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A NEW EXPLICIT FORMULA FOR THE FUNDAMENTAL CLASS
OF FUNCTIONS

Muharem Avdispahić and Lejla Smajlović

Abstract. Explicit formula for the fundamental class of functions
(
Z, Z̃, Φ

)
,

introduced by J. Jorgenson and S. Lang, is given a new form valid for a more
general fudge factor Φ. This is done for a larger class of test functions of
generalized bounded variation.

1. INTRODUCTION

The representation of the Riemann zeta function in the form of the Euler product
over all primes and the functional equation ζ (s) = π−s+ 1

2
Γ( 1

2
s)

Γ( 1
2
− 1

2
s)ζ (1 − s) that

it satisfies are the basis for its application in the classical number theory. Gen-
eralization of these properties led J. Jorgenson and S. Lang to the definition of a
fundamental class of functions, the class of triples

(
Z, Z̃, Φ

)
, where Z and Z̃ are

meromorphic functions of a finite order whose logarithmic derivative has an Euler
sum representation and that satisfy a functional equation with Φ as a factor. In [8],
J. Jorgenson and S. Lang proved an explicit formula for the fundamental class of
functions implicitly assuming that the fudge factor Φ of the functional equation has
finitely many zeros and poles in a certain vertical strip. The class of test functions
was the class BV of functions of bounded Jordan variation.

In [3] we have proved that the explicit formula for the fundamental class of
functions in the form given by J. Jorgenson and S. Lang is valid for a larger class
of test functions of bounded generalized variation. We shall prove a new form of
an explicit formula for the fundamental class of functions that is valid in the case
when the fudge factor of the functional equation has infinitely many zeros and poles
in any vertical strip. Test functions are of bounded generalized variation.

It can be shown that these two forms of an explicit formula are equvivalent in
the case when Φ has finitely many zeros and poles in the strip −a ≤ Re (s) ≤ σ0

2 .
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2. REGULARIZED PRODUCTS AND SERIES

Regularized products were introduced by J. Jorgenson and S. Lang in [7] as
a generalization of a class of functions that have representation in a form of a
Weierstrass product. We will be interested only in the spectral case when the
regularized product is associated to the pair (L, A) of sequences of complex numbers
λk and nonnegative integers ak respectively. Here, λk correspond to zeros of the
regularized product and ak are their multiplicities. To the pair (L, A) is associated
a theta function θ (t) = a0 +

∑
kake−λkt, t > 0. In order that a regularized

product and regularized harmonic series be well defined it is assumed that the theta
function satisfies some asymptotic conditions at zero and infinity. Before stating
these conditions, let us recall the definition of the asymptotic polynomial at zero.

To each number p in a sequence {p} = {pj}j≥0 of complex numbers with
Re (p0) ≤ Re (p1) ≤ ... increasing to infinity, is associated a polynomial Bp of
degree np. Set bp (t) = Bp (log t). An asymptotic polynomial at zero is

Pq (t) =
∑

Re(p)<Re(q)

tpbp (t) .

Set also m (q) = maxdeg Bp for Re (p) = Re (q), otherwise m (q) = 0.
Asymptotic conditions imposed on the theta function are the following:

(AS1.) Given C > 0 and t0 > 0 there exists N ∈ N and K > 0 such that for all
t ≥ t0 we have ∣∣∣∣∣θ (t) −

(
a0 +

N−1∑
k=1

ake
−λkt

)∣∣∣∣∣ ≤ Ke−Ct.

(AS2.) For every q ∈ C there exists an asymptotic polynomial Pq (t) at zero such
that

θ (t) − Pq (t) = O
(
tRe(q) |log t|m(q)

)
(t → 0) .

(AS3.) Given δ > 0 there exists α > 0 and the constant C > 0 such that for all
N ∈ N and 0 < t ≤ δ we have

|θ (t) − QN (t)| ≤ C

tα
.

