∗(xr)y(t)) ∈ Ert = Es. i.e.
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(x ∗ y)(s) ∈ L. Similarly x(s∗) ∈ Es∗ and since Es∗ is self-adjoint, we have
(x(s∗))∗ ∈ Es∗ . βs : Es∗ −→ Es is a C∗-algebra isomorphism, therefore βs((x(s∗))∗) ∈
Es, this shows that L is closed with respect to the above involution.

Simple calculations show that

‖x∗‖ = ‖x‖, ‖x ∗ y‖ ≤ ‖x‖‖y‖, (x + y)∗ = x∗ + y∗,

(x ∗ y)∗ = y∗ ∗ x∗ and (λx)∗ = λ̄x∗

for all x, y in L and λ ∈ C. These facts show that L will be a Banach ∗-algebra if
we can prove that

(1) (x ∗ y) ∗ z = x ∗ (y ∗ z)

for all x, y, z in L.
In the following main theorem we will prove the equality in (1) without using

the approximate identity properties.

Theorem 2.7. Let A be a C∗-algebra, S a unital inverse semigroup, β an
action of S on A and l1(S, A) be the Banach algebra of A-valued functions on S.
If

L = {x ∈ l1(S, A) : x(s) ∈ Es}
then the operation ∗ defined by

(x ∗ y)(s) =
∑

rt=s

βr[βr∗(x(r))y(t)]

is associative on L.

Proof. Let asδs be the function in L which takes the value as at the point s of
S and zero at every other element of S. We have x =

∑
r∈S

arδr, y =
∑
s∈S

asδs and

z =
∑
t∈S

atδt. Obviously the theorem is proved if we can show that

(arδr ∗ asδs) ∗ atδt = arδr ∗ (asδs ∗ atδt)

for arbitrary ar ∈ Er, as ∈ Es and at ∈ Et. Notice that arδr∗asδs = βr(βr∗(ar)as)δrs.
As a consequence we have

(arδr ∗ asδs) ∗ atδt = βr(βr∗(ar)as)δrs ∗ atδt

= βrs{β(rs)∗[βr(βr∗(ar)as)]at}δrst

= βrs{βs∗ [βr∗(ar)as]at}δrst

= βr{βs(βs∗[βr∗(ar)as]at)}δrst
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It should be noted that since ar ∈ Er and βr∗ : Er −→ Er∗ is an isomorphism,
we have βr∗(ar) ∈ Er∗ and βr∗(ar)as ∈ Er∗ ∩ Es. By Lemma 2.3, βr(Er∗ ∩
Es) = Er ∩Ers, therefore βr(βr∗(ar)as) ∈ Er ∩Ers, hence we can split βs∗r∗ i.e.
βs∗r∗(·) = βs∗(βr∗(·)). Similar argument shows that we can split βrs as βr ◦ βs,
consequently

(2) (arδr ∗ asδs) ∗ atδt = βr{βs(βs∗ [βr∗(ar)as]at)}δrst.

And

(3)
arδr ∗ (asδs ∗ atδt) = arδr ∗ [βs(βs∗(as)at]δst

= βr{βr∗(ar)[βs(βs∗(as)at)]}δrst.

If we apply βr∗ on the right hand sides of (2) and (3) we conclude that equality
holds if and only if

(4) βs(βs∗ [βr∗(ar)as]at) = βr∗(ar)[βs(βs∗(as)at)].

Since βr∗ : Er −→ Er∗ is an isomorphism, βr∗(ar) runs over Er∗ and consequently
(4) is equivalent to

βs[βs∗(aas)at] = a[βs(βs∗(as)at)]

for arbitrary element a in Er∗, as ∈ Es and at ∈ Et. By taking r = t = e we have
Er = Et = Ee = A. Therefore it suffices we prove

(5) βs[βs∗(aas)at] = a[βs(βs∗(as)at)]

for ar, at in A, s in S and as ∈ Es.
Consider Rat as a right multiplier of Es∗ and La as a left multiplier of Es, by

Proposition 2.5, βs ◦ Rat ◦ βs∗ is a right multiplier of Es. Since all ideal Es are
idempotent by (i) of Proposition 1.3 we have

(6) (βs ◦ Rat ◦ βs∗) ◦ La = La ◦ (βs ◦ Rat ◦ βs∗)

on Es. Applying both sides of (6) on as we conclude (5).

Beyond the purpose of proving associativity property without using the approx-
imate identity, we belive there is a considerable amount of interesting information
which can be obtained from this method.
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