In what follows we will always assume that the theta function associated to the
pair (L, A) satisfies conditions AS1-AS3. The order of a regularized product is
defined to be (M, m) , where M is an integer such that −1 ≤ M + Rep0 < 0 and
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m = m (p0) + 1 if there is a complex p such that Re (p0) = Re (p) < 0, otherwise
m = m (p0).

Regularized harmonic series R (z) in the spectral case can be considered as a
logarithmic derivative of a regularized product DL (z) associated to the pair (L, A).
If R (z) = D′

D (z) , for some regularized product D (z) , the order of R (z) is equal
to the order of D (z).

An important result on the representation of a regularized harmonic series is the
following theorem.

Theorem 2.A. [7, Th.4.1., p. 49] There is a polynomial Sw (z) of a degree
degz Sw < Re (p0) such that for any w ∈ C with Re (w) > 0 and Re (w) >
maxk (−Re (λk + z)) we have

R (z + w) =
∫ ∞

0

[θz (t) − P0θz (t)] e−wzdt + Sw (z) = Iw (z) + Sw (z) ,

where θz (t) = e−ztθ (t).

The factor η (s) = π−s+ 1
2

Γ( 1
2
s)

Γ(1
2
− 1

2
s) of the functional equation for the Riemann

zeta function is not the regularized product or the regularized harmonic series since
it is the ratio of two gamma functions. Knowing that the function 1

Γ(s)
is an integral

function of a finite order, we may consider η (s) as the ratio of two regularized
products.

The function G (s) is the function of a regularized product type (RP type) if it
can be represented as the product

G (z) = Q (z) eP (z)
n∏

j=1

Dj (αjz + βj)
kj ,

where Q (z) is a rational function, P (z) is a polynomial, Dj (z) is a regularized
product with αj,βj ∈ C and kj ∈ Z. Numbers αj,βj are restricted so that zeros and
poles of Dj (αjz + βj) lie in the union of vertical strips and sectors{

z ∈ C : −π
2 + ε < arg (z) < π

2 − ε
}

,{
z ∈ C : π

2 + ε < arg (z) < 3π
2 − ε

}
for some ε, ε > 0.

The function R (z) is said to be of a regularized harmonic series type (RHS
type) if it can be represented as the sum

R (z) =
∑

cjRj (αjz + βj) + P ′ (z) + Q′ (z) ,

where Rj are regularized harmonic series, P ′ is a polynomial and Q′ is a rational
function.
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The reduced order of a function that is of a RP type is defined as follows:
The reduced order of G0 (z) = Q (z) eP (z) is (M − 1, 0) where M = deg P ,

or (0, 0) if deg P = 0.

Let us denote by (Mj, mj) the order of Dj . The reduced order of G (z) is
(M, m) where M = maxj (Mj) and m = max (mj) , the maximum being taken
over all mj such that M = Mj .

The logarithmic derivative of a function of a RP type is the function of RHS
type of the same reduced order. The reduced order of the function is connected with
its growth in a vertical strip, as illustrated by the following theorem:

Theorem 2.B. [8] Let R be of a RHS type of a reduced order (M, m)

(a) Let S = {z ∈ C | x1 ≤ Re (z) ≤ x2} be a vertical strip that contains at most
finitely many zeros and poles of R. Then uniformly for x ∈ [x 1, x2] we have
the asymptotic relation

R (x ± iy) = O
(
|y|M (log |y|)m+1

)
(|y| → ∞).

(b) Let S = {z ∈ C | x1 ≤ Re (z) ≤ x2} be a vertical strip that contains in-
finitely many zeros and poles of R. Then there is a sequence of real numbers
Tn → ∞ such that for all x ∈ [x1, x2] we have the following uniform asymp-
totic relation

R (x ± iTn) = O
(
TM

n (logTn)m+1
)

(Tn → ∞).

3. A FUNDAMENTAL CLASS OF FUNCTIONS

A fundamental class of functions is a generalization of a class of functions that
have an Euler product representation and satisfy a functional equation whose fudge
factor possesses a representation as a Weierstrass product.

Definition 3.A. [8, pp. 45-6] A triple
(
Z, Z̃, Φ

)
is in the fundamental class of

functions if the following conditions are satisfied:

(a) Meromorphy. Functions Z and Z̃ are meromorphic functions of finite order;

(b) Euler Sum. There are sequences {q} and {q̃} of real numbers greater than
one that depend on Z and Z̃ respectively such that:

• q and q̃ converge to infinity

• there exist σ′
0 ≥ 0 and complex numbers c (q) and c (q̃) such that
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log Z (s) =
∑ c (q)

qs
, log Z̃ (s) =

∑ c (q̃)
q̃s

,

for all s with Re (s) > σ′
0. These series are assumed to converge uniformly

and absolutely in any half plane of the form Re (s) ≥ σ′
0 + ε > σ′

0.
(c) Functional Equation. There exist meromorphic functions G and G̃, of a

finite order and number σ0, 0 ≤ σ0 ≤ σ′
0 such that

Z (s)G (s) = Z̃ (σ0 − s) G̃ (σ0 − s) ,

or
Z (s)Φ (s) = Z̃ (σ0 − s) ,

for Φ (s) = G(s)

G̃(σ0−s)
.

Functions G, G̃ and Φ are called fudge factors of the functional equation and
are assumed to be of a regularized product type.

Fudge factors of the functional equation are closely related to the functions Z

and Z̃ in the sense of the following theorem:

Definition 3.A. [6, Th.1.5, p.391] Let Z and Z̃ be meromorphic functions with
an Euler product and functional equation. Assume that G and G̃ are of regularized
product type of reduced order M . Then Z and Z̃ are of regularized product type
of reduced order M .

4. GENERALIZED VARIATION

The universal class of test functions in this paper is the class W of regulated
functions [5, p. 145] i.e. functions possessing the one- sided limits at each point.
For f ∈ W , we always suppose 2f (x) = f (x + 0) + f (x − 0). If I is an interval
with endpoints a and b (a < b), we write f (I) = f (b)− f (a).

Let φ be a continuous function defined on [0,∞) and strictly increasing from 0
to ∞. A function f is said to be of φ−bounded variation on I if

Vφ (f, I) = sup
∑
n

φ (|f (In)|) < ∞,

where the supremum is taken over all systems {In} of nonoverlapping subintervals
of I .

Example. φ (u) = u gives us Jordan variation, and φ (u) = up, p > 1,
corresponds to Wiener p−variation.
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In the latter case, Vp (f) traditionally denotes the p-th root of Vup (f).
It is customary to assume that the function φ satisfies some additional properties

in order that the class φBV contains the class BV and that the space φBV of
functions of bounded φ variation is linear. In what follows we will assume that the
function φ is a convex function that satisfies conditions

(01) limx→0
φ(x)

x = 0

(∞1) limx→∞
φ(x)

x = ∞
(∆2) there exist positive constants x0 and d ( d ≥ 2) such that for 0 ≤ x ≤ x0

the inequality φ (2x) ≤ dφ (x) holds.

The additional requirement we will impose on φ is related to existence and
evaluation of the Stieltjes integral of functions of bounded generalized variation
[11]. We assume that ∑

n

φ−1

(
1
n

)(
1
n

) 1
p

< ∞,

for some p > 1.
Let Λ = {λn} be a non-decreasing sequence of positive numbers such that∑ 1
λn

= ∞. A function f is said to be of Λ-bounded variation on I (f ∈ ΛBV (I))
if ∑ |f (In)|

λn
< ∞

for every choice of nonoverlapping intervals In ⊂ I . The supremum of these sums
is called the Λ− variation of f on I and denoted by VΛ (f, I). In the case Λ = N,
one speaks of harmonic bounded variation (HBV ).

Perlman has shown that W (I) is precisely the union and BV (I) is the inter-
section of all ΛBV (I). (See [1] for exact reference, as well as for the following
remark.)

Remark 4.A. [1, p. 228] φBV (I) ⊂ HBV (I), if
∑ 1

nφ−1
(

1
n

)
< ∞;

φBV (I) ⊂ {nα}BV (I), if
∑ 1

nα φ−1
(

1
n

)
< ∞, for 0 < α < 1.

Now, let f be an integrable function and f̂ (t) = 1√
2π

∫∞
−∞f (x) e−itxdx its

Fourier transform. For such f and A > 0, we define

fA (x) =
1
π

∫ ∞

−∞
f (y)

sin A (x − y)
x − y

dy =
1√
2π

∫ A

−A
f̂ (t) eitxdx.

In [2] we have proved the following theorem.
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Theorem 4.A. [2] If f ∈ HBV ( R) ∩ L1 (R), then fA is bounded indepen-
dently of A, fA (x) → f (x) (A → ∞) everywhere and convergence is uniform on
compact sets of points of continuity of f.

5. THE EXPLICIT FORMULA

Let f and F be functions defined on (0,∞) and (−∞,∞) respectively, con-
nected by the relation f (x) = F (− logx), x ∈ (0,∞). We will call both functions
f and F test functions. We will formally denote by

Mf (s) =
∫ ∞

0
f (t) ts

dt

t

the Mellin transform of the function f , and by Muf (s) its translation by u.
Let

(
Z, Z̃, Φ

)
be in the fundamental class of functions, with the fudge factor

Φ of a reduced order (M, m). Both functions Z and Z̃ are of RP type of a reduced
order (M, m) or (M, m + 1). Let a > 0 be a real number such that σ′

0 < σ0 + a

and that functions Z, Z̃ and Φ have no zeros or poles on lines Re (s) = −a and
Re (s) = σ0 + a.

We will denote by:

• Ra,σ the infinite rectangle bounded by the lines Re (s) = −a and Re (s) =
σ + a.

• Ra,σ0 (T ) the finite rectangle bounded by the lines Re (s) = −a, Re (s) =
σ0 + a and horizontal lines Im (s) = ±T .

• {ρ} the set of zeros and poles of Z in the full strip Ra,σ0.

If T is chosen such that functions Z, Z̃ and Φ have no zeros or poles on the
horizontal lines that border Ra,σ0 (T ), it is possible to form the sum

SZ,a (f, T ) =
∑

ρ∈Ra,σ0(T )

ord (ρ) · Mσ0
2

f (ρ) .

We will be interested in conditions on
(
Z, Z̃, Φ

)
and f , or equivalently F, that

ensure the convergence of the last sum when T → ∞.
On an M -times differentiable test function F we will impose the following

conditions:

• Ex I F (j) (x) e(a′+σ0
2 )|x| ∈ φBV (R) ∩ L1 (R) ,
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• Ex II F(j) (x) = F (j) (0) + O
(|log |x||−α) (α > M + 2) ,

for some a′ > a > 0 and j ∈ {0, 1, ...M}.

Let us note that the function φ is assumed to satisfy conditions given in the
previous section.

In [3] we proved that the Mellin transform of a function that satisfies less
restrictive properties than Ex I and Ex II has a polynomial decay in the vertical
strip. Actually, we have proved that, for M times differentiable function F we have
the estimate

Mσ0
2

f (s) = O

((
1
|t|
)M+1− 1

p

)
,

uniformly in −a ≤ σ ≤ σ0 + a.
The main result of the paper is a new explicit formula given by the following

theorem.

Theorem 5.1. Let
(
Z, Z̃, Φ

)
be in the fundamental class of functions and

assume that Φ is of a reduced order (M, m). Then for a test function F that
satisfies conditions Ex I and Ex II functionals S Z,a and WΦ,−a are well defined
and the explicit formula, i.e. the formula

SZ,a (f) =
∑

q

−c (q) log q

q
σ0
2

f (q) +
∑

q̃

−c (q̃) log q̃

q̃
σ0
2

f

(
1
q̃

)
+ WΦ,−a (Fa)

holds, where Fa (x) = F (x) e(
σ0
2

+a)x and

WΦ,−a (Fa) = lim
n→∞

1√
2π

∫ T

−T
F̂a (t)

Φ′

Φ
(−a + it) dt,

denotes a generalized Weil functional.

The proof of the theorem consists of two major parts. In the first part we
will evaluate sums over q and q̃ using Euler sum representation and the functional
equation. The first part of the proof does not differ from the proof of the explicit
formula given in [3]. For the completeness we will give a short sketch of that part.
The second part of the proof will be explained in details.

6. EVALUATION OF SUMS

Let Ba (Tn) denote the boundary of the rectangle Ra,σ0 (Tn) defined above. By
the residue theorem,
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∑
ρ∈Ra,σ0(Tn)

ord (ρ) · Mσ0
2

f (ρ) =
1

2πi

∫
Ba(Tn)

Mσ0
2

f (s)
Z ′

Z
(s) ds

=
1

2πi

[∫ σ0+a−iTn

−a−iTn

+
∫ σ0+a+iTn

σ0+a−iTn

+
∫ −a+iTn

σ0+a+iTn

+
∫ −a−iTn

−a+iTn

]
= I1 + I2 + I3 + I4.

Since the function Z is of a reduced order at most (M, m + 1), we have that
Mσ0

2
f (s) Z′

Z (s) → 0, n → ∞ uniformly in s, for s on the lines σ ± iTn, −a ≤
σ ≤ σ0 + a. Therefore, I1 → 0, and I3 → 0 as n → ∞. Hence,

(1)

∑
ρ∈Ra,σ0(Tn)

ord (ρ) · Mσ0
2

f (ρ)+o (1)=
1

2πi

∫ σ0+a+iTn

σ0+a−iTn

Mσ0
2

f (s)
Z ′

Z
(s) ds

+
1

2πi

∫ −a−iTn

−a+iTn

Mσ0
2

f (s)
Z ′

Z
(s) ds

Using the functional equation, the right - hand side of (1) becomes

1
2πi

∫ σ0+a+iTn

σ0+a−iTn

Mσ0
2

f (s)
Z ′

Z
(s) ds − 1

2πi

∫ −a−iTn

−a+iTn

Mσ0
2

f (s)
Z̃ ′

Z̃
(σ0 − s) ds

− 1
2πi

∫ −a−iTn

−a+iTn

Mσ0
2

f (s)
Φ′

Φ
(s) ds = J1 + J2 + J3.

In this section we will deal with J1 and J2 and in the next section we will treat
J3. For simplicity, we will evaluate J1. For s = σ0 + a + it, −Tn ≤ t ≤ T , it is
possible to interchange the sum and the derivative in the Euler sum for logZ (s),
since the sum converges uniformly for Re (s) = σ0 + a > σ′

0. We obtain

Z ′

Z
(s) =

∑
q

c (q) log q

qs
.

Making a change of variables s = σ0 + a + it, −Tn ≤ t ≤ T in J1, we get that

J1 =
−1
2π

∫ Tn

−Tn

dt

(∑
q

∫ ∞

−∞
F (x) e−(σ0

2
+a+it)x c (q) log q

qσ0+a+it
dx

)
,

and after a change of variables x = y − log q, we obtain

J1 =
−1
2π

∫ Tn

−Tn

dt
∑

q

∫ ∞

−∞
F (y − log q) e−( σ0

2
+a+it)yq−

σ0
2 c (q) log qdy.

Using the condition Ex I, it can be shown that the series
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∑
q

F (y − log q) e−(σ0
2

+a+it)yq−
σ0
2 c (q) log q =

∑
q

Bq (y) e−ity

converges uniformly in y ∈ (−∞,∞). This enables us to interchange the integral
and the sum in J1, so that it becomes:

J1 = − 1
2π

∫ Tn

−Tn

dt

∫ ∞

−∞

(∑
q

Bq (y)

)
e−itydy.

Let us put B (y) =
∑

qBq (y), where the series on the right converges uniformly
in y. Using the condition Ex I it can be shown that Bq ∈ L1 (R) ∩ φBV (R) for
all q. Hence Bq ∈ L1 (R) ∩ HBV (R) , by the assumptions on φ.

Using the definition of Bq and the condition Ex I we obtain that its harmonic
variation is O

( |c(q) log q|
qσ0+a

)
. The absolute convergence of the series

∑ c(q) log q
qσ0+a im-

plies that B ∈ HBV (R)
To the function B we can apply Theorem 4.A. to get

lim
n→∞J1 = lim

n→∞
−1√
2π

∫ Tn

−Tn

B̂ (t) dt = −B (0) = −
∑

q

c (q) log q

q
σ0
2

f (q) .

It is possible to carry out similar arguments for J2, now putting

Bq̃ (y) = F (y + log q̃) e(
σ0
2

+a)y q̃−
σ0
2 c (q̃) log q̃.

Finally we get that

lim
n→∞J2 = −B̃ (0) = −

∑
q̃

c (q̃) log q̃

q̃
σ0
2

f

(
1
q̃

)
.

At this point, we have proved that

(2)

SZ,a (f) =
∑

q

−c (q) log q

q
σ0
2

f (q) +
∑

q̃

−c (q̃) log q̃

q̃
σ0
2

f

(
1
q̃

)

+ lim
n→∞

1
2πi

∫ −a−iTn

−a+iTn

Mσ0
2

f (s)
(
−Φ′

Φ
(s)
)

ds.

7. GENERALIZED WEIL’S FUNCTIONAL

In this section we will prove that the limit on the right hand side of (2) exists and
will evaluate it. The evaluation is based on two lemmas and the general Parseval
formula proved in [3] and [2]. Let us first recall these lemmas and the theorem.
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Lemma 7.A. [3] Assume that g ∈ HBV (R) ∩ L1 (R). Then

1√
2π

∫ +∞

−∞
ĝ (t)

1
t + α

dt =
{ −i

∫ +∞
0 g (x) eiαxdx,

i
∫ +∞
0 g (−x) e−iαxdx,

Imα > 0
Imα < 0

.

Lemma 7.B. [3] Assume that g satisfies condition:

g(j) ∈ HBV (R) ∩ L1 ( R) ,

for j = 0, M . Then, for all n ∈ {0, 1, ...,M} we have that

lim
T→∞

1√
2π

∫ T

−T
ĝ (t) (it)n eitxdt = g(n) (x) .

Before we state the general Parseval formula, let us recall the definition of a
functional Hµ,ϕ that is a generalization of the scalar product. It depends on a pair
(µ, ϕ) of a measure µ and a function ϕ. Functions µ and ϕ are assumed to satisfy
the following conditions:

1◦ µ is a Borel measure on R+ such that dµ (x) = h (x) dx, where h is some
bounded measurable function.

2◦ ϕ is a measurable function on R+ having following two properties:

(a) there exists a complex polynomial at zero P0 (t) such that

ϕ (x) − P0 (x) = O (|log x|m), x ↓ 0 for some integer m > 0;

(b) let M be the integer such that −1 ≤ M +Re (p0) < 0. Then both xMP0 (x)
and ϕ (x) are in L1 (|µ|) outside a neighborhood of zero.

Given a special pair (µ, ϕ), a functional Hµ,ϕ on the Schwartz space S of test
functions is defined by

Hµ,ϕ (β) =
∫ ∞

0

(
ϕ (x)β (x) −

M∑
k=0

(−1)k uk (x)β(k) (0)

)
dµ (x) , β ∈ S,

where uk (x) = P0 (x) xk

k! . Its ”Fourier transform” as a distribution is the function
Ĥµ,ϕ (t) such that

Ĥµ,ϕ (t) =
1√
2π

∫ ∞

0

(
ϕ (x) e−itx −

M∑
k=0

uk (x) (−it)k

)
dµ (x)

=
1√
2π

Hµ,ϕ

(
e−itx

)
.
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The next theorem is a general Parseval formula.

Theorem 7.A. [2] Let f be an M−times differentiable function such that
f (j) ∈ HBV (R)∩L

1 (R) for j ∈ {0, 1, ..., M − 1} and f (M ) ∈ φBV (R)∩L1 (R).
Assume that f (M ) (x) − f (M ) (0) = O

(|log |x||−α) for some α > M + 2. Then,
for a special pair (µ, ϕ) we have

lim
A→∞

∫ A

−A
f̂ (t) Ĥµ,ϕ (t) dt

=
∫ ∞

0

(
ϕ (x) f (−x) −

M∑
k=0

uk (x) (−1)k f (k) (0)

)
dµ (x) = Hµ,ϕ

(
f−) .

Now, let us show how these lemmas and the theorem apply to the evaluation of
the generalized Weil functional.

After the change of variable, the integral in (2) can be written as

(3)

1
2πi

∫ −a−iTn

−a+iTn

Mσ0
2

f (s)
(
−Φ′

Φ
(s)
)

ds

=
1√
2π

∫ Tn

−Tn

F̂a (t)
Φ′

Φ
(−a + it) dt = WΦ,−a (Fa) .

The function Fa is an M−times differentiable function such that

F (k)
a (x) =

k∑
j=0

(
k

j

)(
a +

σ0

2

)j
F (k−j) (x) e(a′+σ0

2 )|x|e(a+
σ0
2 )x−(a′+σ0

2 )|x|.

Since F (k−j) (x) e(a′+σ0
2 )|x| ∈ φBV (R) ∩ L1 (R) and e(a+

σ0
2 )x−(a′+σ0

2 )|x| ∈
BV (R) ∩ L1 (R) , we get F

(k)
a (x) ∈ φBV (R) ∩ L1 (R) for all k = 0, 1, ...,M,

because the class φBV is closed under multiplication. On the other hand,

F (M )
a (x) − F (M )

a (0)

=
M∑

j=0

(
M
j

)(
a +

σ0

2

)j (
F (M−j) (x) e(a+

σ0
2 )x − F (M−j) (0)

)
.

Since e(a+
σ0
2 )x = 1 + O (|x|) (x → 0) the condition Ex II implies

F (M )
a (x) − F (M )

a (0) = O
(|log |x||−α) (x → 0) .

The inclusion φBV (R) ⊆ HBV (R) implies that the function Fa satisfies the
assumptions of Lemma 7.A, Lemma 7.B and Theorem 7.A.
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The function Φ′
Φ is a sum of a rational function with no zeros and poles on

the line Re (s) = −a, a polynomial of a degree less or equal M and a regularized
harmonic series

D′
j

Dj
, where Dj is a regularized product. By the linearity of the

integral in (3) we see that it is enough to consider the following three cases.

1o Φ (z) = Q (z), for some rational function Q. We can express Φ′
Φ as

Φ′

Φ
(−a + it) =

∑
α=σ+iτ

−iAα

t + (−τ + i (σ + a))
,

where the sum on the left is taken over all zeros and poles α of the function
Φ (z), where σ + a �= 0. Application of Lemma 7.A. gives us

lim
n→∞

1√
2π

∫ Tn

−Tn

F̂a (t)
Φ′

Φ
(−a + it) dt

=
∑

α=σ+iτ
σ>−a

− Aα

∫ ∞

0
F (x) e−(σ−σ0

2
+iτ)xdx

+
∑

α=σ+iτ
σ>−a

Aα

∫ ∞

0
F (−x) e(σ−

σ0
2

+iτ)xdx.

This shows us how to evaluate WΦ,−a (Fa) in the case Φ (z) = Q (z) .

2o Let Φ (z) = eP (z), or Φ′
Φ (z) = P ′ (z), for deg P ′ (z) ≤ M. If P ′ (−a + it) =

βM (it)M + ... + β1 (it) + β0, the application of Lemma 7.B. to the function
Fa and polynomial P ′ gives us:

lim
n→∞

1√
2π

∫ Tn

−Tn

F̂a (t)
Φ′

Φ
(−a + it) dt

=
M∑

j=0

βj

j∑
k=0

(
j

k

)(
a +

σ0

2

)k
F (j−k) (0) .

3o Let Φ (z) = D (z), for some regularized product D of order less or equal
M . Then, D = DL (up to the multiplicative constant), for some sequences
L = {λk} of complex numbers and A = {ak} of integers. It is known that
conditions AS1-AS3 imply that Re (λk) → ∞ when k → ∞, so, for some
m ∈ N and Lm = {λm+1, ...} we have

D′
L

DL
(z) =

m∑
k=0

ak

z + λk
+

D′
Lm

DLm

(z) ,
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where −a > −Re (λk) for all k ≥ m+1. In the first case we have evaluated
the Weil functional of a rational function, so without loss of generality we
may assume that the sequence L is such that maxλk∈L {−Re (λk)} < −a.
This enables us to apply Theorem 2.A. to the regularized harmonic series
R (z) = D′

L
DL

(z) and get, for arbitrary α > 0 and z = − (a + α) + it

D′
L

DL
(−a + it) = Iα (− (a + α) + it) + Sα (− (a + α) + it) ,

where Sα (z) is a polynomial of a degree less than or equal to M .

We will deal only with the first summand on the right-hand side of the last
equality since the case when Φ′

Φ is a polynomial was already treated. It is left to
evaluate

lim
n→∞

1√
2π

∫ Tn

−Tn

F̂a (t) Iα (− (a + α) + it) dt

Let us write Iα (− (a + α) + it) as

Iα (− (a + α) + it)

=
∫ ∞

0

θ−(a+α) (x) e−itx −
∑

k+Re(p0)<0

ck (− (a + α) , x) (−it)k

 e−αxdx,

and show that
(
µα, θ−(a+α)

)
, for dµα (x) = e−αxdx is a special pair.

The conditions required for the Borel measure µα are obviously satisfied.
The condition AS2 satisfied by the theta function implies that

θ−(a+α) (x)− P0θ(−(a+α)+it) (x) = O (|logx|m) , (x ↓ 0).

Since P0θ(−(a+α)+it) (x) is a polynomial in x, xMP0θ(−(a+α)+it) (x) is µα−
integrable outside a neighborhood of zero.

To prove µα−integrability of the function θ−(a+α) (x) = θ (x) e(a+α)x outside
a neighborhood of zero, we will use condition AS1 which implies that for given
C > 0 and x0 > 0 there is a natural number N and a constant K such that∣∣∣∣∣θ (x) eax −

N∑
k=0

ake
−(λk−a)x

∣∣∣∣∣ ≤ Ke−(C−a)x,

for all x ≥ x0.
If we choose C > a, the condition −a > −Re (λk) for all k implies that

functions e−(C−a)x and
∑N

k=0ake
−(λk−a)x are integrable outside neighborhood of

zero, and so is θ (x) eax.
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We see that
(
µα, θ−(a+α)

)
is a special pair, so

Iα (− (a + α) + it) =
√

2πĤµα,θ−(a+α)
(t) .

Application of the Theorem 7.A. gives us that

lim
n→∞

1√
2π

∫ Tn

−Tn

F̂a (t) Iα (− (a + α) + it) dt = H
µα,θ−(a+α)

(
F−

a

)
=
∫ ∞

0

[
θ(σ0

2
−α) (x)F (−x)

−
∑

k+Re(p0)<0

k∑
j=0

(
k
j

)(
a +

σ0

2

)j
ck (−a − α, x)F (k−j) (0)

 e−αxdx.

This completes the evaluation of the generalized Weil functional and finishes
the proof of the new explicit formula.
